
TEXT S2 – MAJORITY VOTING USING GGM NEIGHBORHOODS 

We determined whether the local neighborhood of a metabolite in the GGM can be used to correctly 
predict its metabolic class by proceeding as follows: Each known metabolite is annotated with one 
out of eight super-pathway annotations, Carbohydrate, Lipid, Nucleotide, Amino acid, Xenobiotics, 
Energy, Peptide and Cofactors and vitamins (see Methods). A majority voting approach was 
implemented, where each (known) metabolite is assigned to the pathway that occurs most 
frequently amongst its direct GGM neighbors (neighborhood size=1), and then determining whether 
this indeed corresponds to the true pathway of the metabolite. In case of a tie, i.e. an identical 
number of neighbors from two or more different pathways, we judge in favor of the classifier. This 
means, if the correct class is present among the tie classes, we will count this as a true positive. For 
the unknown classification later on, unknowns that did not show any link to a known metabolite 
(neither as direct neighbors nor for more than one network step) were excluded from the analysis. 
We cannot make any prediction, true or false, for these metabolites. 

For the known metabolites, this approach yields a classifier quality of F1=0.718. The F1-measure 
represents a quantitative tradeoff between sensitivity and specificity (see methods below). In order 
to objectively evaluate classification performance, we generated 108 randomly rewired GGM 
networks and recalculated the majority predictions. No random sample achieved an F1 score equal to 
or greater than the real GGM, revealing classification abilities far beyond random (p<10-8, see Figure 
1 below). It is to be noted at this point, that the actual quality of our classifier might be even higher, 
since GGM connections between different classes should not always be considered false positive. As 
an example, metabolites assigned to different inherently related classes such as “amino acid” and 
“peptide” might actually belong to the same pathway. A classical hypergeometric enrichment 
analysis [1] amongst the neighbor classes of a node in the network is not appropriate, since the 
inherent sparseness of a GGM is not compatible with the null model behind an enrichment approach. 
While obviously majority voting is amongst the simplest possible classifiers, it is easy to implement 
and performs well for the task at hand. 

 

 

Figure 1: F1 score for the GGM compared to 108 rewired networks. 

  



Detailed results 

The following table shows detailed classification results for each class. A definition of sensitivity, 
specificity and the F1 score is given in the “Statistical methods.” section below. In general, we 
observe good classification properties for most classes. Poor classification of carbohydrates is 
probably due to their involvement in many distinct metabolic pathways. For the peptide class, the 
low sensitivity is due to many links of peptide metabolites with amino acids (which is not necessarily 
a false result but will be penalized in our simplified classifier). 

 
Sensitivity Specificity F1 

Lipid 0.944 0.903 0.923 
Carbohydrate 0.429 0.375 0.400 
Amino acid 0.795 0.705 0.747 
Xenobiotics 1.000 1.000 1.000 
Nucleotide 0.750 1.000 0.857 
Energy 0.600 1.000 0.750 
Peptide 0.250 1.000 0.400 
Cofactors and 
vitamins 0.625 0.714 0.667 

Ø 0.674 0.837 
 

    Macro-averaged F1 0.718 
 

 

Choice of the null model. 

Note that edge rewiring is not the only possible null model to test a network property for statistical 
significance.  Another prominent approach is node shuffling, where instead of changing the network 
topology we randomly reassign the node labels. A comparison of the discrimination quality using 
node shuffling corresponds to the question “Are the node classes arranged in a specific pattern on 
the network, or is this signal just by chance?” On the other hand, edge rewiring addresses the 
question “Does the network structure contain particular information on similar nodes, or are they 
just randomly wired?” We here specifically wanted to address the second question. 

Statistical methods. 

In order to evaluate whether the class of a metabolite can be properly predicted by the classes of its 
direct GGM neighbors, we calculated sensitivity, specificity and the F1 score for each metabolic class 
(i.e. each of the eight super-pathway annotations). Therefore, we computed a confusion matrix 
𝐶 ∈ ℕ+8×8  where each element 𝑐𝑖𝑗  counts the number of neighbors of class 𝑗 for each metabolite of 
class 𝑖. In other words, we count how many times the actual (correct) class 𝑖 was predicted to be 
class 𝑗 by a GGM neighbor. For a given class 𝑖 we then define true positives TP𝑖 ∶= 𝐶𝑖𝑖, false positives 
FP𝑖 ∶= ∑ 𝐶𝑗𝑖𝑗≠𝑖 , false negatives FN𝑖 ∶= ∑ 𝐶𝑖𝑗𝑗≠𝑖 , and true negatives TN𝑖 ∶= ∑ 𝐶𝑗𝑘𝑗≠𝑖,𝑘≠𝑖 . 

The class-wise sensitivity 𝑠𝑖 and specificity 𝑝𝑖  is given by 

𝑠𝑖 ∶=  
TP𝑖

TP𝑖 + FN𝑖
, 𝑝𝑖 ≔

TN𝑖

TN𝑖 + FP𝑖
 



Finally, the macro-averaged F1 score is defined as the harmonic mean of the average sensitivity  
�̅� = ∑ 𝑠𝑖 / 8 8

𝑖=1 and average specificity  �̅� = ∑ 𝑝𝑖 / 8 8
𝑖=1  [2]: 

𝐹1 = 2 ⋅
�̅� ⋅ �̅�
�̅� + �̅�

  

To assess the significance of our majority voting class predictor, we performed graph randomization 
by edge rewiring of the GGM. During the rewiring process we randomly pick two edges from the 
network and exchange the target nodes of each edge. If a rewiring step results in already-existing 
edges, the step is repeated with two new randomly chosen edges. In order to achieve sufficient 
randomization, this operation is repeated 5 ⋅ 𝑒 times, where 𝑒 represents the number of edges in the 
graph [3].  

Possible bias of the edge rewiring procedure. 

We performed an additional analysis to exclude a systematic underestimation of the classification 
properties during edge rewiring. To this end, we performed the same procedure of F1 calculation for 
one real vs. a number of randomized networks, but with initially reshuffled node labels (thereby 
destroying the original ordering of nodes). Figure 2 below shows the empirical p-values of these 
node-shuffled networks under the null model of edge rewiring. As can be seen from the histogram, 
empirical p-values around 0.25 to 0.45 demonstrate that the randomized F1 scores distribute around 
the original randomized F1 scores of the analyses above. There is no systematic under- or over-
estimation of classification quality per se. In other words, in a network without a signal, the edge 
rewiring approach also does not claim to find a signal; which would be a problematic method bias. 

 

Figure 2: Empirical p-values determined by edge-rewiring on 100 networks with reshuffled node 
labels. Each p-value is based on 100 rewired networks. Values from ~0.25 to 0.45 indicate that there 

is no systematic over- or underestimation of F1 scores due to edge rewiring. 
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