
Text S1. Origin of soft sweep signatures.

Soft sweep signatures, i.e. the observation of the same adaptive mutation by
state being present on several haplotypes that differ in the immediate vicinity
of the adaptive site, can result by two scenarios: (i) In the “hard sweep”
scenario, a single adaptive mutation arises in frequency in the population and
eventually ends up on different haplotypes due to recombination or mutation
events that take place in its vicinity during the sweep. (ii) In the “true soft
sweep” scenario several de novo adaptive mutations take place on different
haplotypes and increase in frequency simultaneously.

Conditional on that we observe a soft sweep signature which, the hard
sweep scenario or the true soft sweep scenario was the more likely cause?
To calculate the relative likelihood of the two scenarios let us consider again
the scenario of a single adaptive locus in a panmictic population of constant
size N from Box 1. The possibility of successful adaptation from standing
genetic variation has already been rendered highly unlikely in our case. We
therefore assume that the first adaptive allele to escape initial stochastic loss
emerged at a time t = 0 when pesticides were already applied. Note that in
both scenarios a second adaptive haplotype needs to emerge while the first
is still at low frequency to have a realistic chance of also rising to sufficient
population frequency (the threshold time has been calculated in Box 2). We
model the adaptive allele’s population frequency trajectory x(t) conditional
on eventual fixation by

x(t) =
1

1 + 4Ns e−st
. (1)

While the first adaptive allele is still at low frequency, new adaptive mutations
that escape initial loss emerge at rate u = Θs/3 (Boxes 1 and 2). We describe
such events by a Poisson process and assume that different mutations always
emerge on different haplotypes. The probability density of waiting times Tu

for the next de novo adaptive mutation in the true soft sweep scenario is
then

Pr(Tu = t) = u e−ut. (2)

Recombination or mutation on the initial adaptive haplotype in the hard-
sweep scenario can be modeled analogously. We again assume that every
event gives rise to a new haplotype. If x(t) is still small, the rate r(t) at
which recombined or mutated variants of the adaptive haplotype arise is

r(t) = 2Nx(t)R× 2s, (3)
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where R is the rate of either mutation or recombination taking place on the
sweeping haplotype per individual per generation. Notice that r(t) describes
a non-stationary Poisson process as its rate depends on the frequency trajec-
tory. The probability Pr(Tr > t) that the waiting time Tr for a recombined
or mutated adaptive haplotype is larger than t is then

Pr(Tr > t) = exp

[
−
∫ t

0

r(τ) dτ

]
=

(
4Ns+ 1

4Ns+ est

)4NR

. (4)

We can now estimate which of the two scenarios is more likely, by calculating
the probability that the waiting time Tu is shorter than the waiting time Tr,

Pr(Tu < Tr) =

∫ ∞
0

Pr(Tu = t)Pr(Tr > t) dt

=
F 2

1 (4NR, 4NR + Θ
3
, 1 + 4NR + Θ

3
,−4Ns)

(1 + 4Ns)−4NR (12NR + Θ)
. (5)

Here F 2
1 (·, ·, ·, ·) is the hypergeometric function 2F1. Numerical values of

Equation (5) for various population parameters are shown in Supplementary
Figure 1. A clear crossover is observed, separating two regimes: For low pop-
ulation sizes, soft sweep signatures primarily originate from recombination
or mutation events on the initial adaptive haplotype, i.e. the hard sweep
scenario; in larger populations, true soft sweeps dominate.

A simple heuristic approximation for the location of the crossover can be
derived by comparing the average waiting time 〈Tu〉 for de novo mutation
with the average waiting time 〈Tr〉 for mutation or recombination on the
initial adaptive haplotype. For de novo mutation, this is simply the inverse
of the rate u,

〈Tu〉 =
3

θs
. (6)

The waiting time 〈Tr〉 can be calculated from 1 =
∫ 〈Tr〉

0
r(t) dt, yielding

〈Tr〉 =
1

s
log
[
4Ns

(
e

1
4NR − 1

)]
≈ 1

s
log [s/R] . (7)

The last approximation holds in the limit 4NR � 1. Crossover between
the two regimes implies that 〈Tu〉 ≈ 〈Tr〉. The corresponding threshold
population size is therefore given by

N∗ =
3

4µ log [s/R]
. (8)
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As shown in Supplementary Figure 1, the heuristic threshold is in very good
agreement with the actual crossover of Equation (5). For our locus of length
1.5 kb and assuming a mutation rate of µ = 2.5×10−9 per bp and generation
and a recombination rate of ρ = 0.15 cM/Mbp, we have R = L(µ + ρ) =
6 × 10−6. For s = 0.1 this yields N∗ ≈ 3 × 107. We then clearly expect
de novo mutations, and hence true soft sweeps, to be the dominant cause
of soft sweep signatures in the θ ≥ 1 regime for our locus. Note that 1/N∗

is approximately linear in µ whereas it scales logarithmically in s/R. The
location of the crossover is thus primarily a function of the de novo mutation
rate and depends only weekly on recombination rate and strength of selection.
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Supplementary Figure 1. Probability that a soft sweep signature originates by a
de novo adaptive mutation rather than recombination or mutation on the initial adaptive
haplotype as a function of population size according to Equation (5) for s = 0.1 and
R = 6 × 106. Dots show the position of the corresponding heuristic cutoff N∗ from
Equation (8).
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