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1 Epilepsy patients and sequencing

Ethics and patients recruitment CENet is a Genome Canada and Genome Québec funded

initiative that aims to bring personalized medicine in the treatment of epilepsy. Patients were

recruited through two main recruitment sites at the Centre Hospitalier Universitaire de Montréal

(CHUM) and the Sick Kids Hospital in Toronto. This study was approved by the Research Ethics

Board at the Sick Kids Hospital (REB number 1000033784) and the ethics committee at the Centre

Hospitalier Universitaire de Montréal (project number 2003-1394,ND02.058-BSP(CA)). Before their

inclusion in this study, patients had to give written informed consents. The main cohort of this

study was constituted of 198 unrelated patients with various types of epilepsy; 85 males and 113

females. The mean age at onset of the disease for our cohort was 9.2 (±6.7). S1 Table presents a

detailed description of the clinical features for the various individuals recruited in this study. DNA

was extracted from blood DNA exclusively. 301 unrelated healthy parents of other probands from

CENet were also included in this study and used as controls.
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Libraries preparation and sequencing gDNA was cleaned up using ZR-96 DNA Clean &

ConcentratorTM-5 Kit (Zymo) prior to being quanti�ed using the Quant-iTTM PicoGreen R© dsDNA

Assay Kit (Life Technologies) and its integrity assessed on agarose gels. Libraries were generated us-

ing the TruSeq DNA PCR-Free Library Preparation Kit (Illumina) according to the manufacturer's

recommendations. Libraries were quanti�ed using the Quant-iTTM PicoGreen R© dsDNA Assay Kit

(Life Technologies) and the Kapa Illumina GA with Revised Primers-SYBR Fast Universal kit

(Kapa Biosystems). Average size fragment was determined using a LabChip GX (PerkinElmer)

instrument.

The libraries were �rst denatured in 0.05N NaOH and then were diluted to 8pM using HT1

bu�er. The clustering was done on a Illumina cBot and the �owcell was run on a HiSeq 2500 for

2x125 cycles (paired-end mode) using v4 chemistry and following the manufacturer's instructions.

A phiX library was used as a control and mixed with libraries at 1% level. The Illumina control

software was HCS 2.2.58, the real-time analysis program was RTA v. 1.18.64. Program bcl2fastq

v1.8.4 was then used to demultiplex samples and generate fastq reads. The average coverage was

37.6x ± 5.6x. The �ltered reads were aligned to reference Homo_sapiens assembly b37. Each

readset was aligned using BWA6 which creates a Binary Alignment Map �le (.bam). Then, all

readset BAM �les from the same sample are merged into a single global BAM �le using Picard.

Insertion and deletion realignment was performed on regions where multiple base mismatches were

preferred over INDELs by the aligner since it appears to be less costly for the algorithm. Such

regions were found to introduce false positive variant calls which may be �ltered out by realigning

those regions properly. Once local regions were realigned, the read mate coordinates of the aligned

reads needed to be recalculated since the reads are realigned at positions that di�er from their

original alignment. Fixing the read mate positions is performed using Picard. Aligned reads were

marked as duplicates if they have the same 5' alignment positions (for both mates in the case of

paired-end reads). All but the best pair (based on alignment score) were marked as a duplicate in

the .bam �le. Duplicates reads were excluded in the subsequent analysis. Marking duplicates was

performed using Picard.
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2 Testing for technical bias in WGS

To investigate the bias in read depth (RD), we �rst fragmented the genome in non-overlapping bins

of 5 Kbp. The number of properly mapped reads was used as RD measure, de�ned as read pairs

with correct orientation and insert size, and a mapping quality of 30 (Phred score) or more. In each

sample, GC bias was corrected by �tting a Loess model between the bin's RD and the bin's GC

content. Using this model, the correction factor for each bin was estimated from its GC content.

Bins with extreme coverage were identi�ed when deviating from the median coverage by more than

3 standard deviation. After these conventional intra-sample corrections, RD across the di�erent

samples were combined and quantile normalized. At that point the di�erent samples had the same

global RD distribution and no bins with extreme coverage or GC bias. Two control RD datasets

were constructed to represent our expectation when no bias is present. One was derived from the

original RD by shu�ing the bins' RD in each sample. In the second, RD was simulated from a

Normal distribution with mean and variance �tted to the real distribution. Simulation or shu�ing

ensures that no region-speci�c or sample-speci�c bias remains. To investigate region-speci�c bias, we

computed the mean and standard deviation of the RD in each bin across the di�erent samples. The

same was performed in the control datasets. If there is no bias, the distribution of these estimators

should be similar in the original, shu�ed and simulated RD. Next, to investigate experiment-speci�c

bias, we retrieved which sample had the highest coverage in each bin. Then we computed, for each

sample, the proportion of the genome where it had the highest coverage. If no bias was present, e.g.

in the shu�ed and simulated datasets, each sample should have the highest coverage in 100/N % of

the genome (with N the number of samples). If an experiment was more a�ected by technical bias,

it would be more often extreme. The same analysis was performed monitoring the lowest coverage.

The same analysis was ran after correcting the coverage in the Twin dataset using the QDNAseq

pipeline1. The reads were counted in 5 Kbp bins using the function binReadCounts. GC bias and

mappability were corrected using the following functions (with default parameters): applyFilters,

estimateCorrection, correctBins, normalizeBins, smoothOutlierBins.
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3 PopSV

Binning and coverage measure The genome is fragmented in non-overlapping consecutive bins

of �xed size (5 Kbp). In each bin and each sample the number of reads that overlap the bin and are

properly mapped are counted to get a measure of coverage. Read pairs with correct orientation and

insert size, and a mapping quality of 30 (Phred score) or more are considered properly mapped. The

bin counts were then corrected for GC bias. In each sample, a LOESS model was �tted between

the bin's count and bin's GC content. A normalization factor was then de�ned for each bin from

its GC content.

Constructing the set of reference samples In the epilepsy study and the Twins dataset we

used all the samples as reference. In the renal cancer dataset we used the normal samples as

reference. For each dataset, a Principal Component Analysis (PCA) was performed across samples

on the counts normalized globally (median/variance adjusted). The resulting �rst two principal

components are used to verify the homogeneity of the reference samples. In the presence of extreme

outliers or clear sub-groups, a more cautious analysis would be recommended. For example, outliers

can remain in the set of reference samples but �agged as they might potentially harbor more false

calls later. Independent analysis in each of the identi�ed sub-group is also a solution, especially

when the same samples are to be used as reference. Although our three datasets showed di�erent

levels of homogeneity, we did not need to exclude samples or split the analysis. The e�ect of weak

outlier samples was either corrected by the normalization step or integrated in the population-view.

Moreover, the principal components were used to select one control sample from the �nal set of

reference samples. This sample is used in the normalization step as a baseline to normalize other

samples against. We picked the sample closest to the centroid of the reference samples in the

Principal Component space.

Normalization Although uniformity of the coverage across the genome is not required for our

approach, RD values must be comparable across samples. When a particular region of the genome

is tested, sample speci�c variation of technical origin must be minimized. This is done through a

normalization step. Naive global normalization approaches like the Trimmed-Mean M(TMM) or
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quantile normalization have been �rst implemented and tested. The TMM normalization robustly

aligns the mean RD value in the samples. Quantile normalization forces the RD distribution to be

exactly the same in each sample. After witnessing the presence of uncharacterized sample-speci�c

variation, we implemented a more suited normalization. Targeted normalization uses information

across the set of reference samples to identify similar bins across the genome and normalize their

counts separately (S19 Fig). For each bin, the top 1000 bins with similar coverage patterns across the

reference samples are used to normalize the coverage of the bin. TMM normalization is used on these

top 1000 bins to derive the correct normalization factor for the bin to normalize. Similarity between

two bins is measured using Pearson correlation between the counts across the reference samples.

Hence, the top 1000 bins are most similar in term of relative coverage across the samples to the

coverage in the bin to normalize. If some bias is present in some samples, the top 1000 bins should

also harbor this bias. Hence, other regions with similar bias patterns are used to correct for it. In this

targeted approach, each genomic region is normalized independently. The 1000 supporting bins are

saved and used to normalized new samples (e.g. case sample). Although computationally expensive,

it ensures that all bins are normalized with the same e�ort. In contrast, global normalization or

even PCA-based approaches corrects for the most common or spread bias, but a subset of regions

with speci�c bias might not be corrected. In order to compare the performance of the di�erent

normalization approaches we computed a set of quality metrics. The normalized RD will need to

be suited for testing abnormal pattern across samples: under the null hypothesis, i.e. for normal

bins, the RD should be relatively normally distributed and the samples rank should vary randomly

from one bin to the other. The �rst metric is the proportion of bins with non-normal RD across

the samples. Shapiro test was performed on each bin and a P-value lower than 0.01 de�ned non-

normal RD. Then, the randomness of the sample ranks was tested by comparing the RD of each

sample a region with the median across all samples. In regions of 100 consecutive bins, we counted

how many times the RD in a sample was higher than the median across sample. If the ranks

are random, this value should be around 0.5. The probability under the Binomial distribution is

computed for each sample and corrected for multiple testing using Bonferroni correction. If any

sample has an adjusted P-value lower than 0.05, we consider that the region has non-random ranks.

The resulting QC metric is simply the proportion of regions with non-random sample ranks. This
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QC is speci�cally testing how much sample-speci�c bias remains. The remaining QC metrics look

at the Z-score distribution in each sample. The proportion of non-normal Z-scores is computed

by comparing the density curves of the Z-scores and simulated Normal Z-scores. We compute the

proportion of the area under the density curve that does not overlap the Normal density curve. This

estimate of the proportion of non-normal Z-scores is computed in each sample. The �nal metrics

are the average and maximum across the samples.

Abnormal RD test and Z-score computation The test is based on Z-scores computed for

each bin, corrected afterward for multiple testing. The Z-score represents how di�erent the read

count in the tested sample is from the reference samples. It is simply: z =
BCb

t−mean(BCb
ref )

sd(BCb
ref

)
where

BCb
t is the bin count, i.e. the number of reads, in bin b and sample t. Inevitably some samples

are hosting common CNVs. We observed that just a couple of samples hosting a CNVs could be

enough to bias the standard deviation used in the score computation and mask these CNVs in the

coming tests. In many cases the RD signal was clearly showing several groups of samples with

proportional read counts. To improve the Z-score computation in those regions, a simple approach

was used: the samples were stringently clustered using their RD and the group with higher number

of samples was chosen as reference and used to compute the mean and standard deviation for the

Z-score computation. In practice, this clustering a�ects only bins with clear clusters but would

remove just a few or no samples in most situations. Furthermore, a median-based estimator was

used for the standard deviation as it is less sensitive to outlier removal. A trimmed mean was also

preferred over normal mean for its robustness to outliers.

Signi�cance and multiple testing correction The Z-scores for all the bins of a sample are

pooled and signi�cance is estimated. Under the null hypothesis of normally distributed read counts,

the Z-scores should also follow a normal distribution. For multiple testing correction, the Z-score

empirical distribution is used to �t a normal and estimate the P-value and Q-value of each test.

This step is performed using fdrtool R package. By default, the null distribution �tting for P-value

computation assumes that only a low proportion of bins violates the null hypothesis. In aberrant

genomes, e.g. in tumor samples, it is often an unrealistic assumption. We devised a new strategy
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to set the proportion of the empirical distribution, later used to estimate the null distribution

variance. Here the null Z-score distribution is assumed to be centered on 0 and its variance is

estimated by trimming the tails of the empirical distribution. To �nd a correct trimming factor,

an iterative approach started from a low trimming factor and increased its value until reaching a

plateau for the variance estimator. Indeed, once the plateau is reached, additional trimming does

not change the estimated variance because there is no more abnormal Z-scores, only the central part

of the null distribution. Samples with an important proportion of abnormal genome, e.g. tumor

samples, showed more appropriate �t. Of note, the P-values for positive Z-scores (duplication) and

negative Z-scores (deletion) are estimated separately. Thus, imbalance in the deletion to duplication

ratio, or large aberration that lead to asymmetrical Z-score distribution does not a�ect the P-value

estimation. Multiple testing correction is performed after pooling all the P-values.

Segmentation, copy number estimation and other metrics Following the signi�cance es-

timation, consecutive bins with abnormal coverage are merged into a call. Consecutive or nearby

abnormal bins (e.g. one bin size apart) are merged into one variant if in the same direction (deletion

or duplication). In PopSV's R package, the P-values can also be segmented using circular binary

segmentation7.

In addition to the Z-score, P-value, Q-value and number of bins of each call, PopSV retrieves

the average coverage in the reference samples and the fold change in the sample tested. The copy

number is estimated by dividing the coverage in a region by the average coverage across the reference

samples, multiplied by 2 (as diploidy is expected). In our bin setting, the estimation is correct if

the bin spans completely the variant. For this reason we trust the copy number estimate for calls

spanning 3 or more consecutive bins, as it is computed using the middle bin(s) which completely

span the variant. In other cases we expect the copy number estimate to be under-estimated. All

this additional information can be used to order or retrieve high con�dence calls. For examples,

several consecutive bins or a copy number estimate around an integer value increases our con�dence

in a call. In our benchmark, we used the entire set of calls.
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4 Validation and benchmark of PopSV

We compared PopSV to FREEC8, CNVnator9 and cn.MOPS10, three popular RD methods that

can be applied to WGS datasets to identify CNVs. FREEC segments the RD values of a sample

using a LASSO-based algorithm while CNVnator uses a mean-shift technique inspired from image

processing. cn.MOPS considers simultaneously several samples and detects copy number variation

using a Poisson model and a Bayesian approach. We also ran LUMPY11 which uses an orthogonal

mapping signal: the insert size, orientation and split mapping of paired reads.

FREEC and CNVnator were run on each sample separately, starting from the BAM �le. FREEC

internally corrects the RD for GC and mappability bias. In order to compare its performance across

the entire genome, the minimum telocentromeric distance was set to 0. The remaining parameters

were set to default. Of note an additional run with slightly looser parameter ('breakPointThresh-

old=0.6') was performed to get a larger set of calls used in some parts of the in silico validation

analysis to deal with borderline signi�cant calls. CNVnator also corrects internally for GC bias.

We used default parameters. For the analysis using higher con�dence calls, we used calls with

either 'eval1' or 'eval2' lower than 10-5 (instead of the default 0.05). cn.MOPS was run on the

same GC-corrected bin counts used for PopSV. All the samples are analyzed jointly. Of note an

additional run with slightly looser parameter ('upperThreshold=0.32' and 'lowerThreshold=-0.42')

was performed to get a larger set of calls used in some parts of the in silico validation analysis to

deal with borderline signi�cant calls. For LUMPY, the discordant reads were extracted from the

BAMs using the recommended commands. Split-reads were obtained by running YAHA12 with

default parameters. All the CNVs (deletions and duplications) larger than 300 bp were kept for the

upcoming analysis. Calls with 5 or more supporting reads were considered high-con�dence.

First, we compared the frequency at which a region is a�ected by a CNV using the calls from

the di�erent methods. In order to investigate how many systematic calls are present in a typical

run, we compare the frequency distributions on average per sample. In S4 Fig, the bars represents

the average proportion of a sample's calls in each frequency range.

Then, the samples were clustered using the CNV calls. The distance between two samples

A and B is de�ned as : 1 − 2 |V AB|
(|V A|+|V B|) where VA represents the variants found in sample A,
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VAB the variants found in both A and B, and |V| the cumulative size of the variants. Hence, the

similarity between two samples is represented by the amount of sequence called in both divided

by the average amount of sequence called. This distance is used for hierarchical clustering of the

samples. Di�erent linkage criteria (�average�, �complete� and �Ward�) were used for the exploration.

In our dendograms we used the �average� linkage criterion. The same clustering was performed

using only calls in regions with extremely low coverage (reference average <10 reads).

To assess the performance of each method, we measured the number of CNVs identi�ed in each

twin that were also found in the matching twin. In order to avoid missing calls with borderline

signi�cance, we used slightly less con�dent calls for the second twin. We removed calls present in

more than 50% of the samples to ensure that systematic errors were not biasing our replication

estimates. Hence, a replicated call is most likely true as it is present in a minority of samples but

consistently in the twin pair. Even if we removed systematic calls, the most frequent calls in the

cohort are more likely to look replicated by chance, compared to rare calls. To normalize for this

e�ect, we use the frequency distribution to compute the number of replicated calls expected by

chance. In practice the null concordance for each call is simulated by a Bernoulli distribution of

parameter the frequency of the call. This number of replicated calls by chance is subtracted to the

original number of replicated calls to give an adjusted measure of sensitivity. Although we do not

know the true number of variant, this number of replicated calls is used to compare the di�erent

methods. When possible, the low-quality calls were also gradually �ltered to explore the e�ect on

the replication metrics. For CNVnator, we used the minimum of the eval1 and eval2 columns, with

lower values corresponding to higher quality calls. For LUMPY, the number of supporting reads

was used. For PopSV, we �ltered calls based on adjusted P-values.

In addition to their replication, we compared which regions were called by several methods. For

each of the calls found in less than 50% of the samples, we overlapped the region with calls from

other methods in the same sample. If calls from another method overlapped we considered the call

shared and saved which methods shared the call. To focus on on high quality calls we considered

calls found by at least two methods and computed the proportion of calls from one method found

by each of the other methods. This metric captures how much each method recovers high-quality

calls from a second method.
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Concordance between di�erent bin sizes We compared calls using small bins (500 bp) and

calls using larger bins (5 Kbp). In theory, calls from the 5 Kbp analysis should be supported by many

500 bp calls. We also expect large stretches of 500 bp calls to be detected in the 5 Kbp analysis.

This comparison is informative as it explores the quality of the calls, the size of detectable events

and the resolution for di�erent bin sizes. First we counted how many small bin calls supported any

large bin call. These metrics were separated according to the size of the large bin call. Overall,

we �nd that 5 Kbp calls are well supported by 500 bp calls, with only 14% of the 5 Kbp bins not

supported by any 500 bp bin (S9 Fig). To investigate large bin calls with no supporting small bin

call, we display the average Z-scores in the small bins overlapping large bin calls to test if the lack

of support is due to lower con�dence or real discordancy between the di�erent runs. If the Z-scores

in the small bins deviates from 0 in the correct direction, we conclude that they support the large

bin call. Even for these unsupported 5 Kbp calls, we �nd that the 500 bp bins RD was consistently

enriched (or depleted) although not enough to be called with con�dence (S9 Fig). This is expected

given the higher background noise in the 500 bp analysis that will reduce the power to call these

variants. Next, we looked at the proportion of 500 bp calls, grouped by size, that were found in

the 5 Kbp calls. More speci�cally, we grouped them by size to verify that large enough small bin

calls are present in the large bin calls. This analysis is used to both test the sensitivity of PopSV

with a particular bin size, and its resolution to variants smaller than the bin size. Indeed, this

framework allow us to ask questions such as: how much of the variants spanning only half a bin

are detected ? We �nd that the concordance gradually increases until the 500 bp calls reach 5 Kbp

in size where the concordance rises to nearly 100% (S9 Fig). This suggests that PopSV is able to

detect approximately 75% of the events as large as half its bin size, and almost all events larger

than its bin size. As expected, only a small proportion of the small 500 bp calls overlap 5 Kbp calls

and they likely corresponds to fragmented larger calls. Considering the trade-o� between bin size

and noise, this suggests running PopSV with a few bin sizes to better capture variants of di�erent

sizes.
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5 CNV detection in the CENet cohorts

CNVs were called using PopSV using 5 Kbp bins and all the samples from both the epilepsy and

control cohorts as reference. We annotated the frequency of the CNVs using germline CNV calls

from the Twin and cancer datasets (internal database) as well as four public CNV databases:

• CNVs from Phase 1 of the 1000 Genomes Project as identi�ed by Genome STRiP13.

• SV from the 1000 Genomes Project phase 314.

• Genome of Netherlands15.

• CNVs from the Simons Genome Diversity Project16.

CNVs were annotated with the maximum frequency in the databases. For each CNV to annotate,

any overlapping CNV in the CNV databases were considered. This is a stringent criterion that

ensures that the entire regions of a rare CNV, for example, is never a�ected by common CNVs in

the databases. Hence, a rare CNV is de�ned as present in less than 1% of the samples in each of

the �ve CNV databases.

To test for a di�erence in deletion/duplication ratio among rare CNVs, we compared the numbers

of rare deletions and duplications in the epilepsy patients and controls using a χ2 test. The same

test was performed after downsampling the controls to the sample size of the epilepsy cohort.

6 CNV enrichment in exonic region and around epilepsy genes

Enrichment in exons For each cohort, we retrieved the CNV catalog by merging CNV that

are recurrent in multiple samples. Hence, the CNV catalog represents all the di�erent CNVs found

in each cohort. To control for the population size, we sub-sampled 150 samples in each cohort a

hundred times. For each sub-sampling and each cohort, control regions are selected to �t the size

distribution of the CNV catalog and the overlap with centromere, telomeres and assembly gaps

(details in the next section).

Then, we computed the proportion of CNV and control regions that overlap an exon. The

fold-enrichment is the ratio of these proportions and represents how much more/less of the CNVs
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overlap an exon compared to the control regions. The boxplot in Figure 2c shows the distribution

of the 100 sub-sampling in each cohort.

To test if the di�erence observed between the cohort is signi�cant, the cohort labels were per-

muted 10,000 times and the di�erence in median across the 100 sub-sampling was saved. The

resulting P-value was computed as 1+d
1+N where d is the number of times the permuted di�erence was

greater or equal to the observed di�erence, and N is the number of permutations.

The same analysis was repeated for exons from genes with a probability of loss-of-function

intolerance17 higher than 0.9. These genes were called LoF intolerant genes in Figure 2c. Small (<

50Kbp) and large (>50 Kbp) CNVs were analyzed separately. The analysis was repeated using rare

CNVs only.

Selecting control regions The control regions must have the same size distribution as the

regions they are derived from (e.g. CNVs in a CNV catalog). We also controlled for the overlap

with centromere, telomeres and assembly gaps (CTGs) to avoid selecting control regions in assembly

gaps where no CNV or annotation is available. To select control regions, thousands of bases were

�rst randomly chosen in the genome. The distance between each base and the nearest CTG was

then computed. At this point, selecting a region of a speci�c size and with speci�c overlap pro�le

can be done by randomly choosing as center one of the bases that �t the pro�le:

{
b,OCTG(d

b
CTG − Sr

2
) < 0

}
(1)

with OCTG equals 1 if the original region overlaps with a CTG, -1 if not; dbCTG is the distance

between base b and the nearest CTG; and Sr is the size of the original region. For each input

region, a control region was selected and had by construction the exact same size and overlap

pro�le.

Recurrence of rare exonic CNVs In each cohort, we retrieved the CNV catalog of rare (<1%

in all 5 public datasets) exonic CNVs. We annotated each CNV with its recurrence in the cohort.

We then evaluated the proportion of the CNVs in the catalog that are private (i.e. seen in only one

sample), or seen in X samples or more. This cumulative proportion of CNVs is shown in S12 Fig.
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The control cohort was down-sampled a thousand times to the same sample size as the epilepsy

cohort. These down-sampling provided a con�dence interval (ribbon in S12 Fig) and an empirical

P-value.

We performed the same analysis after removing the top 20 samples with the most non-private

rare exonic CNVs (S12 Fig). With this analysis, we tried to remove the potential e�ect of a few

extreme samples.

We also repeated the analysis using only French-Canadians individuals, to ensure that the ob-

served di�erences are not caused by rare population-speci�c variants (S12 Fig).

CNVs and epilepsy genes We used the list of genes associated with epilepsy from the Epilep-

syGene resource18 which consists of 154 genes strongly associated with epilepsy. For a particular

set of CNV we count how many of the genes hit are known epilepsy genes. We noticed that the

epilepsy genes tend to be large, and genes hit by CNVs also (S13 Fig). This could lead to a spurious

association so we also performed a permutation approach that controls for the size of the genes. To

control for the gene size of epilepsy genes and CNV-hit genes, we randomly selected genes with sizes

similar to the genes hit by CNVs and evaluated how many of these were epilepsy genes. After ten

thousand samplings, we computed an empirical P-value. The permutation P-value was computed

as 1+d
1+N where d is the number of times the number of epilepsy genes in the random set of genes was

greater or equal to the one in genes hit by CNVs, and N is the number of permutations. Using this

sampling approach we tested di�erent sets of CNVs: deletion or duplications of di�erent frequencies

in the epilepsy cohort, control individuals and samples from the twin study.

To investigate rare non-coding CNV close to known epilepsy genes, we counted how many

patients have such a CNV at di�erent distance thresholds. For example, how many patients had a

rare non-coding CNV at 10 Kbp of an epilepsy gene's exon or closer. We compared this cumulative

distribution to the control cohort, after down-sampling it to the sample size of the epilepsy cohort.

Down-sampling was also used to produce a con�dence interval, represented by the ribbon in Figure

3c. This analysis was repeated using deletions only. Each epilepsy gene was also tested for an excess

of rare non-coding deletions in patients versus controls using a Fisher test.

In order to retrieve non-coding CNV that might have a functional impact, we downloaded eQTLs
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associated with the epilepsy genes, as well as DNase 1 hypersensitive sites associated with the pro-

moter of epilepsy genes. The eQTLs are provided by the GTEx project19. Pairs of associated DNase

1 hypersensitive sites and associated genes20 were downloaded at http://www.uwencode.org/proj/

Science_Maurano_Humbert_et_al/data/genomewideCorrs_above0.7_promoterPlusMinus500kb_withGeneNames_

35celltypeCategories.bed8.gz.

A Kolmogorov-Smirnov test was used to compare the distance distributions in epilepsy patients

versus controls. We also computed the odds ratio of having such a CNV for di�erent distance

thresholds between epilepsy patients and controls. For a distance d, we computed:

OR =
SCNV
patient

SCNV
control

/
SnoCNV
patient

SnoCNV
control

where SCNV
patient is the number of patients with a rare non-coding CNV overlapping a functional

region and located at d bp or less from the exon of a known epilepsy gene.
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