SUPPLEMENTAL INFORMATION FOR SPARSE FACTOR ANALYSIS AND POPULATION STRUCTURE

BARBARA E ENGELHARDT, MATTHEW STEPHENS

1. Matrix factorization after standardizing columns of G

Let's consider the difference in matrix G from standardizing each of the columns. Let τ^{-1} be the p-vector of the column standard deviations, and $diag(\tau)$ is the $p \times p$ diagonal matrix of the inverse of those standard deviations.

(1)
$$G' = (G - \mathbf{1}_n \bar{G}^t) diag(\tau)$$

where \bar{G} is the *p*-vector of the column means of G, and G' is the column-standardized matrix to which we apply PCA. Then,

(2)
$$(G - \mathbf{1}_n \bar{G}^t) diag(\tau) = \Lambda F$$

(3)
$$G = \Lambda F diag(\tau^{-1}) + \mathbf{1}_n \bar{G}^t$$

$$= (\mathbf{1}_n \Lambda) \begin{pmatrix} \bar{G}^t \\ F diag(\tau^{-1}) \end{pmatrix}.$$

This implies that the means play the role of an additional factor that does not necessarily conform to the orthonormal constraint on F. It also implies that the Λ will be scaled (because the F are required to be orthonormal).