
1

Text S3

A logistic regression view of the Wu et al. statistic

Here we provide motivation for our joint effects statistic via a logistic regression view of the statistic

proposed by Wu et al. [1].

Consider the possible configurations of phased diplotypes (combinations of haplotypes) that an indi-

vidual can possess at two diallelic loci, G and H, with locus G having alleles G1 and G2 and locus H

having alleles H1 and H2. The four possible haplotypes result in 16 possible diplotypes. In the general

population, assuming HWE, the distribution of these diplotypes is as shown in the following table, where

ψjk is the haplotype frequency of haplotype Gj-Hk:

Paternal Maternal haplotype

haplotype G1-H1 G1-H2 G2-H1 G2-H2

G1-H1 ψ2
11 ψ11ψ12 ψ11ψ21 ψ11ψ22

G1-H2 ψ12ψ11 ψ2
12 ψ12ψ21 ψ12ψ22

G2-H1 ψ21ψ11 ψ21ψ12 ψ2
21 ψ21ψ22

G2-H2 ψ22ψ11 ψ22ψ12 ψ22ψ21 ψ2
22

In theory, one could imagine that these 16 configurations result in 16 different penetrance (or log odds

of disease) values. However, if we assume that there are no parent-of-origin effects i.e. the penetrance

of diplotype Gj-Hk/Gl-Hm equals that of Gl-Hm/Gj-Hk, then we have 10 different penetrance value

categories corresponding to the 10 upper right cells in the above table, (with each of the 6 lower left cells

taking the same penetrance value as their mirror image cell on the upper right). In this situation, the

log odds of disease for the different diplotypes can be written as:

Paternal Maternal haplotype

haplotype G1-H1 G1-H2 G2-H1 G2-H2

G1-H1 α+ β2 + γ2 + δ22 α+ β2 + γ1 + δ21 α+ β1 + γ2 + δ12 α+ β1 + γ1 + δ′11

G1-H2 α+ β2 + γ1 + δ21 α+ β2 α+ β1 + γ1 + δ11 α+ β1

G2-H1 α+ β1 + γ2 + δ12 α+ β1 + γ1 + δ11 α+ γ2 α+ γ1

G2-H2 α+ β1 + γ1 + δ′11 α+ β1 α+ γ1 α
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Here we have parameterized the 10 log odds values in terms of 10 standard logistic regression parameters:

a baseline effect (α), effects due to one or two copies of the susceptibility allele at locus G (β1, β2), at

locus H (γ1, γ2) and five interaction parameters (δ′11, δ11, δ12, δ21, δ22). Note that there are two different

interaction parameters (δ′11 and δ11) that could operate when an individual is heterozygous at both loci,

which allows the penetrance for diplotype G1-H1/G2-H2 to differ from that for G1-H2/G2-H1 i.e. models

the difference between so-called ‘cis’ and ‘trans’ effects. If one wishes to assume that these diplotypes have

the same penetrance (i.e. δ′11 = δ11) then one would obtain a model for the log odds that corresponds to

the usual 9-parameter ‘saturated’ model for combinations of genotypes at the two loci:

Locus H

Locus G H1H1 H1H2 H2H2

G1G1 α+β2+γ2+δ22 α+β2+γ1+δ21 α+β2

G1G2 α+β1+γ2+δ12 α+β1+γ1+δ11 α+β1

G2G2 α+γ2 α+γ1 α

This 9-parameter model is convenient as, in general, phase is not observed, and so we do not have any

data with which to distinguish between the penetrances of G1-H1/G2-H2 and G1-H2/G2-H1. If phased

diplotypes were, in fact, observed (i.e. we observed which of the 10 different diplotype categories each

individual falls into), we could use case/control data to fit the full 10 parameter model. However, when

phase is not observed, we observe only the 9 genotype categories above, and thus have a maximum of 9

estimable penetrance parameters. If we wished to allow a different parameterisation where δ′11 and δ11

were not equal, then we would have to make some kind of other parameter restrictions, in order to not

exceed the maximum of 9 estimable parameters.

In the main text, we pointed out that the log odds ratio used in the method proposed by Wu et al. [1]

can be seen to be analagous to the quantity used in case-only analysis [2] [3] [4], if the unit of analysis

is defined to be a ‘haplotype’ (rather than an individual) and if binary variables x1 and x2 are defined

as indicator variables for the two possible alleles at each locus on the haplotype. This suggests that the

method of Wu et al. coresponds to testing the interaction parameter δ in a standard logistic regression

model:

log
p

1 − p
= α0 + βx1 + γx2 + δx1x2
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where p represents the probability that a haplotype is ‘diseased’ (i.e. comes from a case rather than from

a control).

There are two problems with applying this logistic regression model in practice. One is that diplo-

types (and thus haplotypes) are not observed (so the unit of analysis required for fitting this logistic

regression model is not, in fact, available). The second is that, even if haplotypes were observed (in the

form of diplotypes), it is not clear that the constituent haplotypes in a diplotype should be considered

to have independent risks of being ‘diseased’. As pointed out by Sasieni [5], alleles (or, analagously,

haplotypes) do not get disease; people with particular genotypes (or, analagously, with particular diplo-

types) do. However, Sasieni [5] pointed out certain conditions under which splitting up genotypes into

their constituent alleles (or, analagously, diplotypes into their constituent haplotypes) and treating them

as ‘independent’ does produce inference consistent with what would be obtained from the underlying

genotype (or diplotype) based model: namely, when HWE holds in the control population and when,

moreover, the homozygous odds ratio is the square of the heterozygous one.

Considering Wu et al.’s approach as an implementation of the ‘haplotype-based’ logistic regression

model above, this model imposes a particular structure on the log odds for a haplotype being ‘diseased’,

namely that haplotypes G1-H1, G1-H2, G2-H1, G2-H2, have log odds of being diseased of α0, α0 + γ,

α0 + β, α0 + β + γ + δ respectively. Converting this to a diplotype-based model, while imposing the

condition of the homozygous odds ratio being the square of the heterozygous one, would suggest that

Wu et al.’s approach in fact corresponds to fitting the following model for the log odds of disease for the

different diplotypes:

Paternal Maternal haplotype

haplotype G1-H1 G1-H2 G2-H1 G2-H2

G1-H1 2α0 + 2β + 2γ + 2δ 2α0 + 2β + γ + δ 2α0 + β + 2γ + δ 2α0 + β + γ + δ

G1-H2 2α0 + 2β + γ + δ 2α0 + 2β 2α0 + β + γ 2α0 + β

G2-H1 2α0 + β + 2γ + δ 2α0 + β + γ 2α0 + 2γ 2α0 + γ

G2-H2 2α0 + β + γ + δ 2α0 + β 2α0 + γ 2α0

This model can be seen to correspond to a restricted form of our ealier 10-parameter model, in which we

reparameterise the parameters in the 10-parameter model as follows: α = 2α0, β1 = β, β2 = 2β γ1 = γ,

γ2 = 2γ, δ12 = δ21 = δ′11 = δ, δ22 = 2δ, δ11 = 0.
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Proof of equivalance between Wu et al.’s test and restricted logistic regression

model

Here we prove that, provided we make a rare disease assumption, the parameter δ in the above restricted

form of the 10-parameter logistic regression model does indeed correspond precisely to the parameter

tested by Wu et al. (2010) [1].

Following the notation of Wu et al. (2010) [1], we denote the penetrance for each cell in the 16-cell

table as fjklm where fjklm represents the probability of being diseased for an individual with diplotype

Gj-Hk/Gl-Hm. Wu et al. (2010) [1] define their ‘interaction’ odds ratio of interest as

[

h11h22

h12h21

]

/

[

(1 − h11)(1 − h22)

(1 − h12)(1 − h21)

]

where hjk is the so so-called ‘penetrance’ of haplotype Gj-Hk:

hjk = ψ11fjk11 + ψ12fjk12 + ψ21fjk21 + ψ22fjk22

This concept of ‘penetrance’ of a haplotype is slightly complicated to understand, but appears to represent

some kind of weighted average of the penetrances for diplotypes involving that haplotype, averaged over

the possibilities for the other haplotype in the diplotype. Wu et al. (2010) [1] show that their overall log

odds ratio of interest using this definition can be reduced to

log
PA11P

A
22

PA12P
A
21

− log
PN11P

N
22

PN12P
N
21

where PAjk and PNjk refer to haplotype frequencies in cases and controls respectively, which corresponds

to the formulation given in Equations 3 and 5 in our main manuscript.

Our proposed restricted logistic regression model would imply that the diplotype penetrances fjklm

take the following form:
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Paternal Maternal haplotype

haplotype G1-H1 G1-H2 G2-H1 G2-H2

G1-H1
eα+2β+2γ+2δ

1+eα+2β+2γ+2δ
eα+2β+γ+δ

1+eα+2β+γ+δ
eα+β+2γ+δ

1+eα+β+2γ+δ
eα+β+γ+δ

1+eα+β+γ+δ

G1-H2
eα+2β+γ+δ

1+eα+2β+γ+δ
eα+2β

1+eα+2β
eα+β+γ

1+eα+β+γ
eα+β

1+eα+β

G2-H1
eα+β+2γ+δ

1+eα+β+2γ+δ
eα+β+γ

1+eα+β+γ
eα+2γ

1+eα+2γ
eα+γ

1+eα+γ

G2-H2
eα+β+γ+δ

1+eα+β+γ+δ
eα+β

1+eα+β
eα+γ

1+eα+γ
eα

1+eα

Using this formulation for the diplotype penetrances fjklm, we may write down an expression for Wu

et al.’s interaction log odds ratio of interest in terms of the parameters α, β, γ, δ. This expression is

complicated and, in general, Wu et al.’s log odds ratio does not turn out to precisely correspond to δ.

However, if we are willing to make a rare disease assumption, the penetrances fjklm may be written

Paternal Maternal haplotype

haplotype G1-H1 G1-H2 G2-H1 G2-H2

G1-H1 eα+2β+2γ+2δ eα+2β+γ+δ eα+β+2γ+δ eα+β+γ+δ

G1-H2 eα+2β+γ+δ eα+2β eα+β+γ eα+β

G2-H1 eα+β+2γ+δ eα+β+γ eα+2γ eα+γ

G2-H2 eα+β+γ+δ eα+β eα+γ eα

and, moreover, the denominator of Wu et al.’s odds ratio

(1 − h11)(1 − h22)

(1 − h12)(1 − h21)
≈ 1.

Therefore, Wu et al.’s odds ratio of interest is reduced to

h11h22

h12h21
=

(ψ11f1111 + ψ12f1112 + ψ21f1121 + ψ22f1122)(ψ11f1211 + ψ12f1212 + ψ21f1221 + ψ22f1222)

(ψ11f2111 + ψ12f2112 + ψ21f2121 + ψ22f2122)(ψ11f2211 + ψ12f2212 + ψ21f2221 + ψ22f2222)

=
eα(ψ11e

2β+2γ+2δ + ψ12e
2β+γ+δ + ψ21e

β+2γ+δ + ψ22e
β+γ+δ)eα(ψ11e

β+γ+δ + ψ12e
β + ψ21e

γ + ψ22)

eα(ψ11e2β+γ+δ + ψ12e2β + ψ21eβ+γ + ψ22eβ)eα(ψ11eβ+2γ+δ + ψ12eβ+γ + ψ21e2γ + ψ22eγ)
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= [ψ2
11e

3β+3γ+3δ + 2ψ11ψ12e
3β+2γ+2δ + 2ψ11ψ21e

2β+3γ+2δ + 2ψ11ψ22e
2β+2γ+2δ + ψ2

12e
3β+γ+δ

+2ψ12ψ21e
2β+2γ+δ + 2ψ12ψ22e

2β+γ+δ + ψ2
21e

β+3γ+δ + 2ψ21ψ22e
β+2γ+δ + ψ2

22e
β+γ+δ]

/[ψ2
11e

3β+3γ+2δ + 2ψ11ψ12e
3β+2γ+δ + 2ψ11ψ21e

2β+3γ+δ + 2ψ11ψ22e
2β+2γ+δ + ψ2

12e
3β+γ

+2ψ12ψ21e
2β+2γ + 2ψ12ψ22e

2β+γ + ψ2
21e

β+3γ + 2ψ21ψ22e
β+2γ + ψ2

22e
β+γ ]

= eδ

Thus, under a rare disease assumption, the odds ratio used as the basis of the Wu et al. (2010)

statistic can indeed be seen to correspond to eδ (and thus the log odds ratio corresponds to δ) where δ is

the interaction term in the following restricted logistic regression formulation for the log odds of disease:

Paternal Maternal haplotype

haplotype G1-H1 G1-H2 G2-H1 G2-H2

G1-H1 α+ 2β + 2γ + 2δ α+ 2β + γ + δ α+ β + 2γ + δ α+ β + γ + δ

G1-H2 α+ 2β + γ + δ α+ 2β α+ β + γ α+ β

G2-H1 α+ β + 2γ + δ α+ β + γ α+ 2γ α+ γ

G2-H2 α+ β + γ + δ α+ β α+ γ α

Since diplotypes are not observed, it is not usually possible to implement this logistic regression model

in practice, although in principal one could attempt to fit it using missing data likelihood methods (e.g.

via an EM algorithm [6]).

Improved test of λ via joint effects statistic

We have seen that, under a rare disease assumption, the interaction log odds ratio tested by Wu et al.

corresponds to the parameter δ in the above logistic regression formulation. Nevertheless, Wu et al. do

not estimate δ directly but rather test whether it equals 0 by constructing two log odds ratios

λA = log
PA11P

A
22

PA12P
A
21
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λN = log
PN11P

N
22

PN12P
N
21

(where PAjk and PNjk refer to haplotype frequencies in cases and controls respectively), and by then testing

whether λA = 0 (case-only test) or whether λA = λN (case/control test). We propose using a similar

idea, but using a test that allows for more general main effects than in the Wu formulation (which makes

restrictions on the main effects at each of the two loci, namely that alleles act additively on the log odds

scale within each locus). Our motivation for making this improvement is the fear that, if the model

assumed by Wu et al. is misspecified with respect to the main effects, then it is possible that inference

with respect to interaction effects might be affected.

First we return to our more general 10-parameter model for the log odds for the different diplotypes:

Paternal Maternal haplotype

haplotype G1-H1 G1-H2 G2-H1 G2-H2

G1-H1 α+ β2 + γ2 + δ22 α+ β2 + γ1 + δ21 α+ β1 + γ2 + δ12 α+ β1 + γ1 + δ′11

G1-H2 α+ β2 + γ1 + δ21 α+ β2 α+ β1 + γ1 + δ11 α+ β1

G2-H1 α+ β1 + γ2 + δ12 α+ β1 + γ1 + δ11 α+ γ2 α+ γ1

G2-H2 α+ β1 + γ1 + δ′11 α+ β1 α+ γ1 α

Following Wu’s idea of estimating quantites in cases and controls separately, we derive the distribution of

the diplotypes in cases and controls that results from the above model. In cases, this distribution is given

by P ((Gj-Hk/Gl-Hm)|D), which by Bayes’ theorem (assuming HWE in the general population) equals

fjklmψjkψlm/K, where fjklm is the probability of being diseased for an individual with diplotype Gj-

Hk/Gl-Hm, ψjk represents the population frequency of haplotype Gj-Hk, D represents the event that an

individual is affected (diseased) and K = P (D) is the population prevalance. Similarly, the distribution

of diplotypes in controls is given by (1−fjklm)ψjkψlm/(1−K). Thus, the diplotype probabilities in cases

and controls may be written:
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Cases Maternal haplotype

Paternal haplotype G1-H1 G1-H2 G2-H1 G2-H2

G1-H1 ψ2
11f1111/K ψ11ψ12f1112/K ψ11ψ21f1121/K ψ11ψ22f1122/K

G1-H2 ψ12ψ11f1211/K ψ2
12f1212/K ψ12ψ21f1221/K ψ12ψ22f1222/K

G2-H1 ψ21ψ11f2111/K ψ21ψ12f2112/K ψ2
21f2121/K ψ21ψ22f2122/K

G2-H2 ψ22ψ11f2211/K ψ22ψ12f2212/K ψ22ψ21f2221/K ψ2
22f2222/K

Controls Maternal haplotype

Paternal haplotype G1-H1 G1-H2 G2-H1 G2-H2

G1-H1
ψ2

11(1−f1111)
(1−K)

ψ11ψ12(1−f1112)
(1−K)

ψ11ψ21(1−f1121)
(1−K)

ψ11ψ22(1−f1122)
(1−K)

G1-H2
ψ12ψ11(1−f1211)

(1−K)
ψ2

12(1−f1212)
(1−K)

ψ12ψ21(1−f1221)
(1−K)

ψ12ψ22(1−f1222)
(1−K)

G2-H1
ψ21ψ11(1−f2111)

(1−K)
ψ21ψ12(1−f2112)

(1−K)
ψ2

21(1−f2121)
(1−K)

ψ21ψ22(1−f2122)
(1−K)

G2-H2
ψ22ψ11(1−f2211)

(1−K)
ψ22ψ12(1−f2212)

(1−K)
ψ22ψ21(1−f2221)

(1−K)
ψ2

22(1−f2222)
(1−K)

Under the 10-parameter diplotype model, and making a rare disease assumption, these diplotype proba-

bilities in cases and controls reduce to:

Cases Maternal haplotype

Paternal haplotype G1-H1 G1-H2 G2-H1 G2-H2

G1-H1
ψ2

11e
α+β2+γ2+δ22

K
ψ11ψ12e

α+β2+γ1+δ21

K
ψ11ψ21e

α+β1+γ2+δ12

K
ψ11ψ22e

α+β1+γ1+δ′
11

K

G1-H2
ψ12ψ11e

α+β2+γ1+δ21

K

ψ2
12e

α+β2

K
ψ12ψ21e

α+β1+γ1+δ11

K
ψ12ψ22e

α+β1

K

G2-H1
ψ21ψ11e

α+β1+γ2+δ12

K
ψ21ψ12e

α+β1+γ1+δ11

K

ψ2
21e

α+γ2

K
ψ21ψ22e

α+γ1

K

G2-H2
ψ22ψ11e

α+β1+γ1+δ′
11

K
ψ22ψ12e

α+β1

K
ψ22ψ21e

α+γ1

K

ψ2
22e

α

K

Controls Maternal haplotype

Paternal haplotype G1-H1 G1-H2 G2-H1 G2-H2

G1-H1 ψ2
11 ψ11ψ12 ψ11ψ21 ψ11ψ22

G1-H2 ψ12ψ11 ψ2
12 ψ12ψ21 ψ12ψ22

G2-H1 ψ21ψ11 ψ21ψ12 ψ2
21 ψ21ψ22

G2-H2 ψ22ψ11 ψ22ψ12 ψ22ψ21 ψ2
22
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Therefore, combining cells of the above table appropriately, the probabilities of the 9 observable genotype

combinations in cases and controls are:

Cases Locus H

Locus G H1H1 H1H2 H2H2

G1G1
ψ2

11e
α+β2+γ2+δ22

K
2ψ11ψ12e

α+β2+γ1+δ21

K

ψ2
12e

α+β2

K

G1G2
2ψ11ψ21e

α+β1+γ2+δ12

K
2ψ11ψ22e

α+β1+γ1+δ′
11+2ψ12ψ21e

α+β1+γ1+δ11

K
2ψ12ψ22e

α+β1

K

G2G2
ψ2

21e
α+γ2

K
2ψ21ψ22e

α+γ1

K

ψ2
22e

α

K

Controls Locus H

Locus G H1H1 H1H2 H2H2

G1G1 ψ2
11 2ψ11ψ12 ψ2

12

G1G2 2ψ11ψ21 2ψ11ψ22 + 2ψ12ψ21 2ψ12ψ22

G2G2 ψ2
21 2ψ21ψ22 ψ2

22

Our joint effects test is based on constructing (within cases and controls separately) four odds ratios

(i22, i21, i12, i11) by using each of the four top left cells in turn, to estimate the odds ratio relative to the

baseline (bottom right) cell. The motivation for this approach is that any main effects will cancel out,

see Text S2. Given the distribution of the 9 observable genotype combinations above, we can see that in

controls these odds ratios correspond to the following quantities:

i22 =
ψ2

11ψ
2
22

ψ2
12ψ

2
21

= (eλψ )2 = e2λψ

i21 =
2ψ11ψ12ψ

2
22

2ψ21ψ22ψ2
12

= eλψ

i12 =
2ψ11ψ21ψ

2
22

2ψ12ψ22ψ2
21

= eλψ

i11 =
2ψ2

22[ψ11ψ22 + ψ12ψ21]

4ψ12ψ22ψ21ψ22
=
eλψ + 1

2
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where λψ is the log odds ratio measure defined with respect to haplotype frequencies in the general

population.

For cases, the quantities estimated by the 4 odds ratios depend on the paramaterisation chosen for

the interaction parameters (but not on the main effects parameters, which all cancel out as desired).

Suppose we imposed a paramaterisation for interaction effects corresponding to that imposed by Wu et

al. i.e. δ12 = δ21 = δ′11 = δ, δ22 = 2δ, δ11 = 0. Then, in cases, the four odds ratios end up corresponding

to the following quantities :

i22 =
ψ2

11ψ
2
22

ψ2
12ψ

2
21

eδ22 = (eλψ )2e2δ = e2(λψ+δ) = e2λA , say

i21 =
2ψ11ψ12ψ

2
22

2ψ21ψ22ψ2
12

eδ21 = eλψeδ = eλψ+δ = eλA

i12 =
2ψ11ψ21ψ

2
22

2ψ12ψ22ψ2
21

eδ12 = eλψeδ = eλψ+δ = eλA

i11 =
2ψ2

22[ψ11ψ22e
δ′11 + ψ12ψ21e

δ11 ]

4ψ12ψ22ψ21ψ22
=
ψ11ψ22e

δ + ψ12ψ21

2ψ12ψ21

=
1

2
(eλψeδ + 1) =

eλψ+δ + 1

2
=
eλA + 1

2

where λA is defined as λψ + δ. Thus, by estimating (i11, i12, i21, i22) in cases and controls separately,

and considering these quantities as the following functions of a parameter λ:

i22 = e2λ i21 = eλ i12 = eλ i11 =
eλ + 1

2

we can see that in controls, the quantity λ corresponds to the usual log odds ratio measure λψ defined

with respect to haplotype frequencies in the general population, while in cases the quantity λ corresponds

to λA = λψ + δ, where δ is Wu et al.’s interaction parameter of interest. Therefore, we may test whether

δ = 0 by testing whether the parameter λ as estimated (on the basis of i11, i12, i21, i22) in cases equals λ

as estimated in controls (case/control test). Alternatively, if we are willing to assume no population level

LD (so λψ = 0), we may instead test whether δ = 0 by testing whether λ as estimated in cases equals 0
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(case-only test).

Alternative versions of joint effects statistics

The motivation for the joint effects statistics given above also allows the possibility of imposing alternative

parameterisations for the interaction parameters. Suppose we wished to impose the usual 9-parameter

‘saturated’ model for combinations of genotypes at the two loci:

Locus H

Locus G H1H1 H1H2 H2H2

G1G1 α+β2+γ2+δ22 α+β2+γ1+δ21 α+β2

G1G2 α+β1+γ2+δ12 α+β1+γ1+δ11 α+β1

G2G2 α+γ2 α+γ1 α

Then, using the same argument as in the previous section, the four odds ratios (i11, i12, i21, i22) used in

the joint effects test end up corresponding to estimates of the following quantities in controls:

i22 = e2λψ i21 = eλψ i12 = eλψ i11 =
eλψ + 1

2

while in cases they end up estimating:

i22 = e2λψeδ22 i21 = eλψeδ21 i12 = eλψeδ12 i11 =
eλψ + 1

2
eδ11

We may thus test each interaction effect individually by testing whether the relevant odds ratio (i11, i12,

i21 or i22) is equal when estimated in cases as in controls (case/control test) or, assuming no population

level LD, by testing whether the relevant odds ratio estimated in cases alone equals 1. This strategy

would lead to four 1df tests or an overall 4df test when considering all interaction effects simultaneously.

To increase power, one might prefer to reparameterise in terms of a single parameter δ, for example

assuming an allelic coding whereby δ11 = δ, δ12 = δ21 = 2δ, δ22 = 4δ. (This coding would be similar to

the model assumed in PLINK). In that case, the odds ratios in cases end up estimating:

i22 = e2λψe4δ i21 = eλψe2δ i12 = eλψe2δ i11 =
eλψ + 1

2
eδ
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while the odds ratios in controls estimate

i22 = e2λψ i21 = eλψ i12 = eλψ i11 =
eλψ + 1

2

as before. Denoting the odds ratios estimated in cases as (iA11, i
A
12, i

A
21, i

A
22) and those in controls as (iN11,

iN12, i
N
21, i

N
22), we could therefore construct 4 separate estimates of δ:

δ̂1 =
log(iA22/i

N
22)

4
δ̂2 =

log(iA21/i
N
21)

2
δ̂3 =

log(iA12/i
N
12)

2
δ̂4 = log(iA11/i

N
11)

Similar to the joint effects test of λ described previously, we could use a weighted average of these four

estimates (with weights chosen to make the variance minimum), divided by its estimated variance, as a

direct test of the parameter δ. We defer any detailed derivation and investigation of the properties of

this (and other) alternative parameterisations of the joint effects test to future work.
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