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A B S T R A C T

Background

Synthetic peptides, representing CD4þ T cell epitopes, derived from the primary sequence of
allergen molecules have been used to down-regulate allergic inflammation in sensitised
individuals. Treatment of allergic diseases with peptides may offer substantial advantages over
treatment with native allergen molecules because of the reduced potential for cross-linking IgE
bound to the surface of mast cells and basophils.

Methods and Findings

In this study we address the mechanism of action of peptide immunotherapy (PIT) in cat-
allergic, asthmatic patients. Cell-division-tracking dyes, cell-mixing experiments, surface
phenotyping, and cytokine measurements were used to investigate immunomodulation in
peripheral blood mononuclear cells (PBMCs) after therapy. Proliferative responses of PBMCs to
allergen extract were significantly reduced after PIT. This was associated with modified cytokine
profiles generally characterised by an increase in interleukin-10 and a decrease in interleukin-5
production. CD4þ cells isolated after PIT were able to actively suppress allergen-specific
proliferative responses of pretreatment CD4neg PBMCs in co-culture experiments. PIT was
associated with a significant increase in surface expression of CD5 on both CD4þ and CD8þ

PBMCs.

Conclusion

This study provides evidence for the induction of a population of CD4þ T cells with
suppressor/regulatory activity following PIT. Furthermore, up-regulation of cell surface levels of
CD5 may contribute to reduced reactivity to allergen.
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Introduction

The central role of T cells in the pathogenesis of allergic
disease is well established [1]. Through production of
interleukin (IL)-4, IL-5, and IL-13, allergen-specific T helper
(Th) 2 cells direct IgE synthesis, eosinophil growth/differ-
entiation, and induction of airway hyperreactivity [2,3].Until
recently, it was assumed that the basis for allergic disease was
an imbalanced Th cell response to certain allergens, manifest
as a predominance of Th2 cytokines over Th1 cytokines.
However, immune suppression may also be a normal
consequence of a protective immune response, serving to
limit excessive responses that lead to immunopathology [4].
The role of regulatory T cell (Treg) populations in maintain-
ing homeostasis is increasingly well understood. The term
Treg is used to describe a variety of T cell functional
phenotypes that display common features. Several studies
have described the dependence of Treg function on cell–cell
contact. In certain cases regulation was demonstrated to be
dependent on IL-10 and/or transforming growth factor b
secretion [5,6,7,8,9].

Regulation of immune responses may be attributable to
both naturally occurring (thymus-derived, or ‘‘natural’’)
regulatory cells and also naı̈ve or effector T cells that have
acquired suppressive activity (adaptive regulatory cells)
[10,11]. Therapeutic administration of short, soluble peptide
sequences, in the absence of inflammatory signals, may result
in presentation by immature or quiescent antigen-presenting
cells (APCs). Immature allogeneic human dendritic cells (DCs)
induced non-proliferating, IL-10-producing CD4þ T cells
with regulatory properties [12], while peptide-specific human
Treg were induced following administration of antigen-pulsed
immature DCs in vivo [13,14]. DCs producing IL-10 were able
to suppress airway inflammation in a murine model of asthma
[15]. Thus, partially immature or ‘‘steady state’’ DCs,
circulating in the lymphatics, may interact with T cells in a
tolerogenic milieu, in the absence of concomitant pro-
inflammatory stimuli such as pattern recognition receptor
triggering [16].

An additional mechanism for limiting immune responses
may be reducing sensitivity to cognate signals. Up-regulation
of CD5, a suppressor of T cell signalling [17], has been
associated with regulatory cells arising as a consequence of
competition for space and resources [18]. Under such
conditions, suppression was shown to lack antigen specificity
and to be mediated by cells that did not exhibit any of the
hallmarks of ‘‘professional’’ Treg. Recently, Hawiger and
colleagues delivered antigen to steady-state DCs via the
DEC-205 molecule. Following cognate interaction with these
cells, antigen-specific T cells were unresponsive and ex-
pressed enhanced levels of CD5 [19]. Chronic low-level
antigen exposure in the periphery has also been shown to
result in anergy in CD8þ cells that was associated with
increased expression of CD5, further illustrating a role for
CD5 in regulation of T cell function [20].

In animal models, the administration of low-dose peptide is
a well-established mechanism for the induction of Treg that
may arise as a result of presentation by steady-state DCs and
‘‘non-professional’’ APCs [21,22,23,24]. Similarly, administra-
tion of soluble peptides to allergic asthmatic individuals has
been shown to result in markedly reduced cutaneous
reactions to allergen injection [25,26,27], reduced airway

hyperreactivity [27], and improvements in symptom scores
after nasal allergen challenge [28]. Changes in clinical
reactivity were associated with decreased Th1 and Th2
cytokines and increased IL-10 production [25,26]. In the
current study, we address the hypothesis that low-dose
peptide therapy in allergic individuals results in antigen-
specific hyporesponsiveness associated with the induction of
a suppressive population of CD4þ T cells, together with up-
regulation of surface CD5 levels on antigen-specific T cells.

Methods

Patients and Study Design
Individuals who were cat-allergic and asthmatic were

recruited, diagnosed, and assessed as described in detail
elsewhere [29]. The study received prior approval from the
Ethics Committee of the Royal Brompton and Harefield
Hospitals National Health Service Trust (London, United
Kingdom). Written, witnessed informed consent was obtained
from all patients. Peripheral blood mononuclear cells
(PBMCs) were obtained from patients enrolled in two
consecutive studies (open study design) of immunotherapy
employing short synthetic peptides derived from the
sequence of the major cat allergen Felis domesticus allergen 1
(Fel d 1). The studies employed different dosing regimes in
order to evaluate dose effects on clinical and mechanistic
outcomes. The first study included eight patients (referred to
hereafter as Group 1) who received incremental doses of Fel d
1 peptides (0.1, 1, 1, 5, 10, and 25 lg) totalling 42.1 lg of each
peptide, while the second study comprised 12 patients
(referred to hereafter as Group 2) who received a total of
291 lg (1, 5, 10, 25, 50, 100, and 100 lg) of each peptide.
Peptides were synthesised by Fmoc chemistry, purified by
HPLC, and presented as lyophilised solids (Advanced
Biotechnology Centre, Imperial College London, United
Kingdom). Peptides were reconstituted with sterile physio-
logical saline and dispensed into sterile vials for single patient
use (Nova Laboratories, Leicestershire, United Kingdom).
Peptide sequences were as follows: EICPAVKRDVDLFLTGT,
LFLTGTPDEYVEQVAQY, EQVAQYKALPVVLENA, KALPV-
VLENARILKNCV, RILKNCVDAKMTEEDKE, KMTEEDKEN-
ALSLLDK, KENALSLLDKIYTSPL, LTKVNATEPERTAMKK,
TAMKKIQDCYVENGLI, SRVLDGLVMTTISSSK, ISSSKDC-
MGEAVQNTV, and AVQNTVEDLKLNTLGR.
Clinical parameters and outcome measures associated with

peptide intervention in donors from whom PBMC samples
were obtained are described in detail elsewhere [27,28].
Briefly, in the first study peptide immunotherapy (PIT)
resulted in improved non-specific bronchial hyperreactivity,
since a significantly (p = 0.02) greater concentration of
histamine was required to induce a 20% reduction in forced
expiratory volume measured in 1 s. Additionally, a significant
reduction (p = 0.03) in the magnitude (area in square
millimeters) of the late-phase skin reaction was observed
post-treatment. In the second study, treatment was associated
with a reduction in the magnitude of the late asthmatic
reaction induced by inhaled allergen challenge, together with
a significant decrease in nasal outcome measurements
(number of sneezes, nasal blockage, and weight of nasal
secretion; all measurements at 15 min post-challenge, p =
0.02).
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PBMC Cultures
PBMCs were isolated from venous blood by density

gradient centrifugation (Histopaque-1077; Sigma Chemicals,
Poole, United Kingdom) and cryopreserved. All experiments
were performed on pre- and post-PIT PBMCs of the same
patient in single experiments, to reduce inter-experiment
variation within single patients. Prior to in vitro culture,
PBMCs were thawed, washed, and labelled with carboxyfluor-
escein diacetate succinimidyl ester (CFSE) (Molecular Probes,
Eugene, Oregon, United States), as follows: 2.5 3 106 each of
pre-PIT and post-PIT PBMCs were resuspended in 0.5 ml of
RPMI-1640 (Invitrogen, Paisley, United Kingdom), and 0.5 ml
of 1 lM CFSE added under constant, gentle agitation, to
achieve a final CFSE concentration of 0.5 lM. After 10 min, 1
ml of human AB serum (Sigma, Poole, United Kingdom) was
added to terminate labelling, and cells were washed twice.
Cells were resuspended at 2.5 3 106 cells/ml of complete
medium (RPMI-1640 supplemented with L-glutamine and 5%
human AB serum) and plated at 5 3 105 cells/well in 96-well
flat-bottom culture plates (Nunc, Merck Eurolab, Lutter-
worth, United Kingdom) in 200 ll of final volume, under the
following culture conditions: unstimulated, stimulated with
30 lg/ml whole cat allergen (generous gift of Leti Laborato-
ries, Madrid, Spain) and stimulated with plate-bound a-CD3/
a-CD28 (10/1 lg/ml; BD Pharmingen, Cowley, United King-
dom).

For suppression experiments, PBMCs were separated into
CD4þ and CD4neg populations. Limited quantities of periph-
eral blood were available from study patients. Therefore, for
reasons of economy, CD4-depleted PBMCs (CD4neg) remain-
ing after selection of CD4þ cells were used as target cells in all
suppression assays. For each patient, 20 3 106 each of pre-
and post-PIT PBMCs were labelled with aCD4 magnetic beads
(MACS; Miltenyi, Bisley, United Kingdom) and positively
sorted to a mean purity of 94%. CD4neg pre- and post-PIT
cells were labelled with CFSE as described above, while CD4þ

pre- and post-PIT T cells were labelled with PKH-26 (Sigma)
as follows: cells were resuspended in diluent C (Sigma) at no
more than 107 cells/ml, and an equal volume of a PKH-26
dilution (1 lM) was added to reach a final concentration of
0.5 lM. After 2 min, the reaction was stopped with the
addition of 1 ml of human serum, and cells were washed
twice. Cells were cultured in the following combinations: pre-
and post-PIT CD4neg cells alone, pre-PIT CD4neg plus pre- or
post-PIT CD4þ, and post-PIT CD4neg plus pre- or post-PIT
CD4þ (CD4neg cells at 0.5 3 106 cells/well and CD4þ cells at
0.125 3 106 cells/well in 96-well flat-bottom tissue culture
plates, to achieve a ratio of 4:1). All were cultured in the
absence or presence of cat allergen (30 lg/ml) for 1 wk in a
humidified incubator at 37 8C gassed with 5% CO2 in air.

Flow Cytometry
To determine changes in the proliferation of T cell

subpopulations associated with PIT, cells were recovered
after 1 wk of culture, washed twice, and stained for 30 min at
4 8C with a combination of aCD4-PE þ aCD8-Cy, or aCD45-
PE. Isotype controls used were mouse IgG2a-PE, mouse IgG1-
PE, and mouse IgG1-Cy. Mean fluorescence intensity (MFI)
was determined by FACS (FACScan, BD Pharmingen) of at
least 2 3 104 events within the lymphocyte gate. In
suppression experiments, the extent of proliferation was
measured as above on the CFSE-labelled read-out population

without additional antibody staining. Percentages of
CD4þCD25þ T cells, CD4þCD5þ cells, or CD8þCD5þ cells were
measured for unstimulated cells by double staining with
aCD4-Cyþ aCD25-FITC, aCD4-Cyþ aCD5-PE, or aCD8-Cyþ
aCD5-PE. Isotype controls used were mouse IgG1-Cy and
mouse IgG1-FITC (all antibodies were from BD Pharmingen).

Cytokine Measurements
Culture supernatants of 100 ll were collected from wells 48

h after the start of culture. Cytokines were measured by
cytometric bead array Th1/Th2 kit (BD Pharmingen) accord-
ing to the manufacturer’s instructions. A total of six cytokines
were measured simultaneously. Data for IL-5, IL-10, and
interferon (IFN)-c are shown. Cytokine concentrations were
determined using cytometric bead array analysis software (BD
Pharmingen). The sensitivity of the assays was 2.4 pg/ml for
IL-5, 2.8 pg/ml for IL-10, and 7.1 pg/ml for IFN-c.

Data Analysis
FACS cell surface data and CFSE–PKH-26 mixing experi-

ment proliferation data were acquired with Cellquest (BD
Pharmingen), and events within the live lymphocyte gate were
interpreted using Winmdi 2.8 software (Scripps Research
Institute, http://facs.scripps.edu/software.html). CFSE prolif-
eration data of T cell subsets were acquired with Cellquest,
and events within the CD4þ, CD8þ, or CD45ROþ gate analysed
with the Proliferation Wizard module in ModFit LT software
(Verity Software House, Topsham, Massachusetts, United
States). Percentage proliferation is defined as the fraction of
the starting population that has proliferated during the
course of the experiment.

Statistical Analysis
For statistical analysis data were analysed for normality

using the Shapiro-Wilks test. Normally distributed data were
analysed using the paired t-test (parametric). Non-normal
data were analysed using the Wilcoxon signed rank test (non-
parametric). Analysis was performed by an independent
statistician (Turnstat, Reading, United Kingdom).

Results

PIT Results in the Inhibition of Cat-Allergen-Induced
Proliferation of CD45ROþ, CD4þ, and CD8þ T cell Subsets
The effect of PIT on cellular proliferation of T cell subsets

was evaluated by combining CFSE labelling with cell surface
staining. As shown in Figure 1A, the majority of cat-allergen-
specific T cells resided within the CD45ROþ (memory) T cell
population. The proliferation of this population was mark-
edly inhibited following PIT (Figure 1A–1D). Limited
allergen-specific proliferation was detected in the CD45RO�

(naı̈ve) population, but this appeared less sensitive to the
effects of PIT. Data from all nine individuals tested showed a
similar reduction in the post-PIT proliferative response
(Figure 1E; mean proliferation pre-PIT [20.3%] was decreased
post-PIT [5.8%], p = 0.004; pre-PIT range 7.9%–41.8%; post-
PIT range 0%–16.7%). Proliferation in the absence of a
stimulus was less than 2% in all cases and was subtracted.
Proliferation to plate-bound a-CD3/a-CD28 (10 lg/ml and 1
lg/ml, respectively, as a mixture) resulted in mean pre-PIT
proliferation of CD45ROþ T cells of 64.2% and post-PIT
proliferation of 60.1% (data not shown).
The effect of PIT on CD4þ and CD8þ populations was also
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addressed. Both CD4þ and CD8þ subsets proliferated to whole
cat allergen. CD4þ post-PIT T cell proliferation was signifi-
cantly reduced (p = 0.016; Figure 2A), despite a slight
increase in proliferation for one patient (mean pre-PIT to
post-PIT CD4 proliferation was reduced from 5.4% to 2.1%
[pre-PIT range 0%–12.7%; post-PIT range 0%–7.3%]). A
similar reduction was observed for CD8þ T cells (p = 0.031;
Figure 2B data from seven patients available for analysis).
Post-PIT CD8þ proliferation showed a greater reduction
(mean pre-PIT to post-PIT CD8þ proliferation was reduced
from 8.0% to 2.5% [pre-PIT range 1.8%–20.8%; post-PIT
range 0.3%–4.7%]).

Modulation of Cytokine Secretion following Peptide
Immunotherapy
In order to characterise modulation of cytokine responses

following PIT, culture supernatants were collected after 48 h.
Cytokines were measured simultaneously by flow cytometry.
The majority of patients displayed increased IL-10 secretion
although this change did not achieve statistical significance.
IL-5 secretion was significantly reduced post-PIT (p = 0.02;
Table 1). IFN-c secretion tended to be reduced following PIT,
but heterogeneity was observed.

PIT Leads to the Induction of a CD4þ T Cell Population
with Suppressor Activity
To identify populations of T cells with suppressive activity

and to attempt to distinguish between active suppression and
clonal deletion as potential mechanisms following PIT, pre-
and post-PIT CD4þ T cells were isolated and their effect on
proliferation of the CD4neg fraction measured (Figure 3). Two
distinct cell-cycle tracking dyes, CFSE and PKH-26, were
employed to visually separate the target (CD4neg; CFSE) from
the effector (CD4þ; PKH-26) populations, by flow cytometry.
PIT resulted in a 69% reduction (14.7% proliferation pre-PIT
versus 4.6% proliferation post-PIT) in proliferation of the
CD4neg T cell population for the one representative patient
shown in detail (Figure 3A and 3B). When pre- or post-PIT
CD4þT cells were added to CD4neg PBMCs (at a ratio of 1:4), a
marked reduction in proliferation of cat-allergen-specific
CD4neg pre-PIT T cells was observed when co-cultured with
post-PIT (Figure 3E; 7.9% proliferation) but not with pre-PIT
CD4þ T cells (Figure 3C; 17.7% proliferation), indicating that
the post-PIT CD4þ T cells harboured a suppressor popula-
tion. As post-PIT CD4neg T cell proliferation was minimal,
addition of post-PIT CD4þ T cells did not have a further
suppressive effect on this cell population (Figure 3F). Addi-
tionally, removal of the CD4þ T cells from post-PIT PBMCs
did not cause the depleted PBMC population to proliferate

Figure 1. PIT Reduces Antigen-Specific Proliferation of Memory T Cells

(A–D) PBMCs taken before and after PIT were labelled with CFSE to track cell division after antigen stimulaton. Proliferation of cat-allergen-
specific CD45ROþ lymphocytes was reduced following PIT (A) and (B). (C) and (D) represent CD45ROþ T cells as shown in panels (A) and (B),
respectively, analysed with ModFit software. The right-hand peaks represent the parental population, and generations of dividing cells are
depicted leftwards along the x-axis.
(E) Summary of the percentage of proliferating CD45ROþ T cells pre- and post-PIT (percent proliferating cells is defined as the fraction of the
starting population that has proliferated during the course of the experiment, determined with Modfit) for all nine patients tested. Open
symbols represent patients enrolled in treatment Group 1, while solid symbols depict patients from treatment Group 2. Horizontal solid bars
show mean levels of proliferation. Background proliferation (in the absence of a stimulus) was less than 2% and was subtracted. The Wilcoxon
signed rank test was used for statistical analysis.
DOI: 10.1371/journal.pmed.0020078.g001

Figure 2. PIT Reduces Antigen-Specific Proliferation of CD4þ and CD8þ T

Cells

CD4þ and CD8þ proliferation data were obtained and interpreted as
for Figure 1. (A) and (B) represent percentage proliferation of PBMCs
to cat allergen for each patient as determined with ModFit. Open
symbols represent patients from treatment Group 1, while solid
symbols depict patients from treatment Group 2. Horizontal solid
bars indicate means. Background proliferation has been subtracted.
The Wilcoxon signed rank test was used for statistical analysis.
DOI: 10.1371/journal.pmed.0020078.g002
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(Figure 3B), suggesting that antigen-specific cells in the post-
treatment population had already been rendered anergic in
vivo as a result of PIT, or possessed the ability to actively
suppress responses themselves. Similar experiments were
performed in a further four patients. A summary of the
results for all five patients is shown in Figure 3G. Inhibition of
proliferation by CD4þ post-PIT T cells ranged from 64.0% to
19.6%, with a mean of 47.5%.

Phenotypic Characterisation of Candidate Regulatory T

Cells Induced Post-PIT
T cell surface markers known to be associated with

tolerance induction, such as CD25 and CD5, were compared
on pre- and post-PIT resting PBMC in an attempt to provide
further insight into the nature of the suppressor population.
No significant variation was found in CD4þCD25þ cell
numbers (mean pre-PIT to post-PIT proliferation 20.5%–

Table 1. Modulation of Cytokine Secretion Profiles in Allergen-Stimulated PBMCs following PIT

Patient IFN-ca IL-5 IL-10

Pre-PIT Post-PIT Pre-PIT Post-PIT Pre-PIT Post-PIT

1 2,467.60 1,422.00 1,304.70 114.20 339.50 1,205.10

2 1,674.90 1,024.70 4.40 3.30 447.30 586.60

3 99.20 ND 34.70 4.40 213.80 550.10

4 2,093.20 1,674.80 41.80 11.40 684.30 974.60

5b 1,340.00 463.00 ND ND 2,134.00 3,185.00

6b 111.00 81.00 4.00 4.00 58.00 93.00

7b 6,240.00 7,212.00 18.00 13.00 587.00 990.00

8b NDc 17.10 1,149.70 58.90 16.40 29.30

9 ND 1,594.50 ND 3.00 1,711.40 2,000.60

10b 341.60 17.10 2.40 ND 706.90 309.40

11 3,733.60 2,365.80 209.90 91.40 940.00 558.60

12b 795.00 2,955.00 ND ND 462.00 337.00

Mean 1,454.0 1,449.0 212.4 22.7 691.7 901.6

Statisticsd p = 0.99 p = 0.02 p = 0.13

a Cytokine concentration in picograms per millilitre with background (cells cultured in medium alone) subtracted.
b Patients from Group 1.
cND indicates not detected, and assigned a value of zero for statistical analysis. The sensitivity of the assays was 2.4 pg/ml for IL-5, 2.8 pg/ml for IL-10, and 7.1 pg/ml for IFN-c.
d IFN-c and IL-10 analysed with paired t-test (normal distribution), IL-5 analysed by Wilcoxon (non-normal distribution). Normality determined by Shapiro-Wilks test.

DOI: 10.1371/journal.pmed.0020078.t001

Figure 3. CD4þ Cells Isolated after PIT Suppress the Proliferative Response of Baseline CD4neg Cells

PBMCs taken before and after PIT were separated into CD4þ and CD4neg populations by immunomagnetic separation. CD4neg cells were labelled
with CFSE and served as target cells. CD4þ cells were labelled with PKH-26 and were evaluated for suppressor/regulator function by co-culture
with CD4neg cells. (A) and (B) show antigen-stimulated proliferation of CD4neg target cells before and after PIT. Proliferation of CD4neg target
cells was reduced after PIT (B). In (C) and (E), pre-PIT CD4neg cells were employed as target cells. The addition of post-PIT (E), but not pre-PIT
(C) CD4þ cells inhibited proliferation. In (D) and (F), post-PIT CD4neg cells were employed as target cells. Addition of either pre-PIT (D) or post-
PIT (F) CD4þ cells had no further effect on proliferation. Proliferation in the absence of a stimulus was less than 2% in all experiments.
Representative data for one patient are shown. Data for an additional four patients were obtained using the same protocol. A data summary of
percentage proliferation of pre-PIT CD4neg PBMCs in the presence of pre-PIT or post-PIT CD4þT cells for five patients from treatment Group 2
is shown in (G). The paired t-test was used for statistical analysis.
DOI: 10.1371/journal.pmed.0020078.g003
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17.9%; data not shown). However, when CD5 expression was
determined on both CD4þ and CD8þ cells, a significant
increase in MFI in both populations was observed (p = 0.016
and 0.047, respectively). Figure 4A and 4B show increases in
CD5 expression on CD4þ and CD8þ cells (MFI of CD5
expression on CD4þ cells: pre-PIT mean, 465.5 [range, 290.3–
908.5]; post-PIT mean, 559.7 [range, 302.5–1241.8]; range of
post-PIT percentage change in MFI, 4%–37%; MFI of CD5
expression on CD8þ cells: pre-PIT mean, 110.9 [range, 55.3–
345.8]; post-PIT mean, 149.2 [range, 60.6–352.2]; range of
post-PIT percentage change in MFI, 7%–118%). Increased
MFI resulted not only from a decrease in the numbers of
CD5low cells and an associated increase in CD5þ cells in both
populations, but from an increase in CD5 expression on the
CD5þ cells as well, as is shown in Figure 4C and 4D for one
representative patient.

The effect of PIT on proliferation, cytokine secretion
patterns, phenotype of T cell subsets, and suppressive
capacity did not appear to be dependent on the total dose
of peptide administered in the two treatment groups.

Discussion

Following PIT, proliferation of CD4þ, CD8þ, and CD45ROþ

memory T cells was reduced following culture with whole cat
dander allergen extract. Non-specific T cell receptor (TCR)
ligation with anti-CD3/CD28 was unaffected, implying that
only cat-allergen-specific T cells had been targeted by PIT.
The reduction in proliferation was primarily observed within

the differentiated memory (CD45ROþ) rather than the naı̈ve
T cell population, the latter displaying minimal cell division.
While the role of CD4þ T cells in the pathogenesis of

allergic disease is well established, that of CD8þ T cells is less
well defined. A number of reports suggest that CD8þ T cells
may be activated in the asthma process. CD8þ cells from both
bronchoalveolar lavage fluid and peripheral blood from
atopic donors were found to produce IL-4 and IL-5 in lavage
samples and bronchial biopsies [30,31]. Moreover, individuals
with severe atopic disease have high frequencies of Dermato-
phagoides pteronyssinus 1–specific CD8þ T cells that secrete
significantly more IL-4, IL-5, and IL-13 than non-atopic
individuals [32]. Here we have shown that CD8þ T cells
proliferate markedly to cat allergen in vitro even in the
absence of CD4þ T cells. In the context of previous studies, it
appears likely that these cells may contribute to disease
pathogenesis. Thus, induction of non-responsiveness in CD8þ

T cells should have a positive therapeutic outcome in allergic
disease.
Cytokine profiles of cat-allergen-stimulated PBMCs were

established following peptide therapy. Levels of IL-2 and IL-4
were generally below the limit of detection of the assays
employed. PIT had no effect on secretion of tumour necrosis
factor a (data not shown). Production of IL-5, a cytokine
considered particularly relevant in asthma, was significantly
reduced following PIT. In approximately half of the patients
there were reductions in both Th1 and Th2 cytokines, as
previously described [26]. We have observed similar results in
an unpublished study of PIT for bee venom hypersensitivity.
The majority of patients showed increased IL-10 production
after PIT, in agreement with our earlier observations.
However, in the present study this did not achieve statistical
significance, in contrast to a previous report. Enhanced
production of IL-10 has been associated with protection from
allergic symptoms in both naturally exposed individuals such
as beekeepers and in individuals receiving bee venom
immunotherapy [33]. In contrast, IL-10 production in
relation to cat allergen exposure and protection is less well
established. A protective effect of high-dose natural exposure
to cat allergens (resulting in a ‘‘modified Th2 response’’) has
been reported [34,35]. Woodfolk and colleagues demonstra-
ted elevated IL-10 production in individuals displaying a
‘‘modified Th2’’ profile in which cat-allergen-specific IgG4
appeared to protect from disease [36]. In their study,
particular regions of the Fel d 1 molecule (carboxy terminus
of chain 2) appeared to be associated with presentation by
HLA-DRB1*0701 and were associated with preferential IL-10
induction. For technical reasons, peptides from this region
were not included in the preparation used in the present
study. Inclusion of such peptides in future studies may
enhance vaccine efficacy.
In the present study, cytokine production was evaluated in

peripheral blood cells. Cytokine production at local tissues
targeted by allergens may provide a more accurate picture of
the effects of immunotherapy with peptides or native
allergens/allergen extracts. For example, in a related study a
significant increase in the number of cutaneous CD4þIFNc þ

cells (p = 0.03), but not in CD4þIL-10þ cells, was observed in
allergen-challenged skin biopsies [27]. Similarly, a significant
increase in the number of IFN-c mRNA(þ) cells (p = 0.03) was
found in nasal biopsies of patients enrolled in a whole-grass-
pollen immunotherapy trial, in the absence of significant

Figure 4. PIT Enhances CD5 Expression on Resting CD4þ and CD8þ

PBMCs

(A and B) Box-and-whiskers plots representing changes in MFI of
CD5 expression levels on unstimulated CD4þ (A) and CD8þ (B) pre-
and post-PIT PBMCs from seven patients in treatment Group 2.
Isotype control MFI values have been subtracted.
(C and D) CD5 levels on pre-PIT (heavy black line) and post-PIT (grey,
filled) CD4þ and CD8þ PBMCs of one representative patient. M1
marks the CD5low population, with a pre- to post-PIT decrease in
CD5lowCD4þ PBMCs from 6.6% (in black) to 1.5% (in grey), and a
decrease in CD5lowCD8þ PBMCs from 32.3% to 13.9%. M2 indicates
the concomitant increases in CD5þCD4þ and CD5þCD8þ cells post-
PIT. Changes in MFI values for the total pre- and post-PIT CD4þ or
CD8þ populations of the single representative patient are shown in
the upper right-hand corner of each histogram. The Wilcoxon signed
rank test was used for statistical analysis.
DOI: 10.1371/journal.pmed.0020078.g004
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modifications in IFN-c secretion by corresponding in vitro
stimulated PBMCs [37]. Thus, in vivo localization of cells by
allergen challenge may reveal patterns of immunomodulation
that differ from changes in the blood of the same individual.
For this reason, caution should be exercised when interpret-
ing alterations in cytokine profiles in different tissues
following immunotherapy.

We addressed the possibility that changes in T cell
proliferation and cytokine secretion may be related to the
induction of a population of Treg or suppressor T cells,
similar to that observed following peptide intervention in
murine models [38]. PBMCs were separated into CD4þ and
CD4neg populations. CD4þ cells isolated from post-PIT blood
were able to actively suppress the proliferation of pre-
treatment CD4neg cells. The selection of CD4neg cells, rather
than CD4þ cells, as targets was due to limitations in the
number of cells available. Nevertheless, the results obtained
indicate the induction of regulatory and suppressor CD4þ T
cells following PIT. Interestingly, removal of CD4þ cells from
the post-PIT PBMC population did not lead to a reversal of
the allergen-specific hyporesponsiveness in the pre-PIT
CD4neg population. This observation suggests that in addition
to active suppression by CD4þ cells, enduring effects of
therapy can also be detected. Explanations for such observa-
tions may include the following: (i) clonal deletion of some
antigen-specific CD4neg cells, (ii) the induction of anergy in
these cells during the treatment phase, or (iii) the presence of
a CD4neg suppressor population. In support of the last
possibility, regulatory CD8þ T cells have recently been
described [39]. Studies identifying allergen-specific CD4 and
CD8 T cells will be required to address such issues. In future
studies it will be of interest to identify the subpopulation or
subpopulations of CD4 and CD8 cells responsible for the
suppressive effect, by removing candidate T cells from the
pre- and post-treatment CD4þ T cell populations prior to co-
culture.

No increase in numbers of CD4þCD25þ cells was observed
in PBMCs following PIT, in contrast to studies of whole
allergen immunotherapy [40,41]. In fact, numbers of
CD25bright cells significantly decreased following peptide
therapy (data not shown). Furthermore, CD4þCD25þ T cells
obtained before and after treatment in a related PIT study
did not differ in their ability to suppress allergen-specific
effector T cell proliferation and IL-13 production, arguing
against a major role for this type of regulatory cell in peptide
therapy [42]. We speculate that PIT results in T cell activation
in the absence of inflammatory signals, possibly via presenta-
tion by immature APCs, or even by neighbouring T cells.
Well-characterised in vitro human models have demonstrated
that it is indeed possible to induce T cell anergy following
incubation with cognate peptide in the absence of profes-
sional APCs [43,44]. Recently, Apostolou and von Boehmer
reported induction of antigen-specific hyporesponsiveness,
mediated by regulatory cells, following continuous, low-dose
peptide administration in mice [21], an observation that
supports our current and previous clinical findings. Addi-
tionally, Prakken and colleagues have demonstrated induc-
tion of IL-10-secreting Treg following oral peptide therapy in
patients with rheumatoid arthritis. These cells may similarly
represent an induced population of adaptive Treg [45].

While CD25 expression is considered to be a marker of a
functionally distinct population of Treg (provided the cells

have not been recently activated), CD5 expression levels on T
cells may be an indicator of a regulatory function [18]. CD5
has been shown to be a negative regulator of TCR signalling,
influencing the fate of developing thymocytes [17]. In the
periphery, CD5neg T cells show enhanced proliferation to
TCR triggering [46]. Conversely, increased membrane levels
of CD5 correlate with a lowering of the T cell response to
antigen by targeting downstream signalling events [47].
In the current study, CD5 levels were significantly elevated

on directly ex vivo, unstimulated CD4þ and CD8þ T cells,
following peptide therapy. The increases were slight, which
likely relates to the low precursor frequency of the cells
targeted. Interestingly, the increases observed on CD8þT cells
were partly due to a reduction in the size of the CD8þCD5neg

T cell population. A distinct CD8þCD5neg T cell population
that accounts for 3%–10% of the total CD8þ T cell
population in healthy donors has previously been described
[48] and appears to be the main producer of lymphotactin
(XCL-1) [49]. As the average size of CD8þCD5neg T cell
populations in the allergic asthmatic patients in our study is
substantially larger (23.2% of the total CD8þ T cells), it is
tempting to speculate that this is further evidence for a
dysregulated immune response associated with allergic
disease. This observation is in agreement with data from
lymphopenic mice that developed wasting disease with
accelerated kinetics following adoptive transfer of T cells
expressing low levels of CD5, whilst CD5hi cells were
protective [18]. Consistent with these findings, surface levels
of CD5 on human T cells also appear to correlate with
immune function, as the CD5neg population was increased in
bone marrow transplant recipients as well as in patients with
advanced AIDS [50,51]. However, as relatively little is known
about the role of CD5 in human T cell tolerance, further
investigations are required to establish the relevance of our
finding in allergic disease. Isolating Fel d 1–specific T cells
should yield valuable information on the functional relevance
of increased CD5 expression on allergen-specific cells.
To our knowledge, this is the first demonstration that PIT

induces a CD4þ T cell population that actively suppresses
antigen-induced proliferation of effector T cells. The use of
dual labelling with distinctly coloured dyes allowed evalua-
tion of the effect of the CD4þ T cell subset on the
proliferation of CD4neg (including CD8þ cells, natural killer
cells, B cells, monocytes, and basophils) using flow cytometry.
While dual labelling has been widely used to track cell
migration in animal models [52], its application in in vitro
human T cell proliferation experiments has, to our knowl-
edge, not previously been reported. Single-colour labelling of
distinct human PBMC populations has been used to
characterise, isolate, and clone peanut-allergen-specific T
cells [53] and to determine precursor frequencies of recall-
antigen-specific T cells [54]. Measurement of proliferation by
means of CFSE has the additional advantages of requiring
relatively low numbers of cells and allowing additional
phenotypic (cell surface markers) or functional parameters
(intracellular cytokine secretion) to be studied in parallel, in
distinct subpopulations [54].
In conclusion, our data indicate that low-dose PIT targets

both CD4þ and CD8þ memory T cells and induces a
population of active suppressor/regulatory T cells within the
CD4þ compartment. Suppressor activity may also reside
within the CD4neg compartment. Peptide therapy resulted
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in a heterogeneous modulation of allergen-specific PBMC
cytokine responses in vitro, generally characterised by IL-10
induction and IL-5 suppression. Finally, modest but consis-
tent increases were observed in surface CD5 expression on
both CD4þ and CD8þ T cells, an observation that may be
linked to the induction of antigen-specific hyporesponsive-
ness. The ability to modulate antigen-specific T cell function
in vivo has important implications for the treatment and
prevention of allergic, autoimmune, and allograft-related
diseases.
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Patient Summary

Background Increasing numbers of people are developing allergies to
pets and becoming asthmatic. It is not clear what combination of events
triggers allergy—for example, whether keeping pets as a child is
protective—nor what can be done to treat the allergy once it develops.

What Did the Authors Do? They looked at a small group of people who
were allergic to cats and asthmatic. They measured the levels of different
kinds of T cells in their blood—cells that are associated with the allergy.
They then treated the people with small proteins that are very similar to
the triggers for the allergy and looked to see how the levels of various T
cells changed. They found that the protein treatment triggered a
particular type of cell, which seemed able to repress the reactive cells
that had triggered the immune reaction previously.

What Do These Results Mean for Patients? There are many things that
interact to produce allergy, and this study does not help in under-
standing exactly how this happens. It does suggest a way that treatment
with specific small proteins might work in reducing the allergy; however,
the results will need to be confirmed in much larger studies.

Where Can I Get More Information? Both the American Academy of
Allergy Asthma and Immunology, and Asthma UK have large sections of
patient information: http://www.aaaai.org/patients.stm; http://
www.asthma.org.uk/
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