Supporting Information

Genome-wide fine-scale recombination rate variation in Drosophila melanogaster

Andrew H. Chan ${ }^{1, *}$, Paul A. Jenkins ${ }^{1, *}$, Yun S. Song ${ }^{1,2, * *}$
${ }^{1}$ Computer Science Division, University of California, Berkeley, CA, USA
${ }^{2}$ Department of Statistics, University of California, Berkeley, CA, USA
* These authors contributed equally to this work
** Corresponding author e-mail: yss@cs.berkeley.edu

Text S1

Two-locus recursion relation

Suppose we sample n haplotypes, observing their alleles at each of two loci and obtaining configuration $\boldsymbol{n}=(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$. Here $\boldsymbol{c}=\left(c_{i j}\right)$ is a matrix of the counts of haplotypes for which both alleles were observed; $c_{i j}$ is the number of haplotypes with allele i at the first locus and allele j at the second locus. We also allow for the possibility that a haplotype had data missing at one locus: $\boldsymbol{a}=\left(a_{i}\right)_{i=1 \ldots, K}$ is the vector of counts of haplotypes with allele i observed at the first locus and missing data at the second locus, and $\boldsymbol{b}=\left(b_{j}\right)_{j=1, \ldots, L}$ is the vector of counts of haplotypes with allele j observed at the second locus and missing data at the first locus. Further, let:

$$
\begin{array}{ll}
a=\sum_{i=1}^{K} a_{i}, & c_{i}=\sum_{j=1}^{L} c_{i j}, \\
b=\sum_{j=1}^{L} b_{j}, & c_{i} \cdot j=\sum_{j=1}^{K} c_{i j}, \\
b & c_{i j}, \\
n=a+b+c .
\end{array}
$$

The probability that, when we sample n haplotypes in some fixed order, we obtain a set consistent with configuration \boldsymbol{n}, is denoted by $q\left(\boldsymbol{n} ; \theta_{A}, \theta_{B}, \rho\right)$. This probability is a function of θ_{A}, θ_{B}, and ρ : the mutation rates at the two loci, and the recombination rate between them. The respective mutation transition matrices at the two loci, which we denote \boldsymbol{P}^{A} and \boldsymbol{P}^{B}, are fixed. A system of equations for $q\left(\boldsymbol{n} ; \theta_{A}, \theta_{B}, \rho\right)$ is given in [1]. We denote by $q\left(\boldsymbol{n}, s_{1}, s_{2} ; \theta_{A}, \theta_{B}, \rho\right)$ the joint probability of obtaining \boldsymbol{n} with the events that there were precisely s_{1} mutations in the history of the sample at the first locus and s_{2} mutations in the history of the sample at the second locus. The corresponding system of equations for $q\left(\boldsymbol{n}, s_{1}, s_{2} ; \theta_{A}, \theta_{B}, \rho\right)$ is:

$$
\begin{aligned}
& {\left[n(n-1)+\theta_{A}(a+c)+\theta_{B}(b+c)+\rho c\right] q\left((\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}), s_{1}, s_{2} ; \theta_{A}, \theta_{B}, \rho\right)=} \\
& \sum_{i=1}^{K} a_{i}\left(a_{i}-1+2 c_{i}\right) q\left(\left(\boldsymbol{a}-\boldsymbol{e}_{i}, \boldsymbol{b}, \boldsymbol{c}\right), s_{1}, s_{2} ; \theta_{A}, \theta_{B}, \rho\right)+\sum_{j=1}^{L} b_{j}\left(b_{j}-1+2 c_{. j}\right) q\left(\left(\boldsymbol{a}, \boldsymbol{b}-\boldsymbol{e}_{j}, \boldsymbol{c}\right), s_{1}, s_{2} ; \theta_{A}, \theta_{B}, \rho\right) \\
& +\sum_{i=1}^{K} \sum_{j=1}^{L}\left[c_{i j}\left(c_{i j}-1\right) q\left(\left(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}-\boldsymbol{e}_{i j}\right), s_{1}, s_{2} ; \theta_{A}, \theta_{B}, \rho\right)+2 a_{i} b_{j} q\left(\left(\boldsymbol{a}-\boldsymbol{e}_{i}, \boldsymbol{b}-\boldsymbol{e}_{j}, \boldsymbol{c}+\boldsymbol{e}_{i j}\right), s_{1}, s_{2} ; \theta_{A}, \theta_{B}, \rho\right)\right] \\
& +\theta_{A} \sum_{i=1}^{K}\left[\sum_{j=1}^{L} c_{i j} \sum_{t=1}^{K} P_{t i}^{A} q\left(\left(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}-\boldsymbol{e}_{i j}+\boldsymbol{e}_{t j}\right), s_{1}-1, s_{2} ; \theta_{A}, \theta_{B}, \rho\right)\right.
\end{aligned}
$$

$$
\begin{align*}
&+a_{i} \sum_{t=1}^{K} P_{t i}^{A} q\left(\left(\boldsymbol{a}-\boldsymbol{e}_{i}+\boldsymbol{e}_{t}, \boldsymbol{b}, \boldsymbol{c}\right), s_{1}-1, s_{2} ; \theta_{A}, \theta_{B}, \rho\right) \\
&+\theta_{B} \sum_{j=1}^{L}[\sum_{i=1}^{K} c_{i j} \sum_{t=1}^{L} P_{t j}^{B} q\left(\left(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}-\boldsymbol{e}_{i j}+\boldsymbol{e}_{i t}\right), s_{1}, s_{2}-1 ; \theta_{A}, \theta_{B}, \rho\right) \\
&\left.+b_{j} \sum_{t=1}^{L} P_{t j}^{B} q\left(\left(\boldsymbol{a}, \boldsymbol{b}-\boldsymbol{e}_{j}+\boldsymbol{e}_{t}, \boldsymbol{c}\right), s_{1}, s_{2}-1 ; \theta_{A}, \theta_{B}, \rho\right)\right] \\
&+\rho \sum_{i=1}^{K} \sum_{j=1}^{L} c_{i j} q\left(\left(\boldsymbol{a}+\boldsymbol{e}_{i}, \boldsymbol{b}+\boldsymbol{e}_{j}, \boldsymbol{c}-\boldsymbol{e}_{i j}\right), s_{1}, s_{2} ; \theta_{A}, \theta_{B}, \rho\right) \tag{1}
\end{align*}
$$

where $\boldsymbol{e}_{i j}$ is a unit matrix whose (i, j) th entry is one and the rest are zero. As before, we suppose that we know the identity of the ancestral allele at each locus, say λ_{A} and λ_{B} at locus A and B , respectively. Then we replace the relevant instances of (1) with the following:

$$
\begin{align*}
& q\left(\left(\mathbf{0}, \boldsymbol{b}, \boldsymbol{e}_{i j}\right), s_{1}, s_{2} ; \theta_{A}, \theta_{B}, \rho\right)= \begin{cases}q\left(\left(\mathbf{0}, \boldsymbol{b}+\boldsymbol{e}_{j}, \mathbf{0}\right), 0, s_{2} ; \theta_{A}, \theta_{B}, \rho\right) & \text { if } i=\lambda_{A} \text { and } s_{1}=0, \\
0 & \text { otherwise },\end{cases} \\
& q\left(\left(\boldsymbol{a}, \mathbf{0}, \boldsymbol{e}_{i j}\right), s_{1}, s_{2} ; \theta_{A}, \theta_{B}, \rho\right)= \begin{cases}q\left(\left(\boldsymbol{a}+\boldsymbol{e}_{i}, \mathbf{0}, \mathbf{0}\right), s_{1}, 0 ; \theta_{A}, \theta_{B}, \rho\right) & \text { if } j=\lambda_{B} \text { and } s_{2}=0, \\
0 & \text { otherwise },\end{cases} \\
& q\left(\left(\boldsymbol{e}_{i}, \mathbf{0}, \mathbf{0}\right), s_{1}, s_{2} ; \theta_{A}, \theta_{B}, \rho\right)= \begin{cases}1 & \text { if } i=\lambda_{A} \text { and } s_{1}=s_{2}=0, \\
0 & \text { otherwise },\end{cases} \\
& q\left(\left(\mathbf{0}, \boldsymbol{e}_{j}, \mathbf{0}\right), s_{1}, s_{2} ; \theta_{A}, \theta_{B}, \rho\right)= \begin{cases}1 & \text { if } j=\lambda_{B} \text { and } s_{1}=s_{2}=0, \\
0 & \text { otherwise. }\end{cases} \tag{2}
\end{align*}
$$

Padé summation

Modifications to the approach described in [2] are made, following from the boundary conditions given above. These can be converted into modifications of entries of the dynamic programming tables given in [2]. For example, using (2) we have that

$$
\begin{aligned}
q\left(\left(\boldsymbol{a}, \mathbf{0}, \boldsymbol{e}_{i \lambda_{B}}\right), 1,0 ; \theta_{A}, \theta_{B}, \rho\right) & =q\left(\left(\boldsymbol{a}+\boldsymbol{e}_{i}, \mathbf{0}, \mathbf{0}\right), 1,0 ; \theta_{A}, \theta_{B}, \rho\right) \\
& =q\left(\boldsymbol{a}+\boldsymbol{e}_{i}, 1 ; \theta_{A}\right)+\frac{0}{\rho}+\frac{0}{\rho^{2}}+\ldots,
\end{aligned}
$$

where $q\left(\boldsymbol{a}+\boldsymbol{e}_{i}, 1 ; \theta_{A}\right)$ is the one-locus solution given by equation (3) in the main text. Notice that this expansion is in fact independent of ρ, from which it follows (by comparison with eq. (3.7) of [2]) that a number of entries in the dynamic programming tables are modified. For example, the second row in the dynamic programming table for the configuration $\left(\boldsymbol{a}, \mathbf{0}, \boldsymbol{e}_{i \lambda_{B}}\right)$ is set to zero. Other boundary conditions may be interpreted in a similar fashion.

Ancestral allele estimation

Suppose we have one genomic sequence of D. simulans and n sequences of D. melanogaster. Let S represent the sequence of D. simulans and $M^{(k)}$ represent the sequence of the k th D. melanogaster, where S_{l} denotes the l th base of the sequence, and $S_{\hat{l}}$ represents the sequence with the exclusion of the l th base. Given $\left(S, M^{(k)}\right)$, let $T_{l}^{(k)}$ be the time to the most recent common ancestor (TMRCA) at locus $l ; f_{l}^{(k)}\left(t \mid M_{\hat{l}}, S_{\hat{l}}\right)$ be the density of the tmrca conditioned on both their sequences but excluding the lth locus; and $A_{l}^{(k)}$ be the ancestral allele at the lth locus, i.e., the allele of the most recent common ancestor (mRCA).

To compute the distribution on the ancestral allele at the l th locus conditioned on $M^{(k)}$ and S, we use

Bayes' theorem to obtain

$$
\begin{align*}
& \mathbb{P}\left(A_{l}^{(k)}=i \mid M^{(k)}, S\right) \\
& =\frac{\int_{0}^{\infty} p\left(A_{l}^{(k)}=i, M^{(k)}, S, T_{l}^{(k)}=t\right) d t}{\mathbb{P}\left(M^{(k)}, S\right)} \\
& =\frac{\int_{0}^{\infty} \mathbb{P}\left(M_{l}^{(k)}, S_{l}^{(k)} \mid A_{l}^{(k)}=i, T_{l}^{(k)}\right) p\left(A_{l}^{(k)}=i, T_{l}^{(k)}=t\right) d t}{\mathbb{P}\left(M^{(k)}, S\right)} \\
& =\frac{\int_{0}^{\infty} \mathbb{P}\left(M_{l}^{(k)} \mid A_{l}^{(k)}=i, T_{l}^{(k)}=t\right) \mathbb{P}\left(S_{l} \mid A_{l}^{(k)}=i, T_{l}^{(k)}=t\right) \mathbb{P}\left(A_{l}^{(k)}=i\right) f_{l}^{(k)}\left(t \mid M_{\hat{l}}^{(k)}, S_{\hat{l}}\right) d t}{\sum_{j} \int_{0}^{\infty} \mathbb{P}\left(M_{l}^{(k)} \mid A_{l}^{(k)}=j, T_{l}^{(k)}=t\right) \mathbb{P}\left(S_{l} \mid A_{l}^{(k)}=j, T_{l}^{(k)}=t\right) \mathbb{P}\left(A_{l}^{(k)}=j\right) f_{l}^{(k)}\left(t \mid M_{\hat{l}}^{(k)}, S_{\hat{l}}\right) d t} . \tag{3}
\end{align*}
$$

In equation (3), the prior on the ancestral allele at locus $l, \mathbb{P}\left(A_{l}^{(k)}=i\right)$, is given by the stationary distribution of the allele frequencies from the mutation matrix \boldsymbol{P}. (In the above, p denotes a joint probability of discrete events together with the density for $T_{l}^{(k)}$.) The density on the TMRCA, $f_{l}^{(k)}\left(t \mid M_{\hat{l}}^{(k)}, S_{\hat{l}}\right)$, is estimated using Li \& Durbin's psmc [3]. In practice, we use psmc to compute $f_{l}^{(k)}\left(t \mid M^{(k)}, S\right)$ and assume $f_{l}^{(k)}\left(t \mid M^{(k)}, S\right) \approx f_{l}^{(k)}\left(t \mid M_{\hat{l}}^{(k)}, S_{\hat{l}}\right)$.

The remaining two probabilities, $\mathbb{P}\left(M_{l}^{(k)} \mid A_{l}^{(k)}=i, T_{l}^{(k)}=t\right)$ and $\mathbb{P}\left(S_{l} \mid A_{l}^{(k)}=i, T_{l}^{(k)}=t\right)$, are computed as follows. For the computation of $\mathbb{P}\left(M_{l}^{(k)} \mid A_{l}^{(k)}=i, T_{l}^{(k)}=t\right)$, let $\boldsymbol{P}=\left(P_{i j}\right)$ denote the mutation matrix, and let $r_{l}^{(k)}$ specify the number of mutations that have occurred at the l th locus of the k th D. melanogaster sequence during time $T_{l}^{(k)}$. Then we have

$$
\begin{aligned}
\mathbb{P}\left(M_{l}^{(k)}=j \mid A_{l}^{(k)}=i, T_{l}^{(k)}=t\right) & =\sum_{s=0}^{\infty} \mathbb{P}\left(r_{l}^{(k)}=s \mid T_{l}^{(k)}=t\right)\left(\boldsymbol{P}^{s}\right)_{i j} \\
& =\sum_{s=0}^{\infty}\left(\frac{\theta t}{2}\right)^{s} \frac{e^{-\theta t / 2}}{s!}\left(\boldsymbol{P}^{s}\right)_{i j} \\
& =\sum_{s=0}^{\infty}\left[\left(\frac{\theta t}{2} \boldsymbol{P}\right)^{s}\right]_{i j} \frac{e^{-\theta t / 2}}{s!} \\
& =\left[e^{\frac{\theta t}{2}(\boldsymbol{P}-\mathbf{I})}\right]_{i j}
\end{aligned}
$$

where \mathbf{I} is the identity matrix with the same dimensions as \boldsymbol{P}. The computation for $\boldsymbol{P}\left(S_{l} \mid A_{l}^{(k)}=j, T_{l}^{(k)}=t\right)$ is analogous.

After computing $\mathbb{P}\left(A_{l}^{(k)}=i \mid M^{(k)}, S\right)$ for every k and given l, we heuristically aggregate these pairwise probabilities to estimate $\mathbb{P}\left(A_{l}^{(k)}=i \mid M^{(1)}, \ldots, M^{(n)}, S\right)$ as follows. Let $\bar{t}_{l}^{(k)}$ be the posterior mean of $f_{l}^{(k)}\left(t \mid M^{(k)}, S\right)$, i.e.:

$$
\bar{t}_{l}^{(k)}=\int_{0}^{\infty} t f_{l}^{(k)}\left(t \mid M^{(k)}, S\right) d t
$$

and define $\tau_{l}=\max _{k} \bar{t}_{l}^{(k)}$. We approximate $\mathbb{P}\left(A_{l}^{(k)}=i \mid M^{(1)}, \ldots, M^{(n)}, S\right)$ as

$$
\mathbb{P}\left(A_{l}^{(k)}=i \mid M^{(1)}, \ldots, M^{(n)}, S\right) \approx \frac{\sum_{k=1}^{n} \mathbb{P}\left(A_{l}^{(k)}=i \mid M^{(k)}, S\right) f_{l}^{(k)}\left(\tau_{l} \mid M_{\hat{l}}^{(k)}, S_{\hat{l}}\right)}{\sum_{j} \sum_{k=1}^{n} \mathbb{P}\left(A_{l}^{(k)}=j \mid M^{(k)}, S\right) f_{l}^{(k)}\left(\tau_{l} \mid M_{\hat{l}}^{(k)}, S_{\hat{l}}\right)},
$$

which is a weighted average of $\mathbb{P}\left(A_{l}^{(k)}=i \mid M^{(k)}, S\right)$ over k, weighted by the density of the TMRCA evaluated at τ_{l} for each k. This averaging ought to mitigate effects such as genotyping errors and incomplete lineage sorting in individual D. melanogaster genomes.

References

1. Jenkins PA, Song YS (2009) Closed-form two-locus sampling distributions: accuracy and universality. Genetics 183: 1087-1103.
2. Jenkins PA, Song YS (2012) Padé approximants and exact two-locus sampling distributions. Annals of Applied Probability 22: 576-607.
3. Li H, Durbin R (2011) Inference of human population history from individual whole-genome sequences. Nature 475: 493-496.
