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Do, Tung, Dorfman, Kiefer, Drabant, Francke, Mountain, Goldman, Tanner, Langston, Wojcicki,
Eriksson

Supplemental Text

Population stratification

For all evaluations of risk prediction models, we controlled for population stratification using a subclas-
sification technique based on full matching. To be conservative, we included any covariate for which
we suspected that stratification might be a concern, erring on the side of being more, rather than less,
inclusive. For example, we used sex as a covariate to ensure that differences in sex distribution between
training and testing sets would not affect the evaluation accuracy, given that we did not explicitly ex-
clude sex-related markers from our predictive models. Similarly, we corrected for age to avoid potential
confounding due to the age-dependent penetrance of PD. Stratifying on covariates reduces the bias of
our accuracy estimates at the expense of somewhat increased variance. In the remainder of this section,
we describe the details of our stratification approach.

Specifically, we partitioned the 23andMe cohort based on sex and cross-validation fold, and partitioned
the NINDS cohort based on sex and genotyping platform. Next, we applied an “optimal” subclassification
technique in which each partition was further divided into strata, according to the following requirements:
each individual in the partition should be assigned to exactly one stratum; each stratum should contain
at least one case and one control; and the sum of the distances between cases and controls over all strata
should be minimized. For the distance function, we used the Mahalanobis distance metric, d(u,v) =√

(u− v)TΣ−1(u− v), where u and v are vectors containing the age of the individual at collection

and the first five principal component projections for a pair of individuals, and where Σ is the pooled
covariance matrix estimated from the ages and principal components of all individuals in a given partition.
To ensure that individuals within a given partition did not differ too substantially in terms of age or
ancestry, we imposed a maximum limit of 0.5 on the Mahalanobis distance, such that individuals with
no sufficiently close matches were omitted from the evaluation.

Using the distance function above, there always exists an optimal subclassification in which each
stratum contains either exactly one case or exactly one control (known as a “full matching”), and such
a subclassification may be found by reducing the distance optimization task to an instance of a min-cost
flow problem, for which standard solution techniques exist [1]. For this work, we used a standard min-
cost flow algorithm based on successive shortest paths [2], modified to incorporate the labeling heuristic
described in [3].

Given the above division of an evaluation dataset into strata, we then performed a stratified receiver
operating characteristic (ROC) curve analysis by computing a pooled covariate-adjusted area under curve
(AUC) statistic:

Â =
1∑

k |Xk||Yk|
∑
k

|Xk||Yk|Â(Xk, Yk),

where Xk is the set of cases in the kth stratum, Yk is the set of controls in the kth stratum, and
Â(Xk, Yk) is the estimated AUC for the kth stratum. Details of the AUC estimation procedure and the
precise formulation we used are provided in the next section.

In this formulation, cases in a given subclassification stratum are only compared against controls in
the same stratum. In situations where a limited number of strata are used, subclassification can lead
to biased estimates if there exists residual covariate imbalance within strata [4]; however, full matching
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substantially ameliorates these effects since the small strata ensure that the cases and controls are as
similar as possible with respect to observed covariates. For significance testing, we analytically computed
unbiased estimates of the variance of the AUC statistic for a given risk prediction model, and the variance
of the difference of AUC statistics for two risk prediction models over the same set of strata.

The covariate-adjustment framework we describe here is largely identical in motivation with the
covariate-adjusted ROC analysis described in [5]; we note that the semiparametric estimator described
in the latter may provide a suitable drop-in replacement for the subclassification-based approach we have
described here that avoids the need for matching.

AUC estimation

The AUC is the probability that a randomly chosen case will have greater risk than a randomly chosen
matched control (awarding half-credit in the event of ties). Mathematically, we can define the AUC as
A = 1

2 (R+ 1) where R = P (x > y)− P (y > x). Here, we consider the following two problems:

1. Estimating the AUC for a genetic risk prediction model, given a stratified datasetD = {(Xk, Yk)}Kk=1,
where Xk and Yk denote the set of indices of cases and controls in the kth stratum; and

2. Testing the significance of a difference in the AUCs for two different risk prediction models evaluated
on the same stratified dataset.

We provide analytical formulas for obtaining unbiased estimates of the variance for the area under a
covariate-adjusted ROC curve, and the variance of the difference in areas between two covariate-adjusted
ROC curves.

Covariate-adjusted AUC estimator

Let xi and yj denote the predicted risks for the ith case and jth control, respectively. Define Â(x, y) =
1
2 (R̂(x, y) + 1) where R̂(x, y) = I{x > y} − I{y > x}, and consider the estimator

Â =
1∑

k |Xk||Yk|
∑
k

∑
i∈Xk

∑
j∈Yk

Â(xi, yj). (1)

It is straightforward to see that E[Â] = A.

Covariance of two covariate-adjusted AUC estimates

Now, let x′i and y′j denote a second set of predicted risks for the ith case and jth control, respectively, and
suppose that A′ is the AUC measured using these alternate risk estimates (note that we do not exclude
the possibility that (x′i, y

′
i) = (xi, yi) for all i). We wish to compute

Cov(Â, Â′) =
1

4
Cov(R̂, R̂′) =

∑
k

[∑
(i,j)

∑
(i′,j′) Cov(R̂(xi, yj), R̂(x′i′ , y

′
j′))
]

4(
∑

k |Xk||Yk|)2
.
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Note that

Cov(R̂(xi, yj), R̂(x′i′ , y
′
j′))

= E[R̂(xi, yj), R̂(x′i′ , y
′
j′)]− E[R̂(xi, yj)]E[R̂(x′i′ , y

′
j′)]

=



P (xi > yj ∧ x′i > y′j) + P (xi < yj ∧ x′i < y′j)

− P (xi > yj ∧ x′i < y′j)− P (xi < yj ∧ x′i > y′j)−R ·R′ if i = i′ and j = j′

P (xi > yj ∧ x′i′ > y′j) + P (xi < yj ∧ x′i′ < y′j)

− P (xi > yj ∧ x′i′ < y′j)− P (xi < yj ∧ x′i′ > y′j)−R ·R′ if i 6= i′ and j = j′

P (xi > yj ∧ x′i > y′j′) + P (xi < yj ∧ x′i < y′j′)

− P (xi > yj ∧ x′i < y′j′)− P (xi < yj ∧ x′i > y′j′)−R ·R′ if i = i′ and j 6= j′

0 otherwise

=


BXY −R ·R′ if i = i′ and j = j′

BXXY −R ·R′ if i 6= i′ and j = j′

BY Y X −R ·R′ if i = i′ and j 6= j′

0 otherwise

where

BXY = P (xi > yj ∧ x′i > y′j) + P (xi < yj ∧ x′i < y′j)− P (xi > yj ∧ x′i < y′j)− P (xi < yj ∧ x′i > y′j)

BXXY = P (xi > yj ∧ x′i′ > y′j) + P (xi < yj ∧ x′i′ < y′j)− P (xi > yj ∧ x′i′ < y′j)− P (xi < yj ∧ x′i′ > y′j)

BY Y X = P (xi > yj ∧ x′i > y′j′) + P (xi < yj ∧ x′i < y′j′)− P (xi > yj ∧ x′i < y′j′)− P (xi < yj ∧ x′i > y′j′).

It follows that

Cov(Â, Â′) =

∑
k |Xk||Yk|

[
BXY + (|Xk| − 1)BXXY + (|Yk| − 1)BY Y X − 4(|Xk|+ |Yk| − 1)(A− 1

2 )(A′ − 1
2 )
]

4(
∑

k |Xk||Yk|)2
.

Now, define1

B̂XY =

∑
k,i,j I{xi > yj ∧ x′i > y′j}+ I{xi < yj ∧ x′i < y′j} − I{xi > yj ∧ x′i < y′j} − I{xi < yj ∧ x′i > y′j}∑

k |Xk||Yk|

B̂XXY =

∑
k,i,j,i′ 6=i I{xi > yj ∧ x′i′ > y′j}+ I{xi < yj ∧ x′i′ < y′j} − I{xi > yj ∧ x′i′ < y′j} − I{xi < yj ∧ x′i′ > y′j}∑

k |Xk||Yk||Xk − 1|

B̂Y Y X =

∑
k,i,j,j′ 6=j I{xi > yj ∧ x′i > y′j′}+ I{xi < yj ∧ x′i < y′j′} − I{xi > yj ∧ x′i < y′j′} − I{xi < yj ∧ x′i > y′j′}∑

k |Xk||Yk||Yk − 1|
,

1Naively, the computation of B̂XXY and B̂Y Y X would take O(
∑

k |Xk|2|Yk|) and O(
∑

k |Xk||Yk|2) time. However, this
can be sped up considerably by noting that if we define

C =
∑
k,i,j

(I{xi > yj} − I{xi < yj})(I{x′
i > y′j} − I{x′

i < y′j})

then

B̂XY =
C∑

k |Xk||Yk|

B̂XXY =

∑
k,j

(∑
i(I{xi > yj} − I{xi < yj})

)(∑
i′ (I{x′

i′ > y′j} − I{x′
i′ < y′j})

)
− C∑

k |Xk||Yk||Xk − 1|

B̂Y Y X =

∑
k,i

(∑
j(I{xi > yj} − I{xi < yj})

)(∑
j′ (I{x′

i′ > y′j} − I{x′
i′ < y′j})

)
− C∑

k |Xk||Yk||Yk − 1|
.

In this form, the relationship of the proposed estimator with the estimate given in [6] is evident.
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and let

ĈÂ,Â′ =

∑
k |Xk||Yk|

[
B̂XY + (|Xk| − 1)B̂XXY + (|Yk| − 1)B̂Y Y X − 4(|Xk|+ |Yk| − 1)(Â− 1

2 )(Â′ − 1
2 )
]

4(
∑

k |Xk||Yk|)2
.

Since B̂XY , B̂XXY , and B̂Y Y X are unbiased estimators of BXY , BXXY and BY Y X , respectively, and
since since E[(Â− 1

2 )(Â′ − 1
2 )] = (A− 1

2 )(A′ − 1
2 ) + Cov(Â, Â′), it follows that

E[ĈÂ,Â′ ] = E

∑k |Xk||Yk|
(
B̂XY + (|Xk| − 1)B̂XXY + (|Yk| − 1)B̂Y Y X − 4(|Xk|+ |Yk| − 1)(Â− 1

2 )(Â′ − 1
2 )
)

4(
∑

k |Xk||Yk|)2


=

∑
k |Xk||Yk|

(
BXY + (|Xk| − 1)BXXY + (|Yk| − 1)BY Y X − 4(|Xk|+ |Yk| − 1)

[
(A− 1

2 )(A′ − 1
2 ) + Cov(Â, Â′)

])
4(
∑

k |Xk||Yk|)2

= Cov(Â, Â′)−
∑

k |Xk||Yk|(|Xk|+ |Yk| − 1) Cov(Â, Â′)

(
∑

k |Xk||Yk|)2

= Cov(Â, Â′)

[
1−

∑
k |Xk||Yk|(|Xk|+ |Yk| − 1)

(
∑

k |Xk||Yk|)2

]
.

Therefore,

ĈÂ,Â′

[
1−

∑
k |Xk||Yk|(|Xk|+ |Yk| − 1)

(
∑

k |Xk||Yk|)2

]−1
is an unbiased estimator of Cov(Â, Â′).

Applications

The variance of an AUC estimator can be found using the formula derived in the previous section as
Var(Â) = Cov(Â, Â). In this case, BXY , BXXY , and BY Y X simplify as:

BXY = P (xi 6= yj)

BXXY = P (yj > xi ∧ yj > xi′) + P (yj < xi ∧ yj < xi′)− P (xi < yj < xi′)− P (xi′ < yj < xi)

BY Y X = P (xi > yj ∧ xi > yj′) + P (xi < yj ∧ xi < yj′)− P (yj < xi < yj′)− P (yj′ < xi < yj),

and the method described here reduces to a previously described approach [7]. For evaluating the differ-
ence between the areas of two risk prediction models,

Var(Â− Â′) = Var(Â) + Var(Â′)− 2 Cov(Â, Â′).

Each of the variances and covariances can be computed using the formula derived above; this approach
can be thought of as an unbiased version of the estimator described in [6].

Given the above calculations, we can compute a two-sided p-value for an AUC difference based on the

asymptotic result, (Â−Â′)2

Var(Â−Â′)
∼ χ2

1, which can then be converted to a one-sided p-value for the alternative

hypothesis Â− Â′ > 0 by the transformation

p1 =

{
1
2p2 if Â− Â′ ≥ 0

1− 1
2p2 otherwise.
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Predicted AUCs

To compute predicted covariate-adjusted AUCs, we used a heuristic approach in which we pooled the
cases and controls within each stratum. The predicted AUC for a given stratum was calculated by taking
the area under the ROC curve whose points were determined by the expected numbers of cases and
controls with risk less than some varying threshold; here, the expectations were based on the predicted
probabilities of developing the disease given by the model being evaluated. The pooled estimator was
then taken to be the weighted average of the predicted AUCs for each stratum, where each stratum was
weighted in proportion to the product of the expected number of cases and controls in that stratum.

We note that the relationship between the predicted AUCs described here and the observed AUC
estimator in (1) is that the former relies on expected numbers of cases and controls, whereas the latter
can be thought of the analogous quantity based on observed numbers of cases and controls.

Heritability calculations

To convert a relative recurrence risk ratio λR to a heritability estimate h2L, we assumed a liability threshold
model [8] where the liability of an individual is the sum of two independent random variables correspond-
ing to additive genetic and environmental effects, P = A+E where A ∼ N (0, h2L) and E ∼ N (0, 1−h2L).
Here, h2L is the heritability of liability, and individuals are considered affected whenever P > T where
T = Φ−1(1−K), Φ is the cdf of a standard normal distribution, and K is the prevalence of the disease.

Letting PR = AR +ER be the decomposition of the liability for a relative of the individual, we assume
that (P, PR) have a joint bivariate normal distribution with correlation ρ, from which it follows that

ρ = Cov(P, PR) = Cov(A,AR) = rh2L ⇒ h2L =
ρ

r

where r is the coefficient of relationship ( 1
2 in the case of parents or siblings); here, the second equality

assumes the absence of dominance effects and interactions (which were not included in the model) and
the lack of shared environmental covariance (i.e., Cov(E,ER) = 0). To determine ρ, we numerically
solved the equation, λRK = P (PR > T |P > T ). We note that this procedure yields essentially identical
results to the technique described in [9] for the range of parameters used in this study, but makes fewer
assumptions in its derivation.

To compute an estimate of the maximum AUC possible for a given heritability of liability, and to
estimate the proportion h2L[x] of variance in liability explained by the SNPs in a genetic profile x, we used

the equations derived in [9]; the exact equations used are shown below for reproducibility:

i =
1√

2πK
exp

(
−1

2
T 2

)
v =

−1√
2π(1−K)

exp

(
−1

2
T 2

)
AUCmax = Φ

(
(i− v)h2L√

h2L(2− h2L(i(i− T ) + v(v − T )))

)

h2L[x] =
2Φ−1(AUC)2

(v − i)2 + Φ−1(AUC)2(i(i− T ) + v(v − T ))
.

From these equations, we computed the proportion of genetic variance explained as the ratio of h2L[x] to

the total heritability of liability h2L, as derived in the reference above.
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Bias-correction experiment

We identified two potential competing explanations that could account for the improved performance of
the larger models. First, sparse regularization algorithms achieve sparsity through shrinkage of estimated
SNP effect sizes. In order to achieve the levels of sparsity needed to attain the low false positive rate
guaranteed by the model containing only genome-wide significant associations, the amount of shrinkage
applied would need to be very large, potentially leading to underestimates of effect sizes for SNPs in the
smallest models and thus artificially decreasing AUC. Second, the sparsity-inducing prior we used also had
the effect of decreasing the number of correlated SNPs included in the models when the sparsity-inducing
prior was strong. Such correlated SNPs, however, might be important if the variants included on the
genotyping panel were not directly causal but rather tagging unobserved causal SNPs or risk haplotypes.
For example, the H1 haplotype at the MAPT locus spanning a large 900 KB region on chromosome 17
was tagged using four markers in the E[FP ] ≤ 10 model; the sparse classifier based on genome-wide
significant associations, however, tagged the same region using only two markers. Here, based on the
results in Table 4, one cannot exclude the possibility that the increased accuracy of the E[FP ] ≤ 10
might only be due to the inclusion of additional correlated SNPs in the MAPT region.

To address these concerns, we ran a modified external validation experiment in which we compared
versions of the genome-wide significant model against each of the four larger models without confounding
due to shrinkage or the inclusion of linked SNPs. In particular, for each comparison, we first augmented
the genome-wide significant model by including any SNPs in the larger model that were in LD (r2 ≥ 0.1)
with the SNPs belonging to the genome-wide significant model. We then refit logistic regularization mod-
els on each set of SNPs, omitting the sparsity-inducing prior (although with a nominal fixed regularization
term to ensure good convergence).

After these two corrections, the E[FP ] ≤ 1 and E[FP ] ≤ 10 models remain significantly better
than their corresponding bias-corrected genome-wide significant models, with the best model achieving
a bias-corrected AUC of 0.614 (see Supplementary Table S4). The E[FP ] ≤ 100 and E[FP ] ≤ 1000
models show a decrease in AUC. As confirmed by the large difference between expected and predicted
AUCs for these two models, this decrease is evidence of overfitting as a consequence of the omission of
the sparsity-inducing prior.

These results suggest that additional important loci are lurking beneath the genome-wide significance
threshold within the E[FP ] ≤ 1 and E[FP ] ≤ 10 sets. Overfitting prevents us from reaching more
concrete conclusions about the presence of additional true associations in the two larger sets.
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