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Genome size varies by many orders of magnitude across plants and animals, but resolving the

most important evolutionary forces driving this variation remains challenging. Since eukary-

otic genome size variation is not associated with complexity, genetic drift of the amount of

noncoding DNA could dominate, implicating population and species history as key drivers of

shifts in DNA content. Alternatively, directional selection could be acting on DNA content,

but if so, it has not been resolved which level of selection is most important. Since the predom-

inant component of many eukaryotic genomes is comprised of selfish genetic elements such as

transposable elements (TEs) and regions subject to meiotic drive, factors that influence their

differential success across populations and species could account for much of the variation in

genome size. However, DNA content can also have important effects on organismal phenotype

that could be under directional selection. Genome size may often be an important determinant

of cell size and division rate and the subject of selection via its effects on developmental and

metabolic phenotypes [1,2]. Supporting this view, correlations of genome size with invasive

potential and growth rate [3], regional abundance and seed size [4], and even metabolic inten-

sity in flying birds [5], may suggest an adaptive role. In this issue, Bilinski et al. [6] present evi-

dence for this organismal adaptation view of genome size evolution by providing an explicit

test for natural selection on genome size and repeat abundance across multiple altitudinal

clines in maize and its wild relatives and identifying the underlying physiological mechanism.

Bilinski et al. [6] capitalize on the remarkable genome size variation in maize and its wild

relatives, which differ by 40%–70% within and between subspecies. It is estimated that 85% of

the maize genome is composed of TEs, B chromosomes, and heterochromatic knobs subject to

meiotic drive [7,8], highlighting the success of selfish genetic elements in this lineage. Never-

theless, clines of genome size along with phenotypic and environmental variables in Zea mays
spp. have been well described, with a number of studies showing evidence of genome reduc-

tions, including the loss of knobs and B chromosomes, in regions of high altitude and latitude

[9–13]. While these parallel clines are suggestive of an adaptive process, it has been difficult to

definitively demonstrate this and fully reject a role for neutral population history.

Bilinski et al. [6] add to this rich literature by using a quantitative genetics framework to

conduct a test of local adaptation, recognizing that genome size is a trait governed by an

immense number of small-effect loci. Moreover, it can be thought of as a quantitative trait

under complete genetic control, since the variation in genome size is expected to be a simple

function of the net number of insertion and deletion alleles individuals have across the

genome. Under this framework, a neutral model predicts that genome size differences across a

geographic region are a function of the relatedness and population structure [14] and thus

determined by the extent of correlated allele frequencies between a given pair of individuals. It

follows that if genome size is subject to selection, it should be more strongly correlated with
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altitude than expected from relatedness alone. The authors use low-coverage whole genome

sequence data from three altitudinal clines to obtain detailed information not only about the

kinship and structure of their samples but also about the contribution of each type of repeat to

overall genome size.

Using this approach to test for local adaptation, the authors are able to reject the predictions

of the neutral model, concluding that genome size differences along altitudinal clines are too

extreme to be explained solely by drift (Fig 1). When considering individual repeat types, both

TEs and knob repeat abundance are significantly correlated with altitude. They also find that

one type of knob repeat, known as TR1, shows the strongest over-differentiation, and the sig-

nal of altitudinal adaptation on TR1 abundance remains significant even when controlling for

genome size. With megabase-long heterochromatic knobs accounting for up to 10% of maize

genome size variation [7,15], knobs seem to be acting as large-effect loci for genome size but,

in some cases, may also be under additional selection pressures independent of their effects on

genome size. Although TEs do not show signals of adaptation after controlling for genome

size, the strong correlation of TE copy number with genome size and altitude implies that envi-

ronmental adaptation could also be an important determinant of TE abundance mediated

through its effects on genome size.

With the finding that natural selection shapes genome size variation across multiple parallel

altitudinal clines in maize and its wild relatives, Bilinski et al. [6] searched for the phenotypic

target of selection. It has been proposed that genome size evolution may be mediated by its

effects on flowering time [10,13,16], given that populations at higher latitudes are typically

early-flowering [17,18], and a previous selection experiment on flowering time led to a corre-

lated decrease in genome size [16]. This could result from the strong scaling between genome

size, cell size, and cell cycle length [19]. Bilinski et al. [6] were able to uncouple a role for popu-

lation history driving an indirect association between genome size and these traits through

performing a growth chamber experiment on a single highly variable population and control-

ling for family structure. They then infer a causal relationship between genome size, cell

Fig 1. Altitudinal clines in maize and teosinte. Clines in heterochromatic knobs and genome size in Zea mays spp. are significantly

over-dispersed compared to genome-wide allele frequencies, corresponding with an adaptive response to selection for earlier

flowering time at higher altitudes. TE content is also a major determinant of genome size variation and thus also covaries

significantly with altitude. TE, transposable element.

https://doi.org/10.1371/journal.pgen.1007249.g001
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production rate, and flowering time through a path analysis. This mechanistic connection,

combined with the body of past work, provides a compelling case for flowering time as the

driver of altitudinal genome downsizing with large chromosomal knobs being a major factor

under selection. A parallel study in maize identified the region with the most explanatory

power for genome size to map near two 180-bp knobs where genome size was also correlated

with flowering time, but only before controlling for relatedness—perhaps due to greater effects

of population structure in their study [20]. Although the fraction of flowering time variation

controlled by genome size is still unclear, Bilinski et al. [6] add to growing evidence for the

case of genome size evolution driven by phenotypic selection, in line with a recent large-scale

phylogenetic study that argues genome downsizing was the key to angiosperms’ higher photo-

synthetic efficiency [21].

This paper provides important evidence for the organismal-adaptation view of genome

size evolution—but what of the coevolutionary struggle with selfish elements? The major

evolutionary force driving genome expansion in maize is still likely to reflect selfish evolu-

tion through selection on meiotic drivers and self-replicating TEs, since selection pressures

on such alleles are typically very strong. Knob elements, for example, have a strong trans-

mission advantage driving their increase [22]. On the other hand, the factors stabilizing

unregulated genome expansion or driving genome shrinkage may be multifaceted. The

explosion of selfish genetic elements is typically thought to be controlled by unconditionally

deleterious effects such as meiotic defects on pollen viability and seed set [22], ectopic

recombination events causing chromosomal rearrangements [23–25], and the harmful

effects of gene disruption. However, the results found by Bilinski et al. [6] highlight that

some costs to selfish genetic elements may be environmentally dependent, determined by

the indirect effects of repetitive elements on flowering time through their effects on genome

size. In regions of high elevation, stronger selection against large genomes could lead to

greater control of total repetitive element abundance. For large-effect alleles such as chro-

mosomal knobs, such environmentally dependent selection could explain why their popula-

tion frequencies are somewhat lower than expected by their effects on pollen viability and

seed set alone [22].

Conversely, other selective pressures on selfish genetic elements may provide an addi-

tional source of genome size variation in maize populations beyond the effects of flowering

time. Since chromosomal knobs are known to have severe fitness costs, the extent of these

costs may well depend on the environment [22], possibly explaining the disproportionate

effect of altitude on knobs when genome size is controlled for in this study. For instance, if

conditions are more extreme at higher elevations, the costs of knobs on fecundity may be

felt more severely in the absence of buffering from favorable conditions. The costs of TEs

and heterochromatic knobs may also be more severe in inbred genomic backgrounds for

example; since knobs have recessive deleterious costs [22], they should be subject to strong

purifying selection when homozygous. Consistent with this, inbred lines of domesticated

maize have been found to be mostly absent of knobs [26]. This may explain why the smallest

genomes in the present study were found in the three lowest-altitude teosinte populations,

providing an exception to the observed altitudinal gradient. These populations are known

to be highly inbred, although admixture from related species may also be playing a role.

Genome size variation in maize may thus result from the dynamic interplay between the

selfish spread of knobs and TEs, heterogeneity in their costs and the efficacy of selection

against them, and the exaptation of the resulting variation for the optimization of develop-

mental traits such as flowering time. This suggests a pluralistic model whereby selfish evolu-

tion, environmental adaptation, and population history all contribute to evolutionary

fluctuations in DNA content.
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