Table S2. Plasmids used in this study.

Plasmids	Relevant characteristic(s)	Source or reference ^a
pMAD	<i>E. coli - S. aureus</i> shuttle vector with a thermosensitive origin of replication for Gram-positive bacteria. The vector contains the <i>bgaB</i> gene encoding a β- galactosidase under the control of a constitutive promoter as reporter of plasmid presence. Ap^R , Em^R .	[1]
pMAD Δ3'UTR	pMAD plasmid containing the mutant allele for deletion of the long 3'-UTR of the $\it icaR$ mRNA	This study
pMAD 3xFLAG-icaR	pMAD plasmid containing the allele for insertion of the $3xFLAG$ at the N-terminus of the IcaR protein	This study
pMAD Δ <i>SA1387</i>	pMAD plasmid containing the allele for deletion of the DEAD-box RNA helicase (<i>S. aureus</i> N315 ID: SA1387)	This study
pLUG533	pMAD derivative for deletion/replacement of S. aureus hfq gene	[2]
pSA14	E. coli - S. aureus shuttle vector for transcriptional LacZ reporter fusions. The plasmid carries the promoterless Escherichia coli lacZ gene downstream from the Bacillus subtilis spoVG ribosome binding site.	[3]
pSA14-P <i>ica</i>	pSA14 plasmid carrying the ica operon promoter region from -422 to +1, where +1 corresponds to the mapped transcriptional start site of $icaADBC$ mRNA	This study
pCN40	<i>E. coli - S. aureus</i> shuttle vector to express genes under the control of the $P_{\textit{blaZ}}$ constitutive promoter. Low copy number (20 to 25 copies/cell). Em ^R	[4]
p ^{FLAG} IcaRm	pCN40 plasmid constitutively expressing the N-terminal 3XFLAG tagged IcaR protein from the entire mRNA	This study
p ^{FLAG} IcaRm∆3′UTR	pCN40 plasmid constitutively expressing the N-terminal 3XFLAG tagged IcaR protein from the mRNA carrying a deletion of 331 nt downstream of the stop codon	This study
p ^{FLAG} IcaRm∆anti-SD	pCN40 plasmid constitutively expressing the N-terminal 3XFLAG tagged IcaR protein from the mRNA carrying the UCCCCUG deletion	This study
p ^{FLAG} IcaRm-SUBST	pCN40 plasmid constitutively expressing the N-terminal 3XFLAG tagged IcaR protein from the mRNA carrying the substitution of the UCCCCUG motif by AGGGGAC	This study
pIcaRm	pCN40 plasmid constitutively expressing the entire $\it icaR$ mRNA molecule	This study
pIcaRm∆3′UTR	pCN40 plasmid constitutively expressing the <i>icaR</i> mRNA carrying a deletion of 331 nt downstream of the stop codon	This study
pIcaRm∆anti-SD	pCN40 plasmid constitutively expressing the entire $\it icaR$ mRNA carrying the UCCCCUG deletion	This study
pIcaRm-SUBST	pCN40 plasmid constitutively expressing the $\it icaR$ mRNA carrying the substitution of the UCCCCUG motif by AGGGGAC	This study
pIcaRm-Compensatory	pCN40 plasmid constitutively expressing the <i>icaR</i> mRNA carrying the substitution of the UCCCCUG motif by AGGGGAC and the substitution of the SD region (CAGGGGG) by GTCCCCT	This study
pET-15b RNase III	pET-15b expressing the <i>S. aureus</i> rnc gene which encodes the double stranded endoribonuclease RNase III fused to His-tag.	This study
pUT7- <i>spa</i>	T7 promoter- <i>spa</i> (nts -25 to +200) allowing the in vitro T7 transcription of <i>S. aureus spa</i> mRNA containing the whole 5'-UTR and 200 nts of the coding sequence	[5]
pUT7- <i>icaR</i>	T7 promoter-icaR allowing the in vitro T7 transcription of the full-leng icaR mRNA	th This study

^aReferences

- 1. Arnaud M, Chastanet A, Débarbouillé M (2004) New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, Gram-positive bacteria. Applied and Environmental Microbiology 70: 6887–6891.
- 2. Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, et al. (2007) *Staphylococcus aureus* RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes & Development 21: 1353–1366.
- 3. Joanne P, Falord M, Chesneau O, Lacombe C, Castano S, et al. (2009) Comparative study of two plasticins: specificity, interfacial behavior, and bactericidal activity. Biochemistry 48: 9372–9383.
- 4. Charpentier E, Anton AI, Barry P, Alfonso B, Fang Y, et al. (2004) Novel cassette-based shuttle vector system for Grampositive bacteria. Applied and Environmental Microbiology 70: 6076–6085.
- 5. Huntzinger E, Boisset S, Saveanu C, Benito Y, Geissmann T, et al. (2005) *Staphylococcus aureus* RNAIII and the endoribonuclease III coordinately regulate *spa* gene expression. EMBO J 24: 824–835.