S2 Appendix. Long-range linkage disequilibrium

For pairs of loci at low recombination distances $(r \ll 1)$, it is unlikely for more than a single recombination event to occur in a given meiosis. In this case, the coalescent accurately models LD between linked loci. For larger recombination distances, loci only become unlinked under an odd number of recombinations. This has probability $P($ odd \# rec. events $\mid r)=\frac{1-e^{-2 r}}{2}$, which has a maximum value of $1 / 2$. This leads to non-zero long-range LD, even in the case of fully unlinked loci [1]. The diploid Wright-Fisher captures this, but coalescent estimates of LD decay to zero for increasing r (Fig A).

Fig A. Linkage disequilibrium as measured by $\sigma_{D}^{2}=E\left[D^{2}\right] / E[p(1-p) q(1-q)]$ under different simulation and theory models [2]. Simulations were carried out with population size $N=1000$ at steady state demography for a single 10 M chromosome. At fully unlinked loci, the expected value of σ_{D}^{2} is $\frac{1}{3 N}$ in a diploid model and $\frac{1}{6 N}$ in a haploid model [3]. (A) Hudson and Wright-Fisher simulations. (B) Hybrid simulations with varying numbers of Wright-Fisher generations before switching to the Hudson coalescent.

References

[1] L. King, J. Wakeley, and S. Carmi. "A non-zero variance of Tajima's estimator for two sequences even for infinitely many unlinked loci". In: Theoretical Population Biology 122 (2018), pp. 22-29.
[2] W. G. Hill and A. Robertson. "Linkage disequilibrium in finite populations". In: Theoretical and Applied Genetics 38.6 (1968), pp. 226-231.
[3] A. P. Ragsdale and S. Gravel. "Unbiased Estimation of Linkage Disequilibrium from Unphased Data". In: Molecular Biology and Evolution (Nov. 2019).

