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1 Theorems and Proofs

Theorem 1. Let li and lj be two markers that belong to two different LGs, and letdi,j be the
Hamming distance betweenA[i, ] andA[j, ]. Then,

E(di,j) = n/2 and P(di,j < δ) ≤ e−
2(n/2−δ)2

n

whereδ < n/2.

Proof. Let ck ∈ N and letXk
i,j be a random indicator variable which is equal to 1 ifck is a

recombinant with respect toli andlj and to 0 otherwise. ClearlyE(Xk
i,j) = 1

2
, anddi,j =

∑
k Xk

i,j.
The family of random variables{Xk

i,j : 1 ≤ k ≤ n} are i.i.d. According to linearity of expectation,

E(di,j) = n/2. The boundP(di,j < δ) ≤ e−
2(n/2−δ)2

n derives directly from Hoeffding’s inequality
[1].

In the rest of this Section, let us assume that all the markersin M belong to the same linkage
group. LetG(M, E) be an edge-weighted complete undirected graph on the set of verticesM , and
let w be the associated semi-linear weight function. LetΠ be an order of the markers inM . The
weight ofΠ, which is denoted asw(Π), is defined as the weight of the TSP ofG corresponding to
Π. We have the following Lemma.

Lemma 1. Let Π0 be the true order of the markers (according to their positions on the chromo-
some). Ifw is semi-linear, thenw(Π0) is minimal among all the possible orders of the markers.

Proof. Let Π0 = l1, l2, . . . , lm be the true order of the markers inM , and letΠ1 = lt1 , lt2 , . . . , ltm
be any order. LetP0 = {(li−1, li)|2 ≤ i ≤ m} be the set of consecutive marker pairs inΠ0 and
P1 = {(ltj−1

, ltj)|2 ≤ j ≤ m} be the set of consecutive marker pairs inΠ1. P0 andP1 each
containsm−1 marker pairs. LetG(P0, P1, E) be a bipartite graph where there is an edge between
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vertex(li−1, li) ∈ P0 and vertex(ltj−1
, ltj ) ∈ P1 if (li−1, li) is enclosed in(ltj−1

, ltj ). According
to the construction ofG(P0, P1, E), any vertexv ∈ P1 is mapped to one or more vertices in
P0, because the pair(ltj−1

, ltj ) corresponding tov must enclose one or more marker pairs inP0

andΠ0 is the true order of the markers. Furthermore, any subsetT ⊆ P1 is mapped to a subset
S ⊆ P0 with |T | ≤ |S|. Therefore, according to theHall’s Marriage Theorem[2] there exists
a perfect matching betweenP0 andP1. This means that there is an one to one correspondence
between the elements inP0 and the elements inP1, such that if(li−1, li) ∈ P0 is mapped to
(ltj−1

, ltj) ∈ P1 then(li−1, li) is enclosed in(ltj−1
, ltj ). Accordinglyw(i− 1, i) ≤ w(tj−1, tj) since

w is semi-linear. Therefore, we conclude thatw(Π0) =
∑

2≤i≤m w(i− 1, i) is less than or equal to
w(Π1) =

∑
2≤j≤m w(tj−1, tj).

According to Lemma 1, in order to determine the correct orderof the markers, one has to find
the minimum weight TSP inG under a proper weight functionw. Although the problem of finding
the minimum weight TSP in a general graph is NP-complete [3],in our case the problem is much
easier as shown next. Aminimum (weight) spanning tree(MST) of G is a subgraph ofG which is
a tree that spans all the vertices ofG and has minimum total weight. To be technically accurate,
we assume that the graphG has exactly one minimum weight spanning tree.

Lemma 2. Let G(M, E) be the weighted complete graph on the markersM . Suppose that the
weight functionw on the edges ofG is semi-linear, and that the MSTΓ0 for G is unique. LetΓ0 be
such MST, thenΓ0 is the minimum weight TSP ofG.

Proof. Let l1, l2, . . . , lm be the markers in their correct order. Let us run Prim’s minimum spanning
tree algorithm [4] onG starting from the first marker in the linkage group, i.e.,l1. Prim’s algorithm
iteratively adds node (and edges) to a partially discoveredtree until all the nodes are included. The
next node to be added is the closest one to the partially discovered tree. Letli−1 be the node added
in the previous step of Prim. Given thatw is semi-linear, the next marker to be added will beli.
Therefore, the MST is also a TSP inG.

Due to the fact that the weight of the MST is the lower-bound onthe weight of the optimal
TSP, the TSP identified via Prim’s algorithm is indeed the minimum weight TSP.

In order for Lemma 2 to hold, the MST must be unique. A sufficient (but not necessary)
condition for the MST to be unique is that all weights are distinct. A common situation in practice
is to have several edges with zero weight indicating co-segregating markers, which could lead
to non-unique MSTs. In practice, due to limited sample size and low recombination rate, co-
segregating markers are common. This problem can be easily dealt with by first collecting the co-
segregating markers together and then arbitrarily choosing one marker as the representative. The
mapping procedure is carried out only on the representativemarkers. By construction, pairwise
weights between representative markers are strictly positive. Since there is no information to infer
the relative orders between co-segregating markers, non-representative markers will be mapped to
the same position as the corresponding representatives.

Theorem 2. Let M be a set of representative markers, andG(M, E) be the corresponding com-
plete weighted graph, where edges are weighted according toa semi-linear functionw. If G has a
unique MSTT , thenT indicates the correct order of the marker bins.
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Proof. Follows directly from Lemma 1 and Lemma 2.

2 Pseudocode of the algorithms

Algorithm 1 ORDER(G)
G = (B, E) is an edge-weighted complete graph corresponding to some linkage group.B is the set of bins/markers
in the linkage group.

1: T0 ← Run Prim’s MST algorithm onG
2: Π0 ← Compute the backbone ofT0

3: if (|Π0| = |B|) then {the MST is a path}

4: return Π0

5: else
6: S ← B − Π0 {get the off-the-backbone bins}

7: for li ∈ S do {construct the initial map}

8: Π0 ← insertli to its optimal position inΠ0

9: while improvementdo {improveΠ0 to a local optima}

10: K-opt(Π0)
11: node-relocation(Π0)
12: block-optimize(Π0)
13: return Π0

Algorithm 2 EM(A, S)
A: the probability matrix corresponding to some linkage group. A[i, j] = 1 if the corresponding genotype isA and
A[i, j] = 0 if the corresponding genotype isB. A[i, j] = 0.5 if (i, j) ∈ S, that isA[i, j] is a missing observation.
S: the list of missing observations on the linkage group

1: ConstructG(B, E). Assign the initial weights for edges inE by ignoring the missing obser-
vations.

2: Π0← call ORDER(G) to get the initial order of the markers{the initialization step}

3: repeat {EM algorithm}

4: adjustA[i, j] for those missing observations inS according to Equation (1) in Main Text
{E-step}

5: Π0 ← recomputedi,j according to Equation (2) in Main Text and call ORDER(G) to get a
refined map{M-step}

6: until Π0 converges
7: return Π0, di,j {return the final map as well as the final pairwise distances}
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Algorithm 3 MSTMAP(A, S, ǫ)
A: the probability matrix containing raw data for all the markers
S: the list of missing observations
ǫ: the parameter for clustering (default is 0.00001)

1: Compute the pairwise distancesdi,j for all i, j according to Equation (2)
2: Construct the weighted complete graphG(M, E), where the weight edge(li, lj) is di,j

3: Solve forδ from the equation−2(n/2− δ)2/n = loge ǫ
4: E ← E − {(li, lj) ∈ E|di,j ≥ δ} {remove inter-LG edges fromE}

5: CC ← BFS(G) {get the connected components in G}

6: for all linkage groupg ∈ CC do {iterate through each linkage group}

7: Let Ag be a subset ofA corresponding markers ing
8: Let Sg be a subset ofS corresponding to the missing observations in linkage groupg
9: Tg ← ∅ {Tg is the set of suspicious observations have been identified sofar}

10: X ← ∞ {X is the sum of the total number of suspicious observations andthe total number of cross-overs.

It is initialized as∞.}

11: while (true) do {repeatedly detect errors and refine the map}

12: Πg, di,j ← EM(Ag, Sg ∪ Tg) {call EM to get a refined map as well as the pairwise distance based on

the latest estimation of missing and suspicious data}

13: X ′ ← ( the number cross-overs inΠg) + |Tg|
14: if X ′ < X then
15: X ← X ′

16: T ′ ← ∅
17: for all (i, j) not inSg ∪ Tg do
18: EAg[i, j]← computeEAg[i, j] according to Equation (3) in Main Text
19: if |EAg[i, j]−Ag[i, j]| > 0.75 then
20: T ′ ← T ′ ∪ {(i, j)}

Tg ← Tg ∪ T ′

21: else
22: break
23: return {Πg|g ∈ CC} {return the collection of final maps for all the linkage groups}
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3 Extension to RIL population

The various types of genetic mapping populations can be divided into two general classes accord-
ing to the number of possible distinct genotype states that may arise. For the first class, at any locus
of interest there can be only two distinct genotype states (donated asA andB respectively, missing
is not counted as a distinct genotype state). Mapping populations that fall into this class include
DH, Hap, BC1 and advanced RIL, among others. For the second class, at any locus of interest
there can be three distinct genotype states (denoted asA, B andAB respectively. Again missing is
not counted as a distinct genotype state). This class includes population types such as F2 and less
advanced RIL. In general, the first class is preferred in genetic mapping due to its simplicity.

In our discussion so far, we have been focusing on the first class of populations, but our al-
gorithm can be extended to the second class as well. As shown in Section 1, in order to find the
true order of the markers we need a weight function that is semi-linear. Our weight function is the
pairwise recombination probabilityPi,j . The maximum likelihood estimates forPi,j for the first
class of population arêPi,j = di,j/n wheredi,j is the pairwise distance between markerli andlj.
In the following, we show howPi,j can be estimated for a RIL population at generationr.

A RIL population at generationr is obtained by first crossing two fully homozygous parents
to obtain an F1 population, followed by repeatedly selfing with single seed descendant forr − 1
generations [5]. The three possible genotype states in an RIL population areA, B andAB. It can be
shown that the expected fraction of heterozygousAB in an RIL population at generationr is2−(r−1).
Whenr is large, the proportion ofAB states are negligible, and hence we can treat advanced RIL
as a DH population. Ifr is small, we have to deal withAB explicitly, as follows.

For two locil1 andl2 of interest, we denote their status using the following notation
ab
cd

, where

a represents the state of locusl1 on the paternal chromosome,b represents the state of locusl2 on
the paternal chromosome,c represents the state of locusl1 on the maternal chromosome, andd
represents the state of locusl2 on the maternal chromosome. The ten possible zygotic types are

divided into five categories. We haveC = {
AA

AA
,
BB

BB
}, D = {

AB

AB
,
BA

BA
}, E = {

AB

AA
,
BB

BA
,
BA

AA
,
BB

AB
},

F = {
AA

BB
} andG = {

AB

BA
}.

Let Ci, Di, Ei Fi andGi be the proportion of individuals in an RIL population at theith gener-
ation having zygotic typesC, D, E, F andG respectively. According to Haldane and Waddington
[6] Ci+1, Di+1, Ei+1 Fi+1 andGi+1 can be computed fromCi, Di, Ei Fi, Gi and the per meiosis
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recombination probabilityp betweenl1 andl2 as follows

Cn+1 = Cn +
1

4
En +

1

2
(1− p)2Fn +

1

2
p2Gn

Dn+1 = Dn +
1

4
En +

1

2
p2Fn +

1

2
(1− p)2Gn

En+1 =
1

2
En + 2p(1− p)(Fn + Gn) (1)

Fn+1 =
1

2
(1− p)2Fn +

1

2
p2Gn

Gn+1 =
1

2
p2Fn +

1

2
(1− p)2Gn

It can be easily verified thatCi+1 + Di+1 + Ei+1 + Fi+1 + Gi+1 = Ci + Di + Ei + Fi + Gi.
At generation1, i.e., in the F1 generation, we haveC1 = 0.0, D1 = 0.0, E1 = 0.0 , F1 = 1.0
andG1 = 0.0. Givenp andr, we compute the expected values forCr, Dr, Er, Fr andGr using
Equations (1). However, our problem is the inverse. The experimental data givesCr, Dr, Er and
Fr + Gr, and the problem is to find ap such that the expected fractions for each category is close
to the observed fractions for each category. Our approach isto break the interval(0, 0.5) into
small enough subintervals, and find the value ofp such that the sum of square errors between the
observed fractions and the expected fractions is minimized. Once all the pairwise recombination
probabilities have been estimated, we use Algorithm 1 to findthe order of the markers.
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