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S1 Simulations. Assessment of the accuracy of the MetaGAP calculator.

Using five simulation studies, we assess the accuracy of the MetaGAP calculator, which is based on the expressions

for GWAS power and PGS R2 derived in S1 Derivations and S2 Derivations. Since the calculator is based on specific

assumptions regarding the data-generating process, an important question is whether the calculator still provides

accurate predictions of power and R2 when the underlying assumptions are violated.

Hence, each simulation study has a different underlying data-generating process. The first study, Simulation

1, assumes that rare variants have larger effects than common variants to such an extent that each causal SNP,

regardless of allele frequency, is expected to have the same R2 with respect to the phenotype (Assumption 5 in

S1 Derivations). This simulation is entirely in line with the assumptions underlying the MetaGAP calculator. In

the second study, Simulation 2, common variants have effects of the same magnitude as rare variants (leading a

common causal variant to explain a larger proportion of the phenotypic variation than a rare causal variant). The

third study, Simulation 3, also allows for differential R2 between SNPs and, in addition, does not assume that SNP

allele frequencies are uniformly distributed. Instead, the third study assumes that there are more variants in the

lower minor allele frequency bins than in the higher minor allele frequency bins. In addition to the deviations from

assumptions made in Simulations 2 and 3, Simulation 4 allows allele frequencies to be completely independent across

studies. Finally, in Simulation 5, we go back to a data-generating process in line with the assumptions underlying

the MetaGAP calculator, with one important difference; in Simulation 5, the genetic correlation as inferred at the

genome-wide level is not only shaped by the correlation of SNP effects, but also by the degree of overlap of causal

loci across studies. Thereby, Simulation 5 violates the assumption discussed in S1 Note, that the estimated CGR is

shaped only by imperfect correlations of SNP effects across studies.

For each simulation study there are 100 independent runs. In each run data is simulated for C = 3 distinct

samples for discovery as well as a fourth sample used as hold-out sample for prediction. The sample sizes of the

respective studies are given by N 1 = 20,000, N 2 = 15,000, N 3 = 10,000, and N 4 = 1,000, where N 4 denotes the

sample size of the hold-out sample. For Simulations 1–4, an 11×11 grid of equispaced values of h2SNP ∈ [0, 1] and

ρβ ∈ [0, 1] is considered. Similarly, for Simulation 5, an 11×11 grid of equispaced values of s ∈ [0, 1] and ρβ ∈ [0, 1]

is considered. Here, s denotes the fraction of causal SNPs that overlaps across studies and ρβ the cross-study

correlation of the effects of SNPs that are overlapping. In Simulations 1–4 we have that s = 1 and in Simulation 5

we have that h2SNP = 0.5. In all simulations there are S = 100,000 independent SNPs of which M = 1,000 have a

causal influence. Moreover, when computing theoretical power and predictive accuracy, in line with S1 Note, we use

ρG = s · ρG as value of the input parameter CGR. A detailed description of the data-generating process in each

simulation study can be found in Table A1.

For every run, data is simulated in accordance with the underlying data-generating process. Next, a GWAS
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is carried out in each of the three discovery samples. GWAS results are then meta-analyzed using sample-size

weighting. The fraction of causal SNPs reaching genome-wide significance in the meta-analysis is the estimate of

statistical power per SNP. The squared correlation between the meta-analysis-based PGS for the hold-out sample

and the corresponding phenotype is the estimate of the PGS R2.

Final estimates of power per causal SNPs and PGS R2 are obtained by averaging the estimates across the runs.

Fig. A1–A2, show the resulting estimates of power per causal SNP in the meta-analysis and the R2 of the PGS, for

both Simulations 1–4 and Simulation 5. In addition, both figures report the power per causal SNP and R2 predicted

by the theoretical model, derived under the assumptions discussed in S1 Derivations. Inspection of Fig. A1 shows

that there is no qualitative difference between the contour plots. Moreover, when computing the root-mean-square

error (RMSE) between the theoretical predictions and the simulation-based estimates of power and R2, even for the

most extreme departures from our assumptions regarding allele frequencies and effects sizes (Simulations 3–4), the

RMSE in power remains below 3% and the RMSE in R2 of the PGS below 2%. Hence, the theoretical predictions of

GWAS power and predictive accuracy – derived under assumptions of equal true R2 of causal SNPs, with uniformly

distributed allele frequencies that are equal across studies – are robust to violations of these assumptions.

Inspection of Fig. A2 shows that when CGRs are being shaped by a combination of poor overlap and poorly

correlated effects of overlapping loci, there are some qualitative differences between predicted power and predictive

accuracy compared to simulation-based estimates. However, the RMSE of theoretical power is only 1.2% with

respect to the power estimated from simulations. Similarly, the RMSE of theoretical predictive accuracy is only

1.3%. Hence, the quantitative differences are small.

Simulation 5 shows that when low CGRs are induced by poor overlap of causal loci across studies instead of low

correlations of the effects of overlapping loci, this leads to a slight downward bias in our theoretical predictions (i.e.,

making our theory conservative). Hence, we argue that if our calculator deems a study design well-powered, the

analyses will be well powered, potentially even more so than what our theory predicts (e.g., if some of the imperfect

CGR can be attributed to causal loci that are not shared across studies).
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Figure A1. Power and polygenic score R2 contour plots with, in each plot, SNP heritability on
the x -axis and cross-study genetic correlation on the y-axis. The first row shows predictions from the
theoretical model. Subsequent rows show estimates based on respective simulation studies. The first column shows
power per causal SNP. The second column the R2 of a polygenic score in a hold-out sample. Above each plot, the
root-mean-square error (RMSE) is reported for the difference between predictions from the theoretical model and
the simulation-based estimates.
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Figure A2. Power and polygenic score R2 contour plots, with in each plot the fraction of causal loci
that overlaps across studies on the x -axis and the cross-study correlation of the effects of overlapping
loci on the y-axis. The first row shows predictions from the theoretical model. The second row shows estimates
based on a simulation study. The first column shows power per causal SNP. The second column the R2 of a polygenic
score in a hold-out sample. Above each plot, the root-mean-square error (RMSE) is reported for the difference
between predictions from the theoretical model and the simulation-based estimates.
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