1 Appendix

1.1 FY*O Initial Frequency and Selection Coefficient Estimations

FY*O’s two divergent, common haplotypes in Africa indicate it may have reached fixation due to
selection on standing variation. We infer that the FY*O mutation underwent a selective sweep on
standing variation with a selection coefficient comparable to some of the most strongly selected loci
in the human genome. Utilizing a Bayesian model selection approach implemented in an ABC
framework, we find that FY*O likely rose to fixation via selection on standing variation; though the
frequency of FY*O at selection onset was very low (0.1%).

Interestingly, we find that an FY*O initial frequency of magnitude 0.1% provides the best fit to
our data. Among models of higher initial starting frequency (ex. 10% and 25%), the simulations
which have resulted in the fixation of the selected allele have an excess of diversity (ex. average
number of pairwise differences in 10% simulations is 3.98 (95% CI: 1.71 — 7.51) vs. 1.17 in the real
data), while de novo mutations are very unlikely to fix and have a dearth of diversity when they do
fix in the population (ex. average number of pairwise mutations in fixed de novo models is 0.18
(95% CI: 0.06 — 0.38) compared with the real data 1.17).

We conducted a variety of analyses to test the robustness of our inferences. First, we conducted
cross validation for our model selection approach. To accomplish this, we randomly chose 50
simulations from each frequency model and utilized our ABC approach to infer their initial
frequency model. We found some overlap between adjacent models, but high power when looking in
the range of FY*Q’s inferred selection coefficient (below). We note, however, that in the 95% CI
range of our estimated selection coefficient, we infer 85% of 0.1% frequency simulations correctly.
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Figure 1. Cross validation of model selection Results from leave-out-one cross validation of
the models. The x axis is the real model each simulation was drawn from, while the colors indicate
the model it was assigned. Colors: Green, de novo; Yellow, 0.1%; Orange, 1%; Pink, 10%; Gray,
25%. [a} For all simulation coefficient ranges. [b} For simulations in the 95% CI of the estimated
selection coefficient range.

We also verified that the 0.1% frequency model has a good fit to the data by comparing the
observed data’s place in the null distribution under each of the five models. For each model we
limited to the 1% of simulations most similar to the observed data. Then, we randomly drew one
simulation from that group and calculated the mean distance from the drawn simulation to all the
others (based on the Euclidean distance of the PLS-DA transformed summary statistics). This
procedure was repeated 100 times. The below histogram reports the mean distances for each
simulation as well as the mean distance of the observed data from each simulation. We find the
0.1% frequency model is the only model where the observed value has a probability of being from
the null distribution of greater than 0.05 (p = 0.27), supporting our model selection result.
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Figure 2. Observed value and null distribution under each model

We evaluated the effect of different tolerance rates, number of simulations, recombination rates,
start times of selection, and demographic models. We find our results to be robust to a wide range
of these parameters. Varying the tolerance rates and number of simulations results in the 0.1%
model having between an 81% and 96% posterior probability.

Tolerance # sims Rejection ‘ De novo 0.1% 1% 10% 25%
0.1% 100,000 * 0 0.920 0.080 0 0
0.1% 50,000 * 0.008 0.928 0.069 0 0
0.1% 10,000 * 0.020 0.960 0.020 0 0
0.5% 100,000 0.012 0.912 0.076 0 0
0.5% 50,000 0.018 0.929 0.070 0 0
0.5% 10,000 * 0.012 0.880 0.104 0.004 0

1% 100,000 0.0002 0.9167 0.0827 0.0004 O

1% 50,000 0.0002 0.9158 0.0838 0.0001 O

1% 10,000 * 0.072 0.818 0.108 0.002 0

5% 100,000 0.0012 0.9112 0.086 0.0014  0.0003
5% 50,000 0.0017 0.9105 0.0856 0.0018 0.0004
5% 10,000 0.0016 0.8983 0.0979 0.0017 0.0004

Table 1. Results by number of simulations and tolerance rate. * indicates that the
rejection algorithm was used because some models had no accepted simulations.

Results varying the time since selection onset and the recombination rate show that the 0.1%
model is the best-fit model for a wide range of parameters. It is only when we set the selection
onset to 160 kya (4x greater than our inferred) that we find the 0.1% and 1% models have similar
probabilities. We also inferred the recombination rate in the region. For this analysis, LDhat was



run for 40 million iterations with a block penalty of 5, sampling every 30,000 steps (Auton et al.
2012) on the FY*O background for regions of 20 Kb around the chromosome position for the duffy
null mutation. For each run, Rmin values as per Hudson and Kaplan (1985) were estimated to have
a point estimate recombination rate for the region. We estimate a lower recombination rate in the
region than the deCODE project; however, we find our ABC model is robust to this lower
recombination rate. When we test a different model of African demography (cartoon version of
model from Li and Durbin 2011), we find the 0.1% and 1% frequency models to have similar
probabilities. The de novo mutation model has a very low probability in all scenarios tested.

Model Time since sel. Recom. rate (cM/MB) | De novo 0.1% 1% 10% 25%
Gutenkunst et al. 20 kya 3.33 0.0003 0.983 0.0169 0O 0
Gutenkunst et al. 60 kya 3.33 0.0001 0.885 0.115 0.001 0
Gutenkunst et al. 80 kya 3.33 0.0005 0.755 0.246 0.001 0
Gutenkunst et al. 160 kya 3.33 0 0.470 0.515 0.005 0.0102
Gutenkunst et al.** 40 kya 0.742 0.0006 0.9261 0.0719 0 0.0014
Gutenkunst et al. 40 kya 0.833 (0.25x) 0.0001 0.9123 0.0875 0 0.001
Gutenkunst et al. 40 kya 1.66 (0.5x) 0 0.927 0.0734 0 0
Gutenkunst et al. 40 kya 6.66 (2x) 0 0.955 0.0454 O 0
Gutenkunst et al. 40 kya 13.32 (4x) 0.0032 0.9785 0.0184 0 0

Li & Durbin* 40 kya 5 0.0020 0.4359 0.5178 0.0187 0.0256

Table 2. Results by time since selection onset and recombination rate. These results are
based off of 10,000 simulations and a 1% acceptance rate. *This is a version of the Li & Durbin
(2011) model, based off of the African portion of ’sim-split2’ in their Supplementary Information
**This recombination rate is based off of our inference of the recombination rate. The main
recombination rate used in this paper was based off of estimates from the deCODE project.

We also report the Bayes factors for our model selection. This is based on 100,000 simulations
per model, and a multinomial logistic regression model with a tolerance rate of 0.01. This assumed
a recombination rate of 3.33 ¢cM/MB and a selection start time of 40 kya.

‘ De novo 0.1% 1% 10% 25%

De novo | 1 0.0002 0.0025 0.5041 51.04
0.1% 4377 1 11.09 2207 223417
1% 395 0.0902 1 199.1 20155
10% 1.98 0.0005 0.005 1 101.2
25% 0.0196 0 0 0.0099 1

Table 3. Bayes factors for model selection.

Next, we move to our second step: estimating the selection coefficient, based on the initial
frequency model. We utilize leave-out-one cross validation with a tolerance rate of 0.1% to evaluate
the accuracy of parameter inference. We also have reasonable power to infer the selection coefficient
(r? = 0.85).
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Figure 3. Cross-validation for parameter inference of log(s) for 0.1% initial frequency
simulations We utilize leave-out-one cross validation with a tolerance rate of 0.1% to evaluate the
accuracy of parameter inference. Black line: Linear best fit, Blue line: Lowess line of best fit,
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r® = 0.848

We also conducted a posterior predictive check. We sampled selection coefficients (s) from the
posterior distribution of s, based on the 0.1% allele frequency at selection onset. We ran simulations
with these selection coefficients and the initial frequency drawn from either 10Y(=5~0-00001)
U(0,1). Then, we used local linear regression to infer the initial frequency of our data. With the
log-based prior distribution, we find high correlation between the simulated and inferred initial
frequencies (r? = 0.84), and we re-estimate the initial frequency at 0.15% (95% CI: 0.018 — 0.77%;
Fig 4), closely fitting our inferred best fit model. However with the uniform prior distribution, we
have much lower power to estimate initial allele frequency. We find poor correlation between the
simulated and inferred initial frequencies (72 = 0.076) and we re-estimate the initial frequency at
6.86% (95% CI: -20.3 — 51.6%, Fig 5). This is a very wide (and biologically impossible) confidence
interval. This is not surprising, as it has previously been shown that it is very difficult to estimate
initial frequency with this prior (Peter et al. 2012).



Initial Frequency Results
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Figure 4. Posterior check: Cross-validation for initial frequency 10Y(=5—0.00001) prior@
True initial frequency vs. inferred initial frequency; Black line: Linear best fit, Blue line: Lowess
line of best fit. E Prior and posterior distributions of the initial frequency.
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Figure 5. Posterior check: Cross-validation for initial frequency with U(0,1) prior@
True initial frequency vs. inferred initial frequency; Black line: Linear best fit, Blue line: Lowess
line of best fit. @ Prior and posterior distributions of the initial frequency.

We conducted a second posterior predictive check for the uniform and log priors using a
restricted initial frequency range of 0.01% to 10%. Similar to before, we find low correlation with
the uniform prior (r? = 0.27), and reestimate the frequency at -0.01% (95% CI: -2.0 — 4.0%, Fig 7).
With the log prior we find (r? = 0.89) and reestimate the frequency at 0.098% (95% CI: 0.0062 —
0.40 %, Fig 6).



Initial Frequency Results

g < 0.9
3 '
<
3 o
£ 9
£ 206
= w | i 00 Posterior
w o % :
= A Prior
2 o
Lo
m
= na
2 . 0.3

- -

.l’
0.0
Initial Freq: True Value e irfnitial freq 2 L

Figure 6. Posterior check: Cross-validation for initial frequency with log(0.0001,0.1)
prior [a} True initial frequency vs. inferred initial frequency; Black line: Linear best fit, Blue line:
Lowess line of best fit. @ Prior and posterior distributions of the initial frequency.
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Figure 7. Posterior check: Cross-validation for initial frequency with U(0.0001,0.1)
prior [a} True initial frequency vs. inferred initial frequency; Black line: Linear best fit, Blue line:
Lowess line of best fit. @ Prior and posterior distributions of the initial frequency.

We investigate how varying the time since selection and the recombination rate affect the
selection coefficient inference. In this analysis, we use 10,000 simulations for each case and a 1%
acceptance rate. For each case, we use the best fit initial frequency model from the previous
analysis, which is 0.1% in all cases except for the model with selection starting 160 kya and the Li
and Durbin (2011) demographic model. The inferred selection coefficients are all between 0.025 -
0.058, besides the 1% frequency model which has a lower inferred s (0.0072) with a 160 kya
selection start time and a higher inferred s (0.1151) with the Li and Durbin (2011) model. As we
increase the recombination rate or increase the time since selection, we note decreasing inferred
selection coefficients. However, they are still in the range of our inferred value.



Model Time since sel. Recom rate (cM/MB) Init freq ‘ Selection coeff

Gutenkunst et al. 20 kya 3.33 0.1% 0.0584 (95% CI: 0.0223 - 0.1885)
Gutenkunst et al. 60 kya 3.33 0.1% 0.0327 (95% CI: 0.0134 - 0.0893)
Gutenkunst et al. 80 kya 3.33 0.1% 0.049 (95% CI: 0.0121 - 0.186)
Gutenkunst et al. 160 kya 3.33 0.1% 0.0278 (95% CT : 0.0162 - 0.0400)
Gutenkunst et al. 160 kya 3.33 1% 0.0072 (95% CI: 0.0032-0.0072)
Gutenkunst et al.** 40 kya 0.742 0.1% 0.0551 (95% CI: 0.0164 - 0.201)
Gutenkunst et al. 40 kya 0.833 (0.25x) 0.1% 0.0532 (95% CI: 0.0125 - 0.400)
Gutenkunst et al. 40 kya 1.66 (0.5x) 0.1% 0.0504 (95% CI: 0.0113 - 0.213)
Gutenkunst et al. 40 kya 6.66 (2x) 0.1% 0.0420 (95% CI: 0.0106 - 0.1371)
Gutenkunst et al. 40 kya 13.32 (4x) 0.1% 0.0409 (95% CI: 0.0010 - 0.1661)
Li & Durbin* 40 kya 5 0.1% 0.1151 (95% CI: 0.0316 - 0.3899)
Li & Durbin* 40 kya 5 1% 0.0250 (95% CI: 0.0129 - 0.0800)

Table 4. ABC selection coefficient results when varying time since selection onset
and recombination rate. These results are based off of 10,000 simulations and a 1% acceptance
rate. *This is a version of the Li & Durbin (2011) model, based off of the African portion of
’sim-split2’ in their Supplementary Information **This recombination rate is based off of our
inference of the recombination rate in the 20 KB region surrounding FY*O in African sample in the
1000 Genome dataset that are homozygous for FY*O. The main recombination rate used in this
paper was based off of estimates from the deCODE project.

We also include a figure showing the inferred selection coefficient assuming a model of selection
on de novo mutation, which was not a good fit to our data. Unlike the figure for selection on allele
with 0.1% frequency, selection on de novo mutation results in a posterior distribution much wider
than its prior distribution. It inferred a selection coefficient of 0.006428 (95% CI: 3.19e-37 - 1.57¢9).
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Figure 8. @ Prior and posterior density of selection coefficient assuming de novo mutation @
Prior and posterior density of selection coefficient assuming 0.1% initial frequency (same as Figure
3 in the main paper).

Auton A, Fledel-Alon A, Pfeifer S, Venn O, Segurel L, Street T, Leffler EM, Bowden R, Aneas I,
Broxholme J, et al. 2012. A fine-scale chimpanzee genetic map from population sequencing. Science
336:193-198.

Hudson RR and Kaplan N. 1985. Statistical properties of the number of re- combination events
in the history of a sample of DNA sequences. Genetics, 111:147-164.



1.2 Data Processing

SNPs used in this analysis were called via two methods. The high-coverage 1000 Genomes samples
were called as described in [?], while the other low-coverage populations were called as described in
the methods. The 1000 Genomes samples have very high quality called SNPs, and have integrated
high coverage exome data into their results. Therefore, we didn’t want to recall these high quality
samples with our other low coverage samples. The low coverage samples were used because they
included some important population samples (ex. the San and the hunter gatherers). We note there
is likely calling bias between the 1000 Genomes integrated dataset and the low coverage samples
recalled in this paper. This is evidenced by multiple SNPs being present only in the recalled
low-coverage data (Fig 2B), despite some populations in the recalled data being highly divergent
from each other but close to those in the 1000 genomes data. For example, the haplotype network
(Fig 2B) contain a number of rare haplotypes exclusively shared by Bagandan (pink nodes) and
Zulu (gray nodes) populations, two genetically more distant populations with low-coverage
genotype calls. This contrasts with less shared rare haplotypes of the Bagandan with LWK (from
the 1000 Genomes dataset), which are genetically and geographically closer than the Zulu [?]. As a
consequence, we conducted the bulk of the analyses separately by population. Our results show that
this calling bias does not affect our conclusions. For example, Tyrca estimates of 1000 Genomes
populations and recalled samples are very similar (S8-S10 Tables). The ABC analysis was
conducted on the LWK population, which is part of the higher quality 1000 Genomes sample set.
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