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1 Theoremsand Proofs

Theorem 1. Let/; and; be two markers that belong to two different LGs, anddgt be the
Hamming distance betweétji, | andA[j, ]. Then,

2(n/2—68)2

E(di;)=n/2 and P(d; <d6)<e =
whered < n/2.

Proof. Let ¢, € N and IetX’f be a random indicator variable WhICh is equal to l:klfIS a
recombinant with respect ig)andl and to 0 otherwise. Clearlig(X},) = 3, andd; ; = >, X},
The family of random variablegX;’; : 1 < k < n} are i.i.d. Accordlng to Ilnearlty of expectation,

E(d;;) = n/2. The boundP(d; ; < 9) < =22 derives directly from Hoeffding’s inequality
[0. O

In the rest of this Section, let us assume that all the maikek$ belong to the same linkage
group. LetG(M, F) be an edge-weighted complete undirected graph on the settafes)/, and
let w be the associated semi-linear weight function. Ildte an order of the markers . The
weight ofI1, which is denoted a&(I1), is defined as the weight of the TSP@&fcorresponding to
I1. We have the following Lemma.

Lemma 1. LetIl, be the true order of the markers (according to their posii@m the chromo-
some). lfw is semi-linear, thenu(I1y) is minimal among all the possible orders of the markers.

Proof. LetIly = [y, [s,...,l, be the true order of the markersid, and letll; = [;,,l;,,...,1,,
be any order. LeP, = {(l;_1,1;)|2 < ¢« < m} be the set of consecutive marker pairdinand
Py = {(l;;_,,1;)]2 < j < m} be the set of consecutive marker pairslin. F, and P, each
containsn — 1 marker pairs. Let: (%, P, E') be a bipartite graph where there is an edge between



vertex(l;_1,l;) € Py and vertex(ly,_,,l;;) € Py if (I;_1,1;) is enclosed in(l;,_,l;;). According
to the construction ofz( Py, P;, E), any vertexv € P, is mapped to one or more vertices in
Py, because the paii;, ,,!l;;) corresponding t@ must enclose one or more marker pairsiy
andIl, is the true order of the markers. Furthermore, any subset P, is mapped to a subset

S C P, with |[T'| < |S|. Therefore, according to thdall's Marriage Theorem[Z] there exists

a perfect matching betweel, and P;. This means that there is an one to one correspondence
between the elements i, and the elements i#;, such that if({;_,,/;) € P, is mapped to
(I, 1, 1s;) € Prthen(l;_y,1;) is enclosed if{l;; ;). Accordinglyw(i —1,i) < w(t;_1,t;) since

w is semi-linear. Therefore, we conclude thafl,) = ) ,_... w(i—1,7)is less than or equal to
w(ll) = Znggmw(tj—btj)- O

According to Lemm@&ll, in order to determine the correct oadehe markers, one has to find
the minimum weight TSP i’ under a proper weight functian. Although the problem of finding
the minimum weight TSP in a general graph is NP-compléteifi3dur case the problem is much
easier as shown next. iinimum (weight) spanning tré®IST) of GG is a subgraph ofr which is
a tree that spans all the vertices@fand has minimum total weight. To be technically accurate,
we assume that the graphhas exactly one minimum weight spanning tree.

Lemma 2. Let G(M, E') be the weighted complete graph on the markiefs Suppose that the
weight functionv on the edges af is semi-linear, and that the MST, for GG is unique. Let’, be
such MST, thei, is the minimum weight TSP 6f.

Proof. Letly,[s,...,[,, be the markers in their correct order. Let us run Prim’s munimspanning
tree algorithm([#] orZ starting from the first marker in the linkage group, ile. Prim’s algorithm
iteratively adds node (and edges) to a partially discoveeeduntil all the nodes are included. The
next node to be added is the closest one to the partially vi¥sed tree. Let;_; be the node added
in the previous step of Prim. Given thatis semi-linear, the next marker to be added willlpe
Therefore, the MST is also a TSP@h

Due to the fact that the weight of the MST is the lower-boundlmweight of the optimal
TSP, the TSP identified via Prim’s algorithm is indeed theimim weight TSP. 0J

In order for LemmdR2 to hold, the MST must be unique. A suffitiput not necessary)
condition for the MST to be unique is that all weights areidigt A common situation in practice
is to have several edges with zero weight indicating coeggging markers, which could lead
to non-unique MSTs. In practice, due to limited sample sizé lw recombination rate, co-
segregating markers are common. This problem can be easilywlith by first collecting the co-
segregating markers together and then arbitrarily chgosive marker as the representative. The
mapping procedure is carried out only on the representatiaskers. By construction, pairwise
weights between representative markers are strictlyigestince there is no information to infer
the relative orders between co-segregating markers, ejaesentative markers will be mapped to
the same position as the corresponding representatives.

Theorem 2. Let M be a set of representative markers, adt\/, £') be the corresponding com-
plete weighted graph, where edges are weighted accordiagstmi-linear function. If G has a
unique MSTT’, thenT indicates the correct order of the marker bins.
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Proof. Follows directly from Lemm@&l1 and Lemriih 2. O

2 Pseudocode of thealgorithms

Algorithm 1 ORDER(G)
G = (B, E) is an edge-weighted complete graph corresponding to soege groupB is the set of bins/markers
in the linkage group.
1: Ty < Run Prim’s MST algorithm oid~
2. Il < Compute the backbone @f
3: if (|Ilo| = | B]) then {the MST is a path
4:  return Il

5. else

6: S« B — Il {get the off-the-backbone bips

7. for [; € S do {construct the initial map

8: Iy < insertl/; to its optimal position if1,

9:  whileimprovementlo {improvell, to a local optimg
10: K-opt(I1y)

11: node-relocatior(,)

12: block-optimize{l,)

13:  return Il

Algorithm 2 EM(A, S)
A: the probability matrix corresponding to some linkage graod[:, j] = 1 if the corresponding genotype isand
ATz, j] = 0if the corresponding genotypeBs A[i, j] = 0.5if (i,7) € S, that isA[i, j] is @ missing observation.
S the list of missing observations on the linkage group
1: ConstructG(B, E). Assign the initial weights for edges ifi by ignoring the missing obser-
vations.
2: Il « call ORDER(G) to get the initial order of the markefse initialization step
repeat {EM algorithm}
4: adjustAli, j| for those missing observations faccording to Equation (1) in Main Text
{E-step
5. I, «+ recomputel; ; according to Equation (2) in Main Text and calROER(G) to get a
refined mapgM-step
6: until II, converges
7: return I, dz’,j {return the final map as well as the final pairwise distarjces
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Algorithm 3 MSTMAP(A, S, €)
A the probability matrix containing raw data for all the mark
S the list of missing observations
e: the parameter for clustering (default is 0.00001)
Compute the pairwise distancés; for all 7, j according to Equation (2)
Construct the weighted complete gra@h\/, E), where the weight edgé;. ;) is d, ;
Solve for§ from the equation-2(n/2 — §)?/n = log, ¢
E —FE—{(l;,1;) € E|d;; > 0} {remove inter-LG edges froii}
CC «— BFS(G) {get the connected components ih G
for all linkage groupy € C'C do {iterate through each linkage groyp
Let A, be a subset of corresponding markers in
Let S, be a subset of corresponding to the missing observations in linkage grgoup
T, «— () {1, is the set of suspicious observations have been identifiéat 50
X « 00 {X is the sum of the total number of suspicious observationgletbtal number of cross-overs.
Itis initialized asoco.}
11:  while (true) do {repeatedly detect errors and refine the map

eNT NP

=
e

12: I1,,d; ; — EM(A,, S, UT,) {call EM to get a refined map as well as the pairwise distance based on
the latest estimation of missing and suspicious Hata
13: X' « ('the number cross-overs Iy,) + |7,
14: if X’ < X then
15: X — X'
16: T 0
17: for all (i, ) notinS, UT, do
18: EA,[i, j] « computeEA i, j] according to Equation (3) in Main Text
19: if [EA,[7, 7] — A,[7, 5]| > 0.75 then
20: T — T U{(i,7)}
T, —T,uT’
21: else
22: break

23: return {Hg|g € CC} {return the collection of final maps for all the linkage groyips




3 Extension to RIL population

The various types of genetic mapping populations can beeivinto two general classes accord-
ing to the number of possible distinct genotype states tlagtamse. For the first class, at any locus
of interest there can be only two distinct genotype statesdted ag andB respectively, missing

is not counted as a distinct genotype state). Mapping ptipankathat fall into this class include
DH, Hap, BC1 and advanced RIL, among others. For the sec@sd,cht any locus of interest
there can be three distinct genotype states (denotédsandAB respectively. Again missing is
not counted as a distinct genotype state). This class ieslpdpulation types such as F2 and less
advanced RIL. In general, the first class is preferred in gengapping due to its simplicity.

In our discussion so far, we have been focusing on the firssa populations, but our al-
gorithm can be extended to the second class as well. As sho®adtior]L, in order to find the
true order of the markers we need a weight function that is-ieear. Our weight function is the
pairwise recombination probabili?; ;. The maximum likelihood estimates f#; ; for the first
class of population ar®; ; = d; ;/n Whered, ; is the pairwise distance between markeand/,.

In the following, we show howP; ; can be estimated for a RIL population at generation

A RIL population at generation is obtained by first crossing two fully homozygous parents
to obtain an F1 population, followed by repeatedly selfinthwingle seed descendant for- 1
generationd]5]. The three possible genotype states inlap&ulation arer, B andAB. It can be
shown that the expected fraction of heterozygkmis an RIL population at generatioris 2~ ("1,
Whenr is large, the proportion ofB states are negligible, and hence we can treat advanced RIL
as a DH population. If is small, we have to deal witkB explicitly, as follows.

For two locil, andi, of interest, we denote their status using the following ﬁomc(%, where
a represents the state of loclyson the paternal chromosonterepresents the state of loclyson
the paternal chromosome represents the state of locyjson the maternal chromosome, aiid
represents the state of lociyson the maternal chromosome. The ten possible zygotic tyyges a

. . . . AA BB AB BA AB BB BA BB
divided into five categories. We have = { i @}, D=/ 1B ﬂ}’ E={ AL BA AN E}’
AA AB
F_{@}andG—{ﬂ :

Let C;, D;, E; F; andG; be the proportion of individuals in an RIL population at tHegener-
ation having zygotic type§', D, F, F and respectively. According to Haldane and Waddington
6] Ci1, D11, Ei1q Fiy1 andG;,; can be computed frort;, D;, E; F;, G; and the per meiosis



recombination probability between; andl, as follows

1 1 1
Coi1 = Cpo+-E,+=(1—-p)*F, + =p*G,
4 2 2
1 1 1
Dn+1 - Dn + _En + _pQFn + _(1 _p)QGn
4 2 2
1
E,oi = iEn + 2p(1 - p)(Fn + Gn) (1)
1 1
Fn+1 - 5(1 - p)an + §p2Gn
1 1
Gn+1 - iszn + 5(1 - p)an

It can be easily verified that;. + D,y + Esy1 + Foon + Gy = Ci+ D+ E; + F, + G,
At generationl, i.e., in the F1 generation, we hatg = 0.0, D; = 0.0, £y = 0.0, F; = 1.0
andG; = 0.0. Givenp andr, we compute the expected values €y, D,, E,, F, andG, using
Equations[{lL). However, our problem is the inverse. The exptal data gives',, D,, E, and
F. + G,, and the problem is to find @such that the expected fractions for each category is close
to the observed fractions for each category. Our approath liseak the interva(0,0.5) into
small enough subintervals, and find the valug sfuich that the sum of square errors between the
observed fractions and the expected fractions is minimigatte all the pairwise recombination
probabilities have been estimated, we use Algorihm 1 totfiecbrder of the markers.
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