
Text S1 
 
Application of classification-based methods to AMD data 
AMD is a complex, late-onset degenerative disease that is characterized by the disruption 
of the integrity of the retina, retinal pigment epithelium and choroid that can lead to the 
loss of central vision and significant visual disability.  In recent years, three loci have 
been found strongly associated with AMD: functional SNPs at CFH [1-3] and 
LOC387715 (or at the closely linked PLEKAH1 [MIM 607772] or HTRA1 [MIM 
602194]) [4,5] are thought to increase the risk of AMD while variants at CFB (MIM 
138470) or C2 (MIM 217000) [6] are thought to decrease risk.  These findings appear 
robust and have been widely replicated [7].  A number of studies have attempted to use 
variants at these genes to build predictive models for AMD.  To our knowledge, none has 
applied ROC theory to evaluate the classification performance of these variants 
individually or jointly. 
 
AMD data 
For illustration we use part of our AMD data, which includes 640 cases and 142 controls 
fully typed at three SNPs at all three loci: rs1061170 (Y402H) in CFH, rs10490924 
(S69A) in LOC387715, and rs547154 (IVS10) in C2.  For recruitment and phenotyping 
we refer to our previous publications [8,9] and for genotyping see [10]. 
 
Methods 
To combine information from the three SNPs for classification using ROC, we use a 
generalized linear model proposed by Ma and Huang [11]:  P(Y=1|X) = G(ßTX), where Y 
is the disease status (Y=1 for cases and Y=0 for controls), X is the matrix of genotype 
columns Xi = (X1,i, …, Xd,i)T for the ith subject, ß = (ß1, …, ßd)T is a d-dimensional vector 
of unknown regression parameters, and G is an unknown increasing link function.  Since 
G is assumed to be increasing, a classification rule can be constructed based on the risk 
score, ßTX, only.  We use the rule: if ßTX > c, we classify this individual as a case, 
otherwise we classify the individual as a control.  This is a sensible approach as decision 
criteria based on risk are statistically optimal [12].  The overall performance of the 
classifier is then measured by the AUC of the ROC curve, which is a two-dimensional 
plot of ((FPF(c), TPF(c)): c ∈ R), where FPF(c), and TFP(c) are the FPF and TPF of the 
classification rule if ßTX > c.  To get all points on the ROC curve the FPF and TPF are 
estimated for all possible values of c.  The empirical AUC is maximized as a function of 
ß.  For each ß, the AUC is estimated using a nonparametric trapezoidal estimator [13].  
Note that this ROC model is a more general model than the logistic model, as G needs 
not to be known.  Since many previous studies have found an additive model to be best 
fitting in both single and multi locus models of CFH, LOC387715, and C2 variants, we 
let X1,i be the number of risk alleles at Y402H at CFH, X2,i be the number of risk alleles 
at S69A at LOC387715, and X3,i be the number of protective alleles at IVS10 at C2.  For 
comparison, we also present the results of logistic regression analyses where the 
genotypes are coded the same way. 

In addition to performing ROC and logistic regression analyses, we draw an 
integrated predictiveness and classification plot [14].  In the integrated plot, there are two 
aligned plots:  In the top plot, ordered individual risks are plotted as function of the risk 



percentile and, in the bottom plot, the TPF and FPF are plotted as a function of the risk 
percentile such that at each point the TPF and FPF are calculated for the risk threshold, c, 
equal to the risk associated with the corresponding risk percentile.  As we are working 
with case-control data, we can only calculate individual-level risks from the logistic 
model (setting the G function to be the logit function) if the prevalence is known.  To be 
able to draw the plot we therefore need to assume a specific value for the prevalence.  
Since our data are elderly white individuals (mean age 72.9 and standard deviation [sd] 
9.9 in controls) and our cases are all of advanced phenotype, we use a prevalence 
estimate for advanced AMD in white individuals 65 years and older (approximately 1 sd 
from the mean) of 5.5%; the US 2000 census data (Table 4: Annual Estimates of the 
White Alone Population by Age and Sex for the United States: April 1, 2000 to July 1, 
2006 [NC-EST2006-04-WA]) were used to project the sex-specific 5-year age interval 
estimates of Friedman et al. [15] to estimate the AMD prevalence for 65 years and older. 
 
Accounting for covariates 
We also ran the above analysis while adjusted for age, sex, and smoking.  The AUC of 
the genetic model without the covariates was 0.78 and improved to 0.82 when the 
covariates were added to the model.  The AUC of model with only the covariates had an 
AUC of 0.66.  Note that the effective sample size for these new analyses is smaller due to 
missing covariate information.  The AUC of the unadjusted model in the main text (0.79) 
is therefore, not exactly equal to the AUC of the unadjusted model here (0.78). 
 
Estimating the AUC from meta-data 
As science progresses, there is a need for methods to continuously update previous 
classification models.  Lu and Elston [16] developed a method to do this when only meta-
data and summary statistics are available.  This is especially useful if not all markers have 
been typed in the same samples.  Then, if we assume homogeneity across samples, we 
can combine estimates to form a new classification rule.  To compare the AUC of the 
new classification rule with the old rule, the information we need are 1) allele frequencies 
in case and control populations or 2) allele frequencies in the general population, risk 
ratios, and prevalence. 
 
Details on data in other real data examples 
 
Cardiovascular events 
Kathiresan et al. [17] investigated whether genetic variants could improve classification 
accuracy for cardiovascular events beyond standard risk factors.  First they tested for 
single SNP associations of 11 SNPs with low-density lipoprotein (LDL) and high-density 
lipoprotein (HDL) levels and then identified a set of 9 SNPs that were independently 
associated with lipid levels.  Using these 9 SNPs, they created a simple genotype score 
based on the total number of unfavorable alleles in all 9 genotypes of the individual, and 
then evaluated the classification accuracy of the genotype score for the 10-year incidence 
of cardiovascular events.  The p-values for the 9 SNPs ranged from 0.003 to 10-29 (Table 
S1) and the adjusted hazard ratio of the genotype score was 1.15 (95% CI 1.07-1.24). 
 



Table S1 Association results of 9 SNPs associated with LDL and HDL cholesterol. 
Information from Table 2 of Kathiresan et al. [17] 
SNP P-value 
LDL cholesterol 2×10-11

rs693 8×10-7

rs4420638 3×10-21

rs12654264 0.002 
rs1529729 0.003 
rs11591147 7×10-7

HDL cholesterol  
rs3890182 0.003 
rs1800775 2×10-29

rs1800588 4×10-10

rs328 3×10-12

 
The AUC for prediction of 10-year incidence of cardiovascular events was estimated 
using model with 14 clinical covariates and no genotype information and found to be 
0.80.  When the genotype score, which included several highly associated SNPs, was 
included in the model, the AUC was not improved and also equaled 0.80 even though 
accounting for the genotype score significantly improved the regression model (P-value 
0.0002, Table S3 of Kathiresan et al [17]).  The authors additionally looked at whether 
accounting for the genotype score improved the clinical reclassification and found 
modest improvement such that the estimated risk correctly increased for individuals who 
subsequently experienced cardiovascular event and correctly decreased for individuals 
who remained free of cardiovascular events at 10-year follow-up (P-value 0.01). 
 
Type 2 diabetes 
The 12 SNPs used to generate a classification rule for type 2 diabetes with the Lu and 
Elston method [16] come from three studies (Table S2) [18-20]. 
 
Table S2 Association results of 12 type 2 diabetes SNPs 

SNP 

Allele 
frequency in 

cases 

Allele 
frequency in 

controls P-value OR Study 
rs5219 0.384 0.354 0.0001 1.14 Weedon [20] 
rs1801282 0.099 0.123 4×10-5 1.29 Weedon [20] 
rs7903146 0.406 0.293 2×10-34 Het 1.65, Hom 2.77 Sladek [19] 
rs13266634 0.254 0.301 6×10-8 Het 1.18, Hom 1.53 Sladek [19] 
rs1111875 0.358 0.402 3×10-6 Het 1.19, Hom 1.44 Sladek [19] 
rs740010 0.336 0.301 1×10-4 Het 1.14, Hom 1.40 Sladek [19] 
rs3740878 0.240 0.272 1×10-4 Het 1.26, Hom 1.46 Sladek [19] 
rs4402960 0.341 0.304 8×10-4 1.18 Scott [18] 
rs7754840 0.387 0.360 0.0095 1.12 Scott [18] 
rs10811661 0.872 0.850 0.0022 1.20 Scott [18] 
rs9300039 0.924 0.892 7×10-8 1.49 Scott [18] 
rs8050136 0.406 0.381 0.017 1.11 Scott [18] 
Information from the combined cohort of stage and 2 used from the Scott et al. study. 



 
Prostate cancer 
We used the Lu and Elston method [16] to investigate the classification accuracy of a 
genetic risk model of two prostate cancer risk SNPs [21] (Table S3).  We used the 
information from the combined cohort from the study of Yeager et al. [21]. 
 
Table S3 Association results of two prostate cancer disease SNPs 

SNP 

Allele 
frequency in 

cases 

Allele 
frequency in 

controls P-value ORhet ORhom

rs1447295 0.15 0.11 2×10-14 1.43 2.23 
rs6983267 0.56 0.50 9×10-13 1.26 1.58 
 
Inflammatory bowel diseases 
We used the Lu and Elston method [16] to investigate the classification accuracy of 
genetic risk model of five SNPs.  Two SNPs are in IL23R and are thought to be 
uncorrelated, one in ATG16CL, one in NOD2/CARD15, and one in IRGM; all are 
associated with Crohn’s disease (which is a form of inflammatory bowel disease) (Table 
S4).   
 
Table S4 Association results of five Crohn’s disease SNPs 

SNP 

Allele 
frequency in 

cases 

Allele 
frequency in 

controls P-value OR Study 
rs11209026 0.019 0.070 5×10-9 0.26 Duerr et al. [22] 
rs751784 0.345 0.448 5×10-9 0.89 Cummings et al. [23] 
rs2241800 0.61 0.52 2×10-7 1.45 Cummings et al. [24] 
rs2076756 0.358 0.244 7×10-14 NA Rioux, et al. [25] 
rs13361189 0.098 0.067 4×10-8 1.38 Parkes et al. [26] 
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