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Text S1

Two-locus recursion relation
Suppose we sample n haplotypes, observing their alleles at each of two loci and obtaining configuration
n = (a, b, c). Here c = (cij) is a matrix of the counts of haplotypes for which both alleles were observed; cij
is the number of haplotypes with allele i at the first locus and allele j at the second locus. We also allow
for the possibility that a haplotype had data missing at one locus: a = (ai)i=1...,K is the vector of counts of
haplotypes with allele i observed at the first locus and missing data at the second locus, and b = (bj)j=1,...,L

is the vector of counts of haplotypes with allele j observed at the second locus and missing data at the first
locus. Further, let:

a =

K∑
i=1

ai, ci· =

L∑
j=1

cij , c =

K∑
i=1

L∑
j=1

cij ,

b =

L∑
j=1

bj , c·j =

K∑
i=1

cij , n = a+ b+ c.

The probability that, when we sample n haplotypes in some fixed order, we obtain a set consistent with
configuration n, is denoted by q(n; θA, θB , ρ). This probability is a function of θA, θB , and ρ: the mutation
rates at the two loci, and the recombination rate between them. The respective mutation transition matrices
at the two loci, which we denote PA and PB , are fixed. A system of equations for q(n; θA, θB , ρ) is given
in [1]. We denote by q(n, s1, s2; θA, θB , ρ) the joint probability of obtaining n with the events that there
were precisely s1 mutations in the history of the sample at the first locus and s2 mutations in the history of
the sample at the second locus. The corresponding system of equations for q(n, s1, s2; θA, θB , ρ) is:

[n(n− 1) + θA(a+ c) + θB(b+ c) + ρc]q((a, b, c), s1, s2; θA, θB , ρ) =

K∑
i=1

ai(ai − 1 + 2ci·)q((a− ei, b, c), s1, s2; θA, θB , ρ) +

L∑
j=1

bj(bj − 1 + 2c·j)q((a, b− ej , c), s1, s2; θA, θB , ρ)

+

K∑
i=1

L∑
j=1

[cij(cij − 1)q((a, b, c− eij), s1, s2; θA, θB , ρ) + 2aibjq((a− ei, b− ej , c + eij), s1, s2; θA, θB , ρ)]

+ θA

K∑
i=1

 L∑
j=1

cij

K∑
t=1

PA

tiq((a, b, c− eij + etj), s1 − 1, s2; θA, θB , ρ)

1



+ ai

K∑
t=1

PA

tiq((a− ei + et, b, c), s1 − 1, s2; θA, θB , ρ)

]

+ θB

L∑
j=1

[
K∑
i=1

cij

L∑
t=1

PB

tjq((a, b, c− eij + eit), s1, s2 − 1; θA, θB , ρ)

+ bj

L∑
t=1

PB

tjq((a, b− ej + et, c), s1, s2 − 1; θA, θB , ρ)


+ ρ

K∑
i=1

L∑
j=1

cijq((a + ei, b + ej , c− eij), s1, s2; θA, θB , ρ), (1)

where eij is a unit matrix whose (i, j)th entry is one and the rest are zero. As before, we suppose that we
know the identity of the ancestral alllele at each locus, say λA and λB at locus A and B, respectively. Then
we replace the relevant instances of (1) with the following:

q((0, b, eij), s1, s2; θA, θB , ρ) =

{
q((0, b + ej ,0), 0, s2; θA, θB , ρ) if i = λA and s1 = 0,

0 otherwise,

q((a,0, eij), s1, s2; θA, θB , ρ) =

{
q((a + ei,0,0), s1, 0; θA, θB , ρ) if j = λB and s2 = 0,

0 otherwise,

q((ei,0,0), s1, s2; θA, θB , ρ) =

{
1 if i = λA and s1 = s2 = 0,

0 otherwise,

q((0, ej ,0), s1, s2; θA, θB , ρ) =

{
1 if j = λB and s1 = s2 = 0,

0 otherwise.
(2)

Padé summation
Modifications to the approach described in [2] are made, following from the boundary conditions given above.
These can be converted into modifications of entries of the dynamic programming tables given in [2]. For
example, using (2) we have that

q((a,0, eiλB ), 1, 0; θA, θB , ρ) = q((a + ei,0,0), 1, 0; θA, θB , ρ)

= q(a + ei, 1; θA) +
0

ρ
+

0

ρ2
+ . . . ,

where q(a + ei, 1; θA) is the one-locus solution given by equation (3) in the main text. Notice that this
expansion is in fact independent of ρ, from which it follows (by comparison with eq. (3.7) of [2]) that a
number of entries in the dynamic programming tables are modified. For example, the second row in the
dynamic programming table for the configuration (a,0, eiλB ) is set to zero. Other boundary conditions may
be interpreted in a similar fashion.

Ancestral allele estimation
Suppose we have one genomic sequence of D. simulans and n sequences of D. melanogaster. Let S represent
the sequence of D. simulans and M (k) represent the sequence of the kth D. melanogaster, where Sl denotes
the lth base of the sequence, and Sl̂ represents the sequence with the exclusion of the lth base. Given

(S,M (k)), let T
(k)
l be the time to the most recent common ancestor (tmrca) at locus l; f

(k)
l (t | Ml̂, Sl̂) be

the density of the tmrca conditioned on both their sequences but excluding the lth locus; and A
(k)
l be the

ancestral allele at the lth locus, i.e., the allele of the most recent common ancestor (mrca).
To compute the distribution on the ancestral allele at the lth locus conditioned on M (k) and S, we use
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Bayes’ theorem to obtain

P(A
(k)
l = i |M (k), S)

=

∫∞
0
p(A

(k)
l = i,M (k), S, T

(k)
l = t)dt

P(M (k), S)

=

∫∞
0

P(M
(k)
l , S

(k)
l | A(k)

l = i, T
(k)
l )p(A

(k)
l = i, T

(k)
l = t)dt

P(M (k), S)

=

∫∞
0

P(M
(k)
l | A(k)

l = i, T
(k)
l = t)P(Sl | A(k)

l = i, T
(k)
l = t)P(A

(k)
l = i)f

(k)
l (t |M (k)

l̂
, Sl̂)dt∑

j

∫∞
0

P(M
(k)
l | A(k)

l = j, T
(k)
l = t)P(Sl | A(k)

l = j, T
(k)
l = t)P(A

(k)
l = j)f

(k)
l (t |M (k)

l̂
, Sl̂)dt

. (3)

In equation (3), the prior on the ancestral allele at locus l, P(A
(k)
l = i), is given by the stationary

distribution of the allele frequencies from the mutation matrix P . (In the above, p denotes a joint probability

of discrete events together with the density for T
(k)
l .) The density on the tmrca, f

(k)
l (t | M (k)

l̂
, Sl̂), is

estimated using Li & Durbin’s psmc [3]. In practice, we use psmc to compute f
(k)
l (t | M (k), S) and assume

f
(k)
l (t |M (k), S) ≈ f (k)l (t |M (k)

l̂
, Sl̂).

The remaining two probabilities, P(M
(k)
l | A(k)

l = i, T
(k)
l = t) and P(Sl | A(k)

l = i, T
(k)
l = t), are computed

as follows. For the computation of P(M
(k)
l | A(k)

l = i, T
(k)
l = t), let P = (Pij) denote the mutation matrix,

and let r
(k)
l specify the number of mutations that have occurred at the lth locus of the kth D. melanogaster

sequence during time T
(k)
l . Then we have

P(M
(k)
l = j | A(k)

l = i, T
(k)
l = t) =

∞∑
s=0

P(r
(k)
l = s | T (k)

l = t)(P s)ij

=

∞∑
s=0

(
θt

2

)s
e−θt/2

s!
(P s)ij

=

∞∑
s=0

[(
θt

2
P

)s]
ij

e−θt/2

s!

=
[
e
θt
2 (P−I)

]
ij
,

where I is the identity matrix with the same dimensions as P . The computation for P (Sl | A(k)
l = j, T

(k)
l = t)

is analogous.

After computing P(A
(k)
l = i | M (k), S) for every k and given l, we heuristically aggregate these pairwise

probabilities to estimate P(A
(k)
l = i | M (1), . . . ,M (n), S) as follows. Let t̄

(k)
l be the posterior mean of

f
(k)
l (t |M (k), S), i.e.:

t̄
(k)
l =

∫ ∞
0

tf
(k)
l (t |M (k), S)dt,

and define τl = maxk t̄
(k)
l . We approximate P(A

(k)
l = i |M (1), . . . ,M (n), S) as

P(A
(k)
l = i |M (1), . . . ,M (n), S) ≈

∑n
k=1 P(A

(k)
l = i |M (k), S)f

(k)
l (τl |M (k)

l̂
, Sl̂)∑

j

∑n
k=1 P(A

(k)
l = j |M (k), S)f

(k)
l (τl |M (k)

l̂
, Sl̂)

,

which is a weighted average of P(A
(k)
l = i |M (k), S) over k, weighted by the density of the tmrca evaluated

at τl for each k. This averaging ought to mitigate effects such as genotyping errors and incomplete lineage
sorting in individual D. melanogaster genomes.
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