
Supplementary Information

S1 SGL estimation algorithm

For the estimation of βSGL we proceed by noting that the optimisation (1) is convex, and
(in the case of non-overlapping groups) that the penalty is block-separable, so that we can
obtain a solution using block, or group-wise coordinate descent (Tseng and Yun, 2009). For
a single group, l, the corresponding minimising function is given by

f(βl) =
1

2
||y −Xβ||22 + (1− α)λwl||βl||2 + αλ||βl||1. (S.1)

An optimal solution for SNP coefficient βj is then derived from the subgradient equations

− x′j(r̂l −
∑
k 6=j

xkβ̂k − xjβj) + (1− α)λwlsj + αλtj = 0 j = l1, . . . , lPl
, (S.2)

where β̂k, k 6= j are the current estimates for other SNP coefficients in group l, and the group
partial residual, r̂l = y −

∑
m 6=lXmβ̂m. Here sj and tj are the respective subgradients of

||βl||2 and |βj |, with

sj =

{
βj
||βl||2 if ||βl||2 6= 0

∈ [−1, 1] if ||βl||2 = 0

tj =

{
sign(βj) if βj 6= 0

∈ [−1, 1] if βj = 0.
(S.3)

If βl = 0, that is group l is not selected by the model, then from (S.2)

− x′j r̂l + (1− α)λwlsj + αλtj = 0, j = l1, . . . , lPl
. (S.4)

Substituting a = X′lr̂l gives

aj = (1− α)λwlsj + αλtj , j = l1, . . . , lPl

so that

s2j =
1

(1− α)2λ2w2
l

(aj − αλtj)2, j = l1, . . . , lPl
,

and ∑
j

s2j =
1

(1− α)2λ2w2
l

∑
j

(aj − αλtj)2.
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From (S.3), when βl = 0, ||s||2 = (
∑

j s
2
j )

1
2 ≤ 1, so that∑

j

(aj − αλtj)2 ≤ (1− α)2λ2w2
l . (S.5)

Also from (S.3), one further condition when βl = 0 is that tj ∈ [−1, 1]. The values, t̂j that
minimise the left hand size of (S.5) are therefore given by

t̂j =

{
aj
αλ if | ajαλ | ≤ 1

sign(
aj
αλ) if | ajαλ | > 1.

Substituting for aj , we can then write the values for aj − αλtj that minimise the left hand
side of (S.5) as

aj − αλtj =

{
0 if |x′j r̂l| ≤ αλ
sign(x′j r̂l)(|x′j r̂l| − αλ) if |x′j r̂l| > αλ

= S(x′j r̂l, αλ)

for j = l1, . . . , lPl
, where

S(x′j r̂l, αλ) = sign(x′j r̂l)(|x′j r̂l| − αλ)+ (S.6)

is the lasso soft thresholding operator. Finally, we can now rewrite the condition for β̂l = 0,
(S.5) as

||S(X′lr̂l, αλ)||2 ≤ (1− α)λwl, (S.7)

Where the vector S(X′lr̂l, αλ) = [S(x′l1 r̂l, αλ), . . . , S(x′lP r̂l, αλ)]. Note that with α = 0, this
reduces to the group lasso group selection criterion.

In the case that βl 6= 0, that is group l is selected by the model, from (S.2) and (S.3) we
see that βj = 0 when

− x′j(r̂l −
∑
k 6=j

xkβ̂k) ≤ |αλ|. (S.8)

For completeness, we rewrite the criterion for selecting pathway l from (S.7) as

||S(X′lr̂l, αλ)||2 > (1− α)λwl (S.9)

and the criterion for selecting SNP j in selected pathway l from (S.8) as

|x′j r̂l,j | > αλ (S.10)

where r̂l,j = r̂l−
∑

k 6=j xkβ̂k is the SNP partial residual, obtained by regressing out the current
estimated effects of all other predictors in the model, except for predictor j.

A number of methods for the estimation of βl in the case that ||βl||2 6= 0 have been
proposed (Friedman, Hastie, and Tibshirani, 2010; Foygel and Drton, 2010; Liu and Ye, 2010;
Simon et al., 2012). A complicating factor is the discontinuities in the first (and second)
derivatives of sj at ||βl||2 = 0, that is where ||βl||2 first moves away from zero, and of tj when
βj = 0. As with GL, Friedman, Hastie, and Tibshirani (2010) describe a numerical method
using coordinate descent, by combining a golden search over βj with parabolic interpolation.
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However we find this too computationally intensive for the large datasets we wish to analyse.
Simon et al. (2012) propose an accelerated, block gradient descent method in which βl is
iteratively updated in a single step along the line of steepest descent of the block objective
function until convergence. We instead use a block, coordinate-wise gradient descent (BCGD)
method that uses a Newton update, similar to that proposed by Zhou et al. (2010), and we
describe this below.

To update βj from its current estimate, β̂j , we note from (S.2) and (S.3) that if β̂j 6= 0,
the subgradient equation for predictor j is given by

∂j = −x′j(r̂l −Xlβ̂l) + (1− α)λwl
β̂j

||β̂l||2
+ αλ · sign(β̂j). (S.11)

We then descend along the gradient at β̂j towards the minimum using Newton’s method.
The Newton update, β∗j , is then given by

β̂∗j = β̂j −
∂j
∂′j
,

where ∂′j = 1 +
(1− α)λwl

||β̂l||2

(
1−

β̂2j

||β̂l||22

) (S.12)

is the derivative of (S.11) at β̂j . The update (S.12) is repeated until convergence.

We must also deal with the case where β̂j = 0. Here we adopt a slightly different strategy,
since the partial derivative, tj of βj is not continuous. We avoid this discontinuity by testing
the ‘directional derivatives’, ∂+j and ∂−j , respectively representing the partial derivatives at
βj = 0 in the direction of increasing and decreasing βj . Recalling that we are dealing with
the case ||βl||2 6= 0, at βj = 0 the group penalty term in (S.11) disappears. That is, once
a group is selected by model it becomes easier for each SNP coefficient to move away from
zero. The two directional derivatives are then given by

∂+j = −x′j(r̂l −Xlβ̂l) + αλ

∂−j = −x′j(r̂l −Xlβ̂l)− αλ.
(S.13)

Since the minimising function (S.1) is convex, there are three possible outcomes, and we
substitute for ∂j in (S.12) accordingly:

∂j ←


∂−j if ∂−j > 0 and ∂+j > 0

∂+j if ∂−j < 0 and ∂+j < 0

0 if ∂−j > 0 and ∂+j < 0

(S.14)

In the third case, f(βl) is increasing either side of βj = 0, so that β̂j must remain at zero.
We can then proceed with the standard Newton update (S.12).

Finally, since the Newton update may occasionally overstep the minimum (where ∂j = 0),
a simple remedy proposed by Zhou et al. (2010) is to check that f(βl) is decreasing at each
iteration. If this is not the case, then the step size in (S.12) is halved. The complete algorithm
for SGL estimation using BCGD is presented in Box 1.
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One remaining practical issue is the obtaining of a value for λmax, the smallest value of
λ at which no groups are selected by the model. Noting that r̂l = y when no groups are
selected, from (S.7) we obtain the smallest value, λminl , for the minimum value of λ at which
group l is not selected as

λminl =
||S(X′ly, αλ

min
l )||2

(1− α)wl
(S.15)

We can solve this in its quadratic form by first setting an upper bound for λ at the point λ∗l ,
where the soft thresholding function S(X′lyl, αλ) = 0, that is when no SNPs are selected by
the model. We then obtain the solution by solving

||S(X′ly, αλ
min
l )||22 − (1− α)2(λminl )2w2

l = 0 0 < λminl < λ∗l (S.16)

for λminl , where

λ∗l = max
j

|x′jy|
α

, j = l1, . . . , lPl
.

We do this using the 1d root-finding function, brentq, in Python’s scipy library. Finally, we
obtain a value for λmax as

λmax = max
l
λminl , l = 1, . . . , L. (S.17)

S2 SGL with overlaps

We assume that X and β have been expanded to account for overlaps, but we drop the ∗

notation for clarity. We proceed as before by solving the block-separable optimisation (4)
for each group or pathway in turn. However, for overlapping pathways, the assumption
of pathway independence requires that each Xl, (l = 1, . . . , L) is regressed against the full
phenotype vector y rather than the partial residual, r̂l. With this in mind, the revised
subgradient equations for group l (S.2) are given by

− x′j(y −
∑
k 6=j

xkβ̂k − xjβj) + (1− α)λwlsj + αλtj = 0 j = l1, . . . , lPl
. (S.18)

The estimation for group l then proceeds as described in the previous section, but with
the partial residual r̂l replaced by y, so that the group sparsity condition (S.7) for ||β̂l||2 = 0
becomes

||S(X′ly, αλ)||2 ≤ (1− α)λwl. (S.19)

As before, where group l is selected by the model, the update for βj , with current estimate

β̂j , is derived from the partial derivative (S.11), which under the independence assumption is
given by

∂j = −x′j(y −Xlβ̂l) + (1− α)λwl
β̂j

||β̂l||2
+ αλ · sign(β̂j), (S.20)

for j = l1, . . . , lPl
. The Newton update (S.12) remains the same. When β̂j = 0, the revised

directional derivatives (S.13) are given by

∂+j = −x′j(y −Xlβ̂l) + αλ

∂−j = −x′j(y −Xlβ̂l)− αλ.
(S.21)

4



As before the conditions for SNP sparsity within a selected group are determined by (S.14).
The value of λmax, the smallest λ value at which no group is selected by the model, is

determined in the same way as before, since this procedure (described in (S.15), (S.16) and
(S.17)) does not depend on r̂l.

Importantly, since each group is regressed independently against the phenotype vector y,
there is no block coordinate descent stage in the estimation, that is the revised algorithm
utilises only coordinate gradient descent within each selected pathway. For this reason we
use the acronym SGL-CGD for the revised algorithm. The new algorithm is described in Box
2. Note that since the block coordinate descent stage is avoided, the new algorithm has the
added benefit of being much faster than would otherwise be the case.

S3 Simulation study 1

A baseline phenotype, y is sampled from N (10, 1). To generate SNP effects, we first select a
single pathway, Gl, at random. From this pathway we randomly select 5 SNPs to from the
set S ⊂ Gl of causal SNPs. At each MC simulation we generate a genetic effect and adjust y
so that

y∗ = y + w

where
w = δ

∑
k∈S

ζkxk.

Here δ controls the overall additive genetic effect on phenotype y due to all casual SNPs in S,
and ζk determines the contribution from causal SNP k, with

∑
k∈S ζk = 1. In our simulations

we maintain a constant overall genetic effect size,

γ = E(w)/E(y)

across all affected phenotypes, so that γ represents the proportionate increase in the mean
value of y due to all genetic effects. We also set ζk = 1/5, for k ∈ S, so that the contribution
from each causal SNP allele is equal. This enables us to determine δ for a given γ as

δ =
5γE(y)

2
∑

k∈S mk
.

Note that for constant γ, the proportionate effect on the mean value of y due to SNP k is
MAF dependent, and is given by 2δmk/E(y).

S4 Weight tuning for bias reduction

For fixed α, and with λ tuned to select a single pathway, we need to establish which pathway
enters the model first, as λ is reduced from its maximal value, λmax. From (S.17), at phenotype
permutation r, the pathway Ĉr selected with permuted phenotype yr is given by

Ĉr = arg max
l

λminl , , l = 1, . . . , L.

λminl is obtained by solving

λminl =
||S(X′lyr, αλ

min
l )||2

(1− α)wl
,

5



using the procedure described at the end of Section S1. For R permutations of the phenotype
vector, y, the empirical pathway selection frequency distribution is then given by

Π∗(w) =
1

R

R∑
r=1

{Ĉr = l}, l = 1, . . . , L.

S5 Investigation of effect of pathway size on pathway selection

We extend the simulation framework described for Simulation Study 1 by allowing pathway
size, measured by number of SNPs, to vary. Specifically, we follow the same scenario for
generating genotypes, but generate 20 non-overlapping pathways varying in size from 10 to
200 SNPs, in increments of 10. Phenotypic effects are generated as previously described,
after randomly selecting 5 causal SNPs from a single randomly selected pathway at each MC
simulation. We use an ‘intermediate’ effect size, γ = 0.05 (see Figure 3 in the main text),
to best assess any potential variation in pathway selection power, defined as the proportion
of simulations where the causal pathway is correctly selected. We perform 10,000 MC sim-
ulations, with λ tuned to ensure a single pathway is selected at each simulation, and with
α = 0.85. We use a uniform pathway weight vector, w = 1. Pathway selection power is
plotted against pathway size in Figure S1. There is no significant relationship between the
two (linear regression: slope = 0.00013; r2 = 0.12; p = 0.13).

10 30 50 70 90 110 130 150 170 190
pathway size (SNPs)

0.0

0.2

0.4

0.6

0.8

1.0

p
a
th

w
a
y
 s

e
le

ct
io

n
 p

o
w

e
r

Figure S1: Variation of power to select a single causal pathway with causal pathway size.

S6 Comparisons with HDLC SNP GWAS

Here we present some further details on our method for comparing SGL gene rankings with
those obtained from separate HDLC SNP GWAS studies for SP2 and SiMES cohorts. GWAS
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results form part of an ongoing multi-cohort GWAS study, and so cannot be reported in detail.

Our comparison method works as follows:

1. Using only SNPs that map to pathways in our study, we ranked SNP GWAS results for
each cohort by ascending p-value.

2. We next obtained a corresponding gene ranking by ranking genes according to the most
significant mapped SNP. This gives us ‘GWAS rankings’ for all the genes in our study
(4,734 in the SP2 cohort, and 4,751 in SiMES).

3. Looking only at the top 50 genes ranked by our method in each cohort, we obtained a
mean ranking for each of these genes in their respective SNP GWAS.

4. We then tested the null hypothesis that the top 50 genes ranked by our method are not
significantly enriched amongst highly ranked genes in their respective GWAS using the
following permutation test for each GWAS:

(a) pick 50 genes at random from the complete list of genes ranked in the GWAS

(b) obtain a permutation ranking score as the mean GWAS ranking achieved by all 50
randomly selected genes

(c) compute 1,000,000 such scores, each with a new random selection of 50 genes

(d) finally, compute a permutation p-value as the proportion of permutations where
the permutation mean ranking score is less than or equal to the empirical mean
ranking score.

For both cohorts we obtain p < 10−6, indicating that genes highly-ranked by our method
are significantly enriched amongst highly ranked genes in each respective GWAS.
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