Text S2: Relationship between $\mathrm{BF}_{\text {mean }}$ and $\Lambda_{\text {mean }}$

Here we develop an expression for the relationship between the Bayes factor $\mathrm{BF}_{\text {mean }}$ and the likelihood ratio statistic $\Lambda_{\text {mean }}$, under an additive model with $d=0$ and a fixed value of the prior variance of a, σ_{a}. (In the main paper we use a Bayes factor that averages over several values of σ_{a}, and allows for some dominance, as in [1]. This is different from, though highly correlated with, the Bayes factor considered here.)

Under an additive model $(d=0)$ the model (12) in the main text can be written as $Y \sim N(\bar{X} \beta, 1 / \tau)$, where \bar{X} is the $n \times 2$ design matrix $(\mathbf{1}, \bar{g})$ whose first column is all 1 s , and second column contains the expected genotype values for each individual. Using the prior D2 from [1] the Bayes factor for the alternative ($a \neq 0$) vs the null $(a=0)$ is:

$$
\begin{equation*}
\mathrm{BF}_{\text {mean }}=\frac{(\alpha n)^{1 / 2}}{\operatorname{det}(\Omega)^{1 / 2}}\left(\frac{Y^{t} Y-Y^{t} \bar{X} \Omega^{-1} \bar{X}^{t} Y}{Y^{t} Y-n \bar{Y}^{2}}\right)^{-n / 2} \tag{1}
\end{equation*}
$$

where for notational convenience we have written α for σ_{a}^{-2}, and $\Omega=\left(\begin{array}{ll}0 & 0 \\ 0 & \alpha\end{array}\right)+\bar{X}^{t} \bar{X}$. If we let V denote n times the sample variance of $g, V=\left(g^{t} g-n \bar{g}^{2}\right)$, then $\operatorname{det}(\Omega)=n(\alpha+V)$, $\operatorname{det}\left(\bar{X}^{t} \bar{X}\right)=n V$, and

$$
\begin{align*}
\Omega^{-1} & =\frac{1}{\operatorname{det}(\Omega)}\left[\operatorname{det}\left(\bar{X}^{t} \bar{X}\right)\left(\bar{X}^{t} \bar{X}\right)^{-1}+\left(\begin{array}{ll}
\alpha & 0 \\
0 & 0
\end{array}\right)\right] \\
& =\frac{V}{\alpha+V}\left[\left(\bar{X}^{t} \bar{X}\right)^{-1}+\left(\begin{array}{cc}
\alpha / n V & 0 \\
0 & 0
\end{array}\right)\right] . \tag{2}
\end{align*}
$$

Now let RSS_{0} and RSS_{1} denote the residual sum of squares for the maximum likelihood estimates under the null and alternative hypotheses:

$$
\begin{align*}
& \operatorname{RSS}_{0}=Y^{t} Y-n \bar{Y}^{2} \\
& \operatorname{RSS}_{1}=Y^{t} Y-Y^{t} \bar{X}\left(\bar{X}^{t} \bar{X}\right)^{-1} \bar{X}^{t} Y \tag{3}
\end{align*}
$$

Taking the log of (1), and substituting, we obtain

$$
\begin{align*}
\log \left(\mathrm{BF}_{\text {mean }}\right) & =0.5 \log [\alpha /(\alpha+V)]-(n / 2) \log \frac{\alpha /(\alpha+V) \mathrm{RSS}_{0}+V /(\alpha+V) \mathrm{RSS}_{1}}{\operatorname{RSS}_{0}} \\
& =0.5 \log [\alpha /(\alpha+V)]-(n / 2) \log \left[1-\frac{V}{\alpha+V} \frac{\operatorname{RSS}_{0}-\mathrm{RSS}_{1}}{\mathrm{RSS}_{0}}\right] . \tag{4}
\end{align*}
$$

Note also that the log-likelihood ratio statistic is given by

$$
\begin{equation*}
2 \log \Lambda_{\text {mean }}=n \log \left[\mathrm{RSS}_{0} / \mathrm{RSS}_{1}\right]=n \log \left[1-\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) / \mathrm{RSS}_{1}\right] . \tag{5}
\end{equation*}
$$

Four observations come directly from these expressions for $\mathrm{BF}_{\text {mean }}$ and $\Lambda_{\text {mean }}$:

- For fixed V, both $\mathrm{BF}_{\text {mean }}$ and $\Lambda_{\text {mean }}$ are monotone decreasing in $\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) / \mathrm{RSS}_{1}$. Hence, among SNPs with the same value of $V, \mathrm{BF}_{\text {mean }}$ and $\Lambda_{\text {mean }}$ will produce the same ranking of SNPs.
- If $\alpha=k V$ (so that for each SNP the prior variance on a is chosen to be inversely proportional to the V for that SNP) then $\log \left(\mathrm{BF}_{\text {mean }}\right)$ and $\Lambda_{\text {mean }}$ produce the same ranking of SNPs.
- For fixed V, if $\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) / \mathrm{RSS}_{1}$ is small (which it will be in our applications, where effect sizes are small $)$, then both $\log \left(\mathrm{BF}_{\text {mean }}\right)$ and $\Lambda_{\text {mean }}$ are approximately linear in $\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) / \mathrm{RSS}_{1}$, because $\log (1-x) \approx-x$ when x small. This explains the approximately linear relationships evident in Figure 3 in the main text.
- For fixed $\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) / \mathrm{RSS}_{0}$, and fixed $\alpha, \mathrm{BF}_{\text {mean }} \rightarrow 1$ as $V \rightarrow 0$. Thus, compared with $\Lambda_{\text {mean }}, \mathrm{BF}_{\text {mean }}$ down-weights SNPs with small V.

References

[1] Servin, B. and Stephens, M. (2007). Efficient multipoint analysis of association studies: candidate regions and quantitative traits. PLoS Genetics, 3.

