Supplemental Methods and Results
Weighting and scaling
Data were scaled and weighted in several ways to account for variable sequencing depth in the course of our analyses.  The three statistics that were weighted to account for sequencing depth were: (1) parent read depths for individual maize-teosinte comparisons, (2) overall parent read depth for maize versus teosinte, and (3) percent crosses with consistent cis and trans expression patterns.
Parent data for individual maize-teosinte comparisons were scaled to the sequencing depth of the parent line with less sequencing reads.  This was done by dividing all read depths from both parent inbred lines by the total amount of sequence data collected for each inbred and then multiplying read depths from both inbred lines by the lesser amount of reads collected.  For example, if the B73-TIL01 comparison had 20 million B73 reads and a depth at segregating sites of 20 and TIL01 had 10 million reads and depth of 10, B73 read depth was calculated as: 20 depth / 20 million * 10 million and TIL01 read depth was calculated as 10 depth / 10 million * 10 million.  
To measure overall maize and teosinte read depth at segregating sites, we combined read depth at segregating sites from the various crosses into a single overall comparison.  We did this in different ways for the parent inbred comparisons and the F1 hybrid crosses.  The independently collected F1 hybrid RNAseq reads were combined by summing gene read depth at segregating SNPs across all hybrids.  The parent inbred maize-teosinte comparisons used the same parent inbred RNAseq reads for each “cross” that it was involved in, resulting in non-independence of parent comparisons with shared maize or teosinte parent inbred lines.  Consequently we combined maize and teosinte parent expression by calculating the weighted percent maize read depth for each gene.  This was done by (A) calculating the percent maize depth (unscaled) per million reads and total depth at each segregating site (B) averaging this percent maize for each gene while weighting each site’s contribution by the total depth of that site and finally (C) calculating final maize and teosinte depth count by multiplying gene maize percent by total depth across all segregating sites and inbred parents and rounding to the nearest whole number.  
An important component of the analysis was designation of CCT genes as having consistent cis expression in a weighted percentage of crosses.  This weighted percentage was calculated as the percentage of assayed F1 crosses that favored the maize or teosinte allele weighted by the overall depth of each maize-teosinte comparison.  This method for making a weighted percentage was also used in generating lists of genes in the cis only (weighted by F1 depth) and trans only regulatory categories (weighted by parent depth) with consistent expression patterns.
Drop1 F1 analysis
A drop1 analysis of the F1 data was done to assess the average influence of any single data point on overall cis effect obtained by summing the F1 read depth.  This was done by calculating the difference in cis effect, log2(hybrid ratio), for any single gene caused by dropping a single F1 contribution to the read counts and computing an average for each gene.  This analysis reveals the vast majority of genes (99.75%) having less than a 0.1 average difference in log2(hybrid) value when dropping a single F1 contribution to expression ratio (Figure S5).  Consequently, we conclude that the average influence of individual F1 comparisons is minor and proceeded with calculating overall maize versus teosinte comparisons. 
Alternative FDR cutoff (5%) for significant cis and trans
While we used an FDR of 0.5% for primary analysis as done by McManus et al. [1], we also investigated the increase in size of CCT-ABC gene lists when using a higher FDR (5%) to designate significant binomial and Fisher’s exact tests.  The use of 5% FDR is expected to shift genes into the cis + trans and cis x trans regulatory categories due to previously non-significant binomial tests (for the F1 cis effect and parent overall effect) and Fisher’s exact tests (trans) becoming significant.  This would result in fewer conserved, cis only, and trans only genes.  Of direct impact on this analysis in terms of candidate genes, we expected to only gain genes in the candidate CCT gene lists that show consistent cis regulatory effects.  
We calculated the increased size in terms of raw number and percent of the CCT gene lists when using a 5% FDR cutoff.  As expected, the only difference was adding previously non-CCT genes to the various CCT-ABC gene lists.  Table S21 shows the count and percent increase of A, B, and C for each tissue, which was typically quite small with the largest increase in size being for the C list with an increase of approximately 10%.  The smallest CCT-A candidate gene lists also saw the smallest increase in size (1, 2, and 1 gene for ear, leaf, and stem respectively).  Since the increase in number and percent was relatively minor for the higher confidence CCT-AB gene lists, we used CCT gene lists generated with 0.5% FDR for downstream analyses.
Calling and filtering of segregating sites with GATK
GATK [2,3] was used to call variants (both indel and SNP) as well as filter variants by several criteria.  The UnifiedGenotyper tool and VariantFiltration tool were called separately for indel and SNP variants.  The important parameter for UnifiedGenotyper in both indel and SNP calling was -stand_emit_conf set to 1.0.  This sets the minimum confidence for a variant to be output and the setting of 1.0 is very relaxed to allow maximum recovery of tentative variants (segregating sites).  The VariantFiltration tool used four custom filters that ignored sites with too many/too large fraction of reads with low mapping quality (HARD_TO_VALIDATE), ignored sites if strand bias was too high (Indel/SNPSBFilter), ignored sites if total read depth was less than four or greater than 100 (Indel/SNPDPFilter), and ignored sites with too long homo-polymer runs (SNPHRunFilter).  SNPs were further filtered to be ignored if occurring in clusters of three or more in a 10 bp window (-cluster 3 -window 10).  
The explicit code used for these calls is as follows for indel variants:
java –jar GenomeAnalysisTK.jar -T UnifiedGenotyper  -glm INDEL  -R  maize_agp_v2.fasta -stand_call_conf 2.0 -stand_emit_conf 1.0 -dcov 100  -A DepthOfCoverage -I  alignment.bam -o GATK_indel.vcf

java -jar GenomeAnalysisTK.jar -T VariantFiltration  -R  maize_agp_v2.fasta -filter "MQ0 >= 4 && ((MQ0 / DP) > 0.1)"   -filter "QUAL<30.0" -filter "SB>-1.0" -filter "DP>100 || DP<4"        -filterName HARD_TO_VALIDATE -filterName IndelQUALFilter   -filterName IndelSBFilter  -filterName IndelDPFilter  --variant GATK_indel.vcf    -o GATK_indel_filtered.vcf

The explicit code used for these calls is as follows for SNP variants:
java –jar GenomeAnalysisTK.jar -T UnifiedGenotyper  -glm SNP -R  maize_agp_v2.fasta -stand_call_conf 2.0 -stand_emit_conf 1.0 -dcov 100  -A DepthOfCoverage -I alignment.bam -o GATK_snp.vcf

java  GenomeAnalysisTK.jar  -T VariantFiltration  -R  maize_agp_v2.fasta --mask:VCF GATK_indel_filtered.vcf --maskName CloseToIndel -filter "MQ0 >= 4 && ((MQ0 / DP) > 0.1)"  -filter "SB>=0.10"  -filter "HRun>=4"  -filter "DP>100 || DP<4" -filterName HARD_TO_VALIDATE  -filterName SNPSBFilter -filterName SNPHRunFilter  -filterName SNPDPFilter -cluster 3 -window 10 --variant GATK_snp.vcf -o GATK_snp_filtered.vcf

de novo assembly
As an alternative to pseudo-transcriptomes, we briefly explored the possibility of using de novo transcriptomes assembled for each parental line from RNAseq data.  If such accurate parental transcriptomes were available, allele-specific expression levels could be estimated for matched transcripts (paired by clustering or anchoring to the B73 annotated transcriptome) in terms of RPKM values obtained using any standard RNAseq analysis pipeline.  Preliminary tests of this strategy were performed using Trinity [4] as the transcriptome assembler.  These tests showed that the assembly was unable to properly represent gene duplication events, often producing chimeras of two paralogs, different in the two lines being compared.  This effect is probably exacerbated by the fact that only single-end reads were used in our assembly.  Since this problem significantly complicates a meaningful comparison of allele expression, we decided not to pursue this avenue in the present work.    
Other domestication candidate genes 
We examined six genes identified in the literature as potential maize domestication genes and two known domestication genes (tb1 and tga1) and compared the RNAseq expression data to expectations for these genes (Table S20).  The RNAseq data for tb1 and tga1 match published qRT-PCR expression data.  Three of the six other genes had predicted expression biases based on gene function and all three fit these expectations.  The three remaining putative domestication genes (OsMADS56, zagl1, and zfl2) all show a maize-teosinte expression difference, however neither phenotype nor gene function provide a prediction as to whether the maize or teosinte allele should be expressed more highly. Here we review these eight genes.
The evolution of maize plant and ear architecture is controlled in part by teosinte branched1 (tb1) [5].  In domesticated maize, high expression of tb1 leads to arrest of bud outgrowth and a more apically dominant plant, as well as changes in ear morphology.  In the ear RNAseq data, tb1 was classified as cis + trans with slightly less than a two-fold increase in maize.  This is consistent with expectations from the literature [5].  In our collection of teosinte inbreds, two lines (TIL03 and TIL09) are known to carry the maize haplotype at tb1.  Thus, F1s with these teosinte inbreds should not show a maize-teosinte expression difference and they do not.  F1s involving TIL03 and TIL09 having a sum maize:teosinte expression ratio of 239:261 (approximately equal expression) while other F1s sum to 802:426 (nearly 2-fold higher maize expression).  This precisely matches published expectation and it is an impressive example of the power of our experiment to accurately quantify allele specific expression for genes and alleles of interest.  
The maize domestication gene teosinte glume architecture (tga1) controls the development of the fruitcase that covers the kernels in teosinte which is lacking in maize [6].  Published qRT-PCR data show equal expression of the maize and teosinte alleles, and an amino acid substitution was implicated as the causative polymorphism that was the target of selection during domestication.  Consistent with this information, the RNAseq data show equal allele-specific expression in the F1s although higher teosinte expression in the parent data because the fruitcase structure develops in the teosinte ear but not in the maize ear. Again, the data match published information.
Pod corn, a phenotype with the kernels covered by a glume, has been shown to be caused by increased expression of zea mays MADS19 (zmm19) in the developing female inflorescence [7].  In the RNAseq data, the teosinte allele is expressed 3.63X higher than the maize allele and the gene is classified as cis + trans.  This higher expression of the teosinte allele agrees with the prediction that higher expression of zmm19 contributes to glume growth and encased kernels (a teosinte phenotype).  Interestingly, this expression difference is specific to the ear and expression is very close to 1:1 in the leaf and stem, suggesting that there may be tissue specific regulatory elements in its promoter.
Two YABBY transcription factors (ZmSh1-1 and ZmSh1-5.1) have been identified as candidates for genes controlling ear shattering in teosinte and loss of shattering in maize [8].  Based on analysis of these genes in Sorghum, the prediction is that the maize (non-shattering) allele should be expressed lower than the teosinte allele [8].  Although there is RNAseq data for only a few F1s, the data meet the prediction with lower expression of the maize allele.  Furthermore, we have experimentally confirmed this result by qRT-PCR (Doebley lab, unpublished).  
The Arabidopsis ortholog of zea agamous like1 (zagl1), SOC1, was identified as a selection candidate gene [9].  In Arabidopsis, this gene (SOC1) functions in the flowering time pathway [10]. QTL fine-mapping data from the Doebley Lab (unpublished) show that the maize allele confers more rows of kernels in the ear.  The RNAseq data shows elevation of maize expression in the ear, however we have no prior hypothesis to predict that higher expression is expected based in phenotype or gene function.
The maize homolog of OsMADS56 (GRMZM2G070034) was identified as a putative target of selection and shown with expression microarray analysis to have higher expression in maize [11]. The RNAseq data show much higher expression for the maize allele in all three experimental tissues and the gene is classified as having largely cis effects (average cis effect of 2.57 and average trans of 0.25).  In rice, over-expression of OsMADS56 leads to delayed flowering in long day conditions [12], however flowering time is not a domestication trait.  Many flowering time genes also affect inflorescence structure, and this gene was potentially under selection for an effect on inflorescence structure. We have no prior hypothesis to predict that higher expression in maize is expected based on phenotype or gene function.
[bookmark: _GoBack]One of the maize homologs of the Antirrhinum floricaula and Arabidopsis leafy gene called zfl2 has been designated as a putative maize domestication gene based on location near a QTL for kernel row number and a genetic complementation test [13].  zfl2 was also tagged as a selection candidate gene [11].  In Antirrhinum and Arabidopsis, the gene functions in the flowering time pathway [14].  Although flowering time is not a domestication trait, zfl2 influences kernel row number and inflorescence structure in maize [13] and these are domestication traits.  RNAseq data show slightly higher allele specific expression of the maize allele.  There are no published qRT-PCR data to which the RNAseq data can be compared.  
Taken as a group, these eight genes fit one or more of the following criteria: (1) show a maize-teosinte expression bias that is consistent with published qRT-PCR data, (2) show a maize-teosinte expression bias that is consistent with expectations based on gene function, and (3) show a maize-teosinte expression bias that supports the gene’s role as a domestication candidate gene, although the directionality of the bias was not predicted. 
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