
HMM with mixture as emission distribution for tiling array data

An Hidden Markov Model is proposed to model the joint distribution of two hybridization intensities, taking
into account the spatial dependence of the probes along the genome. In this study, it is developed for a constant
number of clusters fixed at K = 4, where these four clusters are biologically interpretable (presented Figure 1): the
noise group, the identical group and the two di↵erentially expressed groups. To simplify the notation, we note 0 for
the noise group, 1 for the identical group and 2 and 3 for the di↵erentially expressed groups. The idea of this model
is already published in [1] but instead of modeling each distribution emission by a Gaussian distribution, a mixture
of distributions is considered for each emission distribution. It leads to a more flexible modeling, better adapted to
fit the data than an HMM with classical parametric distributions to model the emission distributions.

Figure 1: Schematic explanation of the 4 groups to consider when comparing two samples. Example of transcriptomic
data.

Model

We assume that the observed dataX = {X1, ..., Xn} result from a HMM, withXt = (X1t, X2t) the log-intensities
of probe t in the two conditions. The hidden path {Zt} is a 4-state homogeneous Markov chain with transition matrix
⇧ and stationnary distribution m. The observations {Xt} are independent conditionally to Z. To make the emission
distributions more flexible than in the classical setting, each emission distribution is assumed to be itself a mixture
of parametric distributions:

(Xt|Zt = k) ⇠
LkX

`=1

⌘k`f(.; ✓k`) , for k = 1, ..., 4

where Lk is the component number in the mixture for the k-th emission distribution and ⌘k` is the mixing proportion
of the `-th component for the cluster k (8` 2 {1, ..., Lk}, 0 < ⌘k` < 1 and

P
` ⌘k` = 1). We denote by L the total

number of components of the model:
PK

k=1 Lk = L and by ⇥ = (⇧,m, {⌘k`}k,`, {✓k`}k,`) the vector of model
parameters.

This mixture of bidimensional Gaussian distributions can be recast as an unidimensional mixture by considering
three axes �1, �2 and �3, concurrent at the barycentre of the noise group, corresponding respectively to the main
axis of the ellipse representing groups 1, 2 and 3. The Gaussian components of the k-th cluster are then colinear
along the axis �k (see Figure 2) leading to a more tractable model (see 2).

The details of the model are the following:

The noise group is a special group, considered as circular and modeled by a spherical Gaussian :
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Each of the three other groups is modeled by a Gaussian mixture. Let (Utk, Vtk) be the coordinates of (X1t, X2t)
in the orthonormal basis (�k,�?

k ).



Figure 2: Schematic representation of Gaussian mixtures in each cluster, along the three axes.

We consider an unidimensional Gaussian mixture along each axis �k and a unique distribution for all compo-
nents along �?

k :

(Vtk|Zt = k) ⇠ N (0,�2) and (Utk|Zt = k) ⇠  k =
LkX

`=1

⌘k`f(.; ✓k`) ,

with ⌘k` is the proportion of the `-th component for the cluster k and f(.; ✓k`) ⇠ N (µkl,�2
kl) .

Inference

The standard strategy for maximum likelihood inference of HMM relies on the Expectation-Maximisation (EM)
algorithm ([2]). The E-step aims at calculating the conditional distribution of the hidden path given the observed
data, with the current value of the parameters of the model.

This can be achieved via the forward-backward algorithm (see [3] for further details). At iteration h, it only
requires the current estimate of the transition matrix ⇧h and the current estimates of the emission densities at each
observation point:  h

k (Xt). At the M-step, the parameters estimates are obtained by maximizing E [logP (X,Z;⇥)|X]
in ⇥. We have:

E [logP (X,Z;⇥)|X] = E [logP (Z;⇧,m)|X] + E [logP (X|Z; ⌘, ✓)|X] .

The maximization of the first term is straightforward and results in the estimation of ⇧h+1 andmh+1. As the emission
distributions are inherently mixture, the maximisation of the second term requires some specific development. By
definition we have:

E [logP (X|Z; ⌘, ✓)|X] =
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where ⌧tk is the posterior probability for an observation t to belong to the cluster k, defined by P (Zt = k|X).
Noting that the term corresponding to cluster k is a weighted version of the likelihood of an independent mixture,
we introduce a second hidden variable {Wt}t which refers to component ` within cluster k. As a consequence,
E [logP (X|Z;⇥)|X] can be rewritten as:

E [logP (X,W |Z;⇥)|X]� E [logP (W |X,Z;⇥)|X] . (1)

Similarly to the classical EM algorithm with only one latent variable, the fundamental property established by [2]
can be applied to Equation (1): maximising E [logP (X|Z;⇥)|X] amounts to only maximising the first term, which
is equal to:
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where
�tk` = E [Wtk` = 1|Zt = k,Xt] .

We now face the inference of a standard parametric mixture, for which we know the solution. At the E-step we
have:
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,

and for the M-step:
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,

and

b✓k` = argmax
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X

t

b⌧tk
X

`

b�tk` log f(Xt; ✓k`) .

Once the parameters estimation is done, we get for each probe the posterior probability ⌧tk to belong to cluster
k. The classification of probes is then performed according to the Maximum A Posteriori rule which consists in
assigning a probe in the cluster for which the posterior probability is the highest.
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