
1

Effectively identifying eQTLs from multiple tissues by

combining mixed model and meta-analytic approaches

Supporting Information Text S2

Jae Hoon Sul1,6, Buhm Han2,3,6, Chun Ye3,6, Ted Choi4, Eleazar Eskin1,5,∗

1 Computer Science Department, University of California, Los Angeles, California, USA

2 Division of Genetics, Brigham & Women’s Hospital, Harvard Medical School, Boston,

MA, USA

3 Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA

4 Predictive Biology, Inc., San Diego, California, USA

5 Department of Human Genetics, University of California, Los Angeles, California , USA

6 These authors contributed equally to this work

∗ E-mail: eeskin@cs.ucla.edu

Practical issues in combining mixed model and meta-analysis

t-distributed effect size estimates

There are subtle issues in our framework combining mixed model and meta-analysis. First, the effect

size estimates from linear model or mixed model are typically t-distributed, while most of meta-analysis

methods assume normally distributed effect sizes. Let β̂ and var(β̂) be the effect size estimate and the

variance estimate from a linear model. Assume that under the null, β̂√
var(β̂)

will approximately follow

t-distribution with k degree of freedom. The p-value is calculated

pt = 2

1− Φt(k)

 |β̂|√
var(β̂)


where Φt(k) is the cummulative density function of the t-distribution with k degree of freedom. If we

directly use β̂ and var(β̂) in the meta-analysis approach assuming normally distributed effect size, false

positive rate will increase. This issue is particularly important in model organisms where the sample size

is moderate.
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To correct for this, we use simple heuristic replacing

√
var(β̂) with

|β̂|
|Φ−1(pt/2)|

where Φ−1 is the inverse of the cummulative density function of the standard normal distribution. That

is, we increase the variance of β̂ according to the difference between the t-distribution and the normal

distribution to prevent an excessive false positive rate in the meta-analysis.

Differences in error models

Another issue is that our approach simultaneously considers all tissues using Equation (3), but the error

model is slightly different from the tissue-by-tissue approach in Equation (2). In the tissue-by-tissue

approach, the error e ∼ N(0, σ2I) is fit in each tissue separately, while in our new approach, the error is

fit in all tissues together. Certainly, the tissue-by-tissue model is more desirable because we cannot always

expect that the true variance of error term (σ2) to be the same across tissues. In other words, in our new

framework, we are imposing an unrealistic assumption that the error variance is the same for all tissues,

or constant error variance assumption (CEVA). We find that our approach is often less powerful when

the truth deviates from CEVA. To compensate for the effect of this assumption, we apply the following

idea. Before using our mixed model in Equation (3), we standardize the gene expressions in each tissue

to follow N (0, 1). Note that this does not completely solve the problem because gene expression values

include not only the error term but also the genetic effects.

To further correct for the effect of our assumption, we use the following heuristic. We first run tissue-

by-tissue approach to obtain the effect size estimate β̂TBT and its standard error STDTBT . Second,

we run our mixed model in Equation (3) assuming that σ2
v = 0. That is, we intentionally ignore the

correlations of multiple tissue expressions from the same individuals. Under this simplified model, the

estimate β̂COMB turns out to be exactly the same as β̂TBT . Let STDCOMB be the standard error of

β̂COMB under this model. Although the effect size estimates are the same (β̂TBT = β̂COMB ), their

standard errors are different in two models because their error models are different. Therefore, the ratio

between the two standard errors can be a measure of the effect of CEVA.

Finally, we run our standard mixed model by estimating σ2
v and σ2

e using the EMMA package. Let

β̂MIX and STDMIX be the effect size estimate and its standard error under this model. Then we heuris-
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tically obtain a new standard error

STDNEW = STDMIX ·
STDTBT

STDCOMB

That is, we correct for the effect of CEVA using the ratio between STDTBT and STDCOMB . What we use

in the subsequent meta-analysis are β̂MIX and STDNEW . We find that this simple heuristic effectively

corrects for the effect of CEVA in many cases.


