Scanning genomes for single-cell Probabilistic Trait Loci
Florent Chuffart, Magali Richard, Daniel Jost, Claire Burny, Hélène Duplus-Bottin, Yoshikazu Ohya and Gaël Yvert

Supplementary Methods

Description of key steps of scPTL mapping
(R implementation)

Note: The implementation of the methods is fully available as an open source R package called ptlmapper: (https://github.com/fchuffar/ptlmapper).

Calculation of the Kantorovich distance.

Let x1 and x2 be the vectors of single-cell trait values for individuals 1 and 2, respectively. We built two histograms h1 and h2 of single cell trait values with a common breaks attribute:

breaks = seq(min, max, by = nb_bin-1)
h1 = hist(x1, plot = FALSE, breaks = breaks)
h2 = hist(x2, plot = FALSE, breaks = breaks)

with min (resp. max) being the global minimal (resp. the maximal) value of the single cell trait over all individuals. The number of bins (nb_bin) was set to 100 (similar results were obtained at various binning precisions). The distance was then computed using the code:

bin_size = h1$breaks[2] - h1$breaks[1];
KD = bin_size^2*sum(abs(cumsum(h1$density - h2$density))).

Multi-dimensional Scaling

Multidimensional scaling was done using function cmdscale() from the stats package. The number of informative dimensions to keep was determined by calling cmdscale a first time with an arbitrary value for the parameter k (here k = 2) and then interrogating how many of the resulting eigenvalues exceeded expectation from a uniform distribution (i.e. if the data has no structure, Kaiser criterion). This was done as follows:

Compute the number of significant eigen values of multi-dimensional scaling
get_nb_eig_sign = function(pheno_KD) {
 mds = cmdscale(pheno_KD, k = 2, eig = TRUE)
 mds_eig = mds$eig[mds$eig > 0]
 nb_eig_sign = sum(mds_eig/sum(mds_eig) >= 1/length(mds$eig))
 return(nb_eig_sign)
 }
The output of this function was the resulting number of dimensions nb_dim. If it was lower than 2, we set it to 2. After this, cmdscale was called a second time with k = nb_dim, the desired number of dimensions. This was done as follows:

nb_dim = max(2, get_nb_eig_sign(pheno_KD))
mds = cmdscale(pheno_KD, k = nb_dim, eig = TRUE)
data = data.frame(mds$points)

Canonical Analysis

Linear discriminant analysis was done using a custom function seqWilk() that we derived from the candisc() function of the candisc package. The interest of seqWilk() is to extract the W score that we use as test statistics.

##
A function that returns useful values that are initially
embedded in the output of the candisc() function.
##

seqWilks = function (eig, p, df.h, df.e) {
 p.full = length(eig)
 result = matrix(0, p.full, 4)
 m = df.e + df.h - (p.full + df.h + 1)/2
 for (i in seq(p.full)) {
 test = prod(1/(1 + eig[i:p.full])) # this is the Lambda score that we
[bookmark: _GoBack] # use as the test statistics
 p = p.full + 1 - i
 q = df.h + 1 - i
 s = p^2 + q^2 - 5
 if (s > 0) {
 s = sqrt(((p * q)^2 - 4)/s)
 } else {
 s = 1
 }
 df1 = p * q
 df2 = m * s - (p * q)/2 + 1
 result[i,] = c(test, ((test^(-1/s) - 1) * (df2/df1)),
 df1, df2)
 }
 result = cbind(result, pf(result[,2], result[,3],
 result[,4], lower.tail = FALSE))
 colnames(result) = c("LR test stat", "approx F",
 "num Df", "den Df", "Pr(> F)")
 rownames(result) = 1:p.full
 return(result)
 }

#############################
Then the actual analysis
#############################

Some formatting of the data...
data$allele = as.factor(all)
data = data[!is.na(data$allele),]
Building the statistical model according to colnames of object data
model_formula = paste("cbind(", paste(names(data)[-length(names(data))],
 collapse=", "), ") ~ allele")

...followed by the analysis itself
mod = lm(model_formula, data=data)
can = candisc(mod, data=data)
p = can$rank
eig = can$eigenvalues[1:p]
df.h = can$dfh
df.e = can$dfe
tests = seqWilks(eig, p, df.h, df.e)
return(list(W=tests[1,5], can=can, tests=tests))

Trait heritability in the multi-dimensional phenotypic space:

Let points be the data matrix giving the coordinates of each sample in the phenotypic space, with the first 3 rows being the replicate samples from one parental strain, rows 4 to 6 the replicate samples from the other parental strain, and rows greater than 7 the samples of the segregant strains (one sample per segregant). Genetic heritability H was computed as follows:

environmental variance
var_e_p1 = sum(diag(cov(points[1:3,]))) # from first parent
var_e_p2 = sum(diag(cov(points[4:6,]))) # from second parent
var_e = mean(c(var_e_p1, var_e_p2))
total variance
var_t = sum(diag(cov(points[7:nrow(points),])))
heritability
H = (var_t - var_e) / var_t

Scanning genomes for singlecell Probabilisic Tralt Loc

[T —

Supplemenary Mthods

Descripon f ke ips of P mapping
R implemertaion)

U RN —

PrUBa S ————

PR e g —

. e e it i, it o el

[OSNFS——E E———

e, i of et e e i b
- ———

