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Abstract

DNA double strand break (DSB) is one of the major damages that cause genome instability
and cellular aging. The homologous recombination (HR)-mediated repair of DSBs plays an
essential role in assurance of genome stability and cell longevity. Telomeres resemble
DSBs and are competent for HR. Here we show that in budding yeast Saccharomyces cere-
visiae telomere recombination elicits genome instability and accelerates cellular aging. Inac-
tivation of KEOPS subunit Cgi121 specifically inhibits telomere recombination, and
significantly extends cell longevity in both telomerase-positive and pre-senescing telome-
rase-negative cells. Deletion of CG/121 in the short-lived yku80' mutant restores lifespan
to cgi121A level, supporting the function of Cgi121 in telomeric single-stranded DNA gener-
ation and thus in promotion of telomere recombination. Strikingly, inhibition of telomere re-
combination is able to further slow down the aging process in long-lived fob1A cells, in
which rDNA recombination is restrained. Our study indicates that HR activity at telomeres
interferes with telomerase to pose a negative impact on cellular longevity.

Author Summary

Aging is a general biological process among the living organisms which is affected by envi-
ronmental stimuli but also genetically controlled. Genome instability is one of the aging
hallmarks and has long been implicated as one of the main causal factors in aging. DNA
double strand breaks (DSBs) are the most deleterious DNA damages that cause genome
instability. To counteract DNA damage of DSBs and maintain high level of genome integ-
rity, cells have evolved powerful repair systems such as homologous recombination (HR).
HR is crucial for DNA repair and genome integrity maintenance, and is generally believed
to be essential for assurance of cell longevity. Telomeres, the physical ends of eukaryotic
linear chromosomes, are preferentially elongated by telomerase, a specialized reverse tran-
scriptase, in most cases. However, due to the resemblance of telomeres to DSBs, HR can
not be eliminated but rather readily takes place on telomeres, even in the presence of telo-
merase. Here we show that HR at yeast telomeres elicits genome instability and accelerates
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Cgil21 specifically inhibits telomere HR and results in extremely long lifespan, indicating
a dark side of HR in longevity regulation.

Introduction

Aging is generally defined as the time-dependent functional decline and increased mortality in
most living organisms. Although aging appears to be a natural process, increasing evidence in-
dicates that aging is genetically controlled. In order to elucidate how aging is influenced by in-
trinsic cellular traits, researchers have developed and employed various model organisms
including yeast, worm, fly, fish, mouse and monkey to study the pathways that affect aging.
The single-cell organism, budding yeast Saccharomyces cerevisiae represents a widely used tool
for aging study [1,2,3]. A single yeast mother cell can only generate a limited number of daugh-
ter cells before its mitotic arrest [4]. This aging-associated phenotype is called replicative aging
[5]. The organismal aging for multicellular species is likely (or at least partially) to be attributed
to cellular aging in their corresponding organs and/or tissues.

The genome, which carries the genetic information of a cell, is continuously threatened by
exogenous damages, as well as by endogenous threats such as DNA replication errors [6]. Ge-
nome instability is one of the aging hallmarks, and has long been implicated as one of the main
causal factors in aging [7,8]. DNA damage (e.g. double strand break, DSB) is one of the major
causes for genome instability. When the repair pathways are not efficient enough to cope with
a given level of damage, cells may undergo cell cycle arrest, cellular senescence and cell death.
For example, the Werner syndrome and Bloom syndrome, two typical progeroid syndromes,
are respectively caused by defective helicases WRN and BLM, which are involved in DNA re-
pair [9]. The cells from both syndromes show increased DNA damage accumulation [9]. Con-
sistently, the deficiency in yeast Sgs1 helicase, the homologue of human WRN and BLM, also
results in genome instability, such as enhancement of rDNA recombination and fragmentation
of nucleolus, and leads to premature cellular aging [10]. To maintain genome stability, genome
maintenance pathways have emerged during evolution, and function in longevity assurance.
For example, homologous recombination (HR) and non-homologous end joining (NHE])
pathways have been evolved to repair the most deleterious DNA damages, the DNA double
strand breaks (DSBs). Accordingly, mutation of yeast DSB repair genes, such as RAD50,
RAD51, RAD57 and RAD52, greatly reduces yeast replicative lifespan [11].

Telomeres are the physical ends of eukaryotic linear chromosomes, and are crucial for ge-
nome integrity and stability [12]. Although telomeres may look like DSBs as the chromosomal
ends, they are distinguished by the specialized architecture, consisting of repetitive guanine-
rich DNA bound by telomere-specific proteins. The yeast telomeric DNA consists of ~ 350 bp
of TG;_3/C;_3A repeats, and the G strand extends beyond its complementary strand to form a
single-stranded overhang, called the G-overhang [12,13,14]. The telomerase complex, which
consists of the catalytic subunit Est2, the template RNA moiety Tlcl, and two accessory sub-
units Estl and Est3, is responsible for telomeric G-strand elongation, as well as telomere pro-
tection [15,16,17,18]. When telomerase is inactivated, telomeres keep shortening and most
cells undergo critically short telomere-triggered cell cycle arrest, a process termed “replicative
senescence” [16,19,20]. “Replicative senescence” is usually considered to be different from
“replicative aging” as the former is largely attributed to critically short telomeres. Although
telomeres are well protected and excluded from DSB repair at most of the time, yet there are
several traits that make telomeres highly prone to be recombined. Firstly, all the telomeres are
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much alike in their repetitive sequences which could be favorable substrates for homologous
recombination activities. Additionally, quite a few proteins (or protein complexes) involved in
DNA repair pathways also bind and function at telomeres [14]. The yKu70/80 heterodimer,
which is required for NHE]J [21,22], is indispensable for telomere protection, telomerase re-
cruitment and telomeric heterochromatin maintenance [23,24,25,26,27,28]. Mrel1/Rad50/
Xrs2 heterotrimer, DNA helicase Sgs1 and endonuclease Sae2, which are critical for resection
of the ends of DSBs in HR-mediated DSB repair, are involved in telomere 5” end resection after
DNA replication [29,30,31]. Moreover, the 3’ overhang generated by telomere end resection
could be perceived as intermediates of DSB, as the strand invasion step requires the ssDNA
[32]. Thus, considering all the traits of telomeres mentioned above, we propose that recombi-
nation activity in yeast might covet telomeres and interfere with telomerase to elicit genome in-
stability under physiological conditions, and thereby affect cellular longevity.

The evolutionary conserved KEOPS complex which consists of five subunits, i.e. Cgil21,
Bud32, Kael, Gon7 and Pccl in yeast, was first identified as a telomere regulator [33,34]. Dele-
tion of CGI121 or BUD32 reduces single-stranded telomeric DNA accumulated in cdc13-1
cells, and suppresses the temperature sensitivity of cdc13-1 mutant grown at 28°C [33], indicat-
ing that loss of Cgil21 or Bud32 limits the amount of ssDNA generated at uncapped telomeres.
Moreover, deletion of any subunit of KEOPS complex results in defect in telomere recombina-
tion [35], suggesting that KEOPS complex promotes telomeric TG, _; tracts recombination. In
addition to telomere regulation, KEOPS complex also participates in tRNA modification (t6A)
[36,37]. Interestingly, the Cgil21 subunit of the KEOPS complex is indispensable for both telo-
mere length regulation and recombination, but not required for tRNA modification [33,37].
We therefore exploited the separation-of-function subunit Cgil21 to dissect the functions of
KEOPS in telomere recombination from those in tRNA modification. Our data presented in
the current work indicate that activation of telomere recombination accelerates cellular aging,
and attenuation of telomere recombination, e.g. by inactivation of Cgil21, promotes cell
longevity.

Results

Telomerase-null survivors have shorter replicative lifespan than
telomerase-proficient cells

When telomerase is inactivated by deletion of a gene encoding telomerase subunit (Est1, Est2,
Est3 or Tlcl), telomeres gradually shorten, and most cells undergo senescence after 75 to 100
generations due to the critical short telomeres [16,19,20]. Because critical short or deprotected
telomeres are highly recombinogenic, a small percentage of the telomerase-null cell can over-
come the crisis by using homologous recombination to maintain their telomeres. These so-
called “survivors” either have telomeres with amplified subtelomeric Y’ sequence and short
TG _; tracts (the Type I survivors) [38], or harbor long heterogeneous TG, _; sequence (Type
II survivors) [39].

In order to address the effect of telomere recombination on replicative aging, we examined
lifespan of the survivor cells. After deletion of telomerase subunit TLCI, cells were serially pas-
saged in solid or liquid medium to obtain Type I and Type II survivors respectively (Fig. 1A,
left) [35]. Lifespan assay was performed with both types of survivors. The results showed that
both the Type I and Type II survivors have much shorter lifespan than wild-type cells, and the
lifespan of Type I survivors is extremely short (Fig. 1A, right). This result is consistent with our
previous data that est2A Type II survivors have shorter lifespan [40].
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Fig 1. Inactivation of telomerase accelerates yeast replicative aging, and reintroduction of telomerase recovers lifespan. (A) Telomere structure of
tic1A Type | and Type Il survivors were examined by telomere Southern blot (left) and the replicative lifespan of these strains were determined (right).
Statistical significance was determined by a Wilcoxon rank sum test and significant differences were stated for p < 0.05. The statistical data of all the lifespan
experiments in this study were shown in S2 Table. (B) After integration of TLC1 genes, tlic1A Type | or Type |l strains were continuously passaged and cells
at different time point were subjected to telomere Southern blot analyses. The numbers above each lane indicate the numbers of restreaks after TLC1
reintroduction. (C) and (D) Lifespan analysis of tic1A Type | (C) or Type Il (D) survivor cells at the 10th restreak after TLC1 reintroduction.

doi:10.1371/journal.pgen.1005071.g001

Re-activation of telomerase in telomerase-null survivors inhibits
telomere recombination and at least partially restores cellular lifespan

The shorter lifespan in telomerase-null survivors suggests that telomere recombination elicits
genome instability in telomerase-null survivors to accelerate cellular aging. To test this hypoth-
esis, we re-introduced TLCI gene back into the survivors that were derived from ticIA cells, by
integrating an intact copy of this gene into the genome. After serial passages, telomere struc-
tures were examined. The Southern blotting results showed that replenishment of telomerase
activity leads to elongation of terminal telomeric TG, _; tracts in Type I cells and the telomere
pattern is stably maintained without further Y’ amplification (Fig. 1B). On the other hand, re-
duction of the heterogeneity of the long telomeres was observed in Type II cells after replenish-
ment of TLCI, and the telomere structure was gradually restored to a wild-type pattern

(Fig. 1B). These results indicate that the recombination activity on telomeres is inhibited by tel-
omerase. Accordingly, reactivation of telomerase partially and completely restores the lifespan
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of Type I and Type II cells, respectively (Fig. 1C and 1D). These results support the notion that
telomere recombination results in genome instability which causes shorter replicative lifespan.
Notably, re-introduction of TLCI only partially restored lifespan of Type I survivors (Fig. 1C).
This phenotype is likely attributed to the abnormal karyotypes resulting from telomere end-
to-end fusions during Type I survivor generation [38,41]. This explanation is supported by the
observation that the severe growth defect of Type I survivors was partially recovered after re-
introduction of TLCI.

Y’ element rearrangement mediated by HR occurs in telomerase-
positive cells

In telomerase-proficient cells telomere recombination is largely inhibited. However, previous
studies have indicated that telomerase seems not to be able to completely eliminate telomere re-
combination. For example, recombination-mediated telomere rapid deletion (TRD) has been
observed in telomerase positive cells [42]. In mouse cells lacking the amino-terminal basic do-
main of TRF2, t-loop-sized telomeric circles can be excised from leading strand telomeres via
homologous recombination [43]. Additionally, homologous recombination occurs with the
same frequency in human telomerase-positive and telomerase-negative ALT (alternative
lengthening of telomeres) cells [44]. It is conceivable that homologous recombination is inter-
mittently competing with telomerase to contribute to telomere elongation. Due to the repetitive
nature of telomeric DNA sequence, telomere recombination products cannot be readily distin-
guished from those generated by telomerase.

In order to detect telomere recombination event(s) in telomerase-proficient cells, we per-
formed a chromosome healing (de novo telomere formation) assay (see Experimental proce-
dures). The system is modified from that developed by Gottschling’s lab [45]. Briefly, 81 bp of
TG, _; telomeric “seed” (TG81) is inserted into the left arm of chromosome VII at the ADH4
locus, flanked by a TRPI marker gene and an HO endonuclease cutting site (Fig. 2A). Upon
HO endonuclease induction by galactose, the HO site is cut and the TG, _; sequence is exposed
to the very end. The newly formed telomere of 81 bp is critically short and has to be repaired
through telomerase or recombination pathways. As a control, an isogenic strain with no TG, _3
seed imbedded (TGO) was included in the experiment. HO-cut will generate a none-telomeric
DNA double strand break, which must be repaired to maintain cell viability. In order to exam-
ine the repair efficiency of the end generated by HO-cut, we cultured the TG81 or TGO cells in
galactose-containing solid medium, and colonies in which the short telomeres (in TG81
strains) or the DSBs (T'GO0) have presumably been repaired were counted. The repair efficiency
was defined by the number of colonies formed on the galactose plate (cut) divided by that of
the same strain on the glucose plate (uncut). The de novo generated short telomere can be effi-
ciently repaired with an efficiency of ~100% in the TG81 strain (Fig. 2B). Notably, the efficien-
cy was reduced to ~ 10% by deletion of TLCI (Fig. 2B), suggesting a crucial role of telomerase
in the elongation of this new short telomere. Deletion of RAD50, RAD51 or RAD52 resulted in
no or slight reduction in the repair efficiency (Fig. 2B), supporting a predominant role of telo-
merase rather than recombination in the repairing process. In contrast, the none-telomeric
control TGO strain has very low repair efficiency ( ~0.36%) (Fig. 2B). Deletion of TLCI in the
TGO strain has little effect on the repair efficiency (Fig. 2B), consistent with the notion that the
regular DSB generated by HO-cut can hardly be repaired by telomerase. These data indicate
that HO-induced double strand break in TG81 strain can generate a bona fide new telomere,
which can be readily elongated by telomerase while recombination could still make a minor
contribution to its repair.
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Fig 2. Subtelomeric Y’ element recombination occurs in the presence of telomerase. (A) Schematic representation of the strategy to detect Y’
recombination in the presence of telomerase (not to scale). 81 bp of TG1_3 seed (in purple) is inserted at the ADH4 gene locus on chromosome VII, flanked by
a TRP1 marker gene (in green) and an HO endonuclease cutting site. The LYS2 gene was placed between the natural telomere of VII-L and the ADH4 locus
to serve as a genetic marker to monitor HO cutting. After HO induction by galactose, a short telomere with 81 bp of TG1_3 sequence is generated de novo
through HR activity in two distinct regions of the donor telomere: one in TG4_3 tracts (in orange) between the STR and the Y’ element (Type |) and the other in
the terminal TG_3 tracts (Type ll). The telomerase-mediated elongation is omitted in this diagram. The resulting Type | recombination products can be
detected by PCR amplification using primers specific for TRP1 (indicated by a green arrow) and Y’ consensus sequences (indicated by gray arrow) followed
by Southern blot with probes hybridized to TG4_3 repeats (indicated by dashes). (B) Cell viability assay for chromosome healing. Proportional yeast cells
were plated onto galactose (cut) or glucose-containing medium (uncut). The numbers of colonies formed on the plates were counted and repair efficiency
was calculated by dividing the number of colonies on “cut” plates by that on “uncut’ plates. The error bars indicates the standard deviations. *p < 0.05 and
**p < 0.01. (C) Southern blot detection of Y’ recombination. After HO induction by galactose in liquid culture for 24 h, the isogenic strains (labeled on the top)
were subjected to genomic DNA extraction (cut). The uninduced strains were also included in the assay as “uncut” controls. PCR was then performed using
primers indicated in A. The PCR products were then subjected to Southern blot with probes recognizing TG4_3 sequence (Y’ rec). As the loading control, the
proportional genomic DNA was digested with EcoRI endonuclease to generate a DNA fragment of 1 kb containing the POL1 gene sequence and subjected to
Southern blot using a probe specific for POL1 sequence (ctrl). The DNA signals were quantified by software (Multi Gauge). The number below each lane
indicates the Y’ recombination efficiency, which is defined by dividing the intensity of signal of Y’ recombination with that of the internal control. The efficiency
of all the samples were compared to that of TG81 cut sample which was set as “1”. (D) A representative sequence of one of the three clones showing the
sequence of Y’ recombination products. Part of the TRP1 promoter (in green), 78 bp of TG4_3 seed sequence (in purple), 9 bp of recombined TG4_3 sequence
(in orange) and part of the Y’ sequence from telomere VIL (TelO6L-YP, in gray) are shown. The underlined sequences are primers for PCR as indicated in (A).
The full sequence for the PCR product is shown in S1 Fig.

doi:10.1371/journal.pgen.1005071.g002

Next, we used this system to detect whether telomere recombination takes place in telome-
rase-positive cells. Although it is technically difficult to distinguish the telomeric tracts added
by terminal TG;_; recombination (Type II recombination) from those by telomerase, the addi-
tion of Y’ element to the end of this telomere (Type I recombination) can be detected by South-
ern blot following PCR amplification with primers specific for TRPI region and Y’ consensus
sequence (Fig. 2A). In this set of experiments, cells were harvested after induction with galac-
tose for 24 h, and genomic DNA was extracted. PCR amplifications were performed using the
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genomic DNA as templates. The PCR products were subjected to Southern blot with a TG, _;
probe. Meanwhile, proportional amount of genomic DNA was hybridized to a POLI probe as
the internal control. DNA signals in the Southern blot results were quantified and the level of
Y’ recombination was normalized to the corresponding internal control. The Y’ recombination
efficiency of all the samples were compared with that of TG81 cut sample which was defined as
“17. We successfully detected the telomere recombination events in TG81 but not TGO strain
by Southern blot (Fig. 2C). To validate that the PCR-amplified fragments contained Y’-se-
quence, we cloned and sequenced some of the PCR products. The representative sequences of
three clones are shown (Fig. 2D and S1 Fig.). As expected, the sequences of the PCR products
contain part of the TRPI promoter sequence (in green color), variable lengths (87 to 271 bp) of
TG, _; repeats (purple for TG seed and orange for telomere sequence from the donor chromo-
some) and the proximal parts of Y’ elements (in gray). Notably, sequences of three clones vary
at both the length of internal T'G; _; tracts and the origins of Y’ elements. Two of the three
clones captured the Y’ element from the left telomere of chromosome V1, and the third one
copied the Y’ element from the right telomere of chromosome VIII. These data indicate that
HO-induced short telomeres can be repaired by HR in the presence of telomerase, most likely
through break-induced replication (BIR) [46].

We also checked the role of some recombination regulators in telomere recombination in
TG81 strain in the presence of telomerase. Interestingly, deletion of RAD50 results in signifi-
cantly reduced level of such recombination (Fig. 2C). RAD51-null cells have unaffected Y re-
combination, and deletion of RAD52 modestly reduces such recombination (Fig. 2C).
Paradoxically, it is generally believed that Rad51 and Rad50 are required for the formation of
Type I and Type II survivors respectively, and Rad52 is thought to be essential for virtually all
homologous recombination activity [32,47]. It remains elusive why Rad51 is dispensable, or
Rad52 plays a minor role for the Y’ telomere recombination in the presence of telomerase. This
kind of recombination events may occur in a way similar to that of BIR, as it was reported that
a rad51A strain still allows BIR to proceed [48], and the Rad51-independent BIR pathway is
largely dependent on another set of recombination genes including RAD50 and RAD59 [46].
Nevertheless, these results support the argument that HR takes place in telomerase-
positive cells.

Deletion of CGI7121 compromises telomere recombination

Because telomere recombination affects cellular lifespan, we propose that inhibition of telo-
mere recombination will be beneficial to cell longevity. Our previous genetic screenings have
shown that the evolutionarily conserved KEOPS complex was required for telomeric TG, 3
tracts recombination [35]. Additionally KEOPS complex is likely to be involved in generation
of telomeric ssDNA because deletion of either CGI121 or BUD32 reduces telomeric ssDNA
level in cdc13-1 mutant and suppresses the temperature sensitivity [33]. We therefore wanted
to establish the functional relevance of KEOPS complex between telomere recombination and
cellular longevity regulation. We focused our efforts on Cgil21 due to several concerns. (1) De-
letion of any of the other four subunits confers severe growth defect [33,34,35,49,50], while de-
letion of CGI121 only has minor effect on cell growth. (2) Structural studies indicate that lack
of Cgil21 doesn’t affect the interactions between other subunits [49]. (3) More importantly,
Cgil21 is not required for tRNA modification, but indispensable for both telomere length regu-
lation and recombination [33,35,37], providing us a separation-of-function tool to conduct
genetic analyses.

To validate that Cgil21 promotes telomere recombination, we firstly examined telomere re-
combination efficiency of ¢giI21A mutant in the presence of telomerase as in Fig. 2C. The result
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showed that the Y’ recombination efficiency was modestly reduced by deletion of CGI121 in telo-
merase-positive cells (Fig. 3A). Then we performed telomere sequencing to examine the role of
Cgil21 in telomeric TG;_; recombination in telomerase-negative tIcIA and tlcIA cgil21A cells.
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Fig 3. Deletion of KEOPS subunit gene CG/121 compromises telomere recombination and inhibits cellular aging. (A) Y’ recombination of cgi71271A
cells. The assay was performed as in Fig. 2C. (B) Telomere sequencing results of tic1A and tic1A cgi121A cells. Spores with genotype of tic1A and tic1A
cgi121A were obtained from the same tetrad and grown for 50 generations before genomic DNA extraction. PCR of telomere IL was performed and the PCR
products were ligated to pMD18-T vector and subjected to sequencing. Each column represents one sequenced telomere. The constant parts of the telomere
sequences were indicated in blue and the divergent parts in pink (representing the recombined telomere sequences). About 100 clones of each strain were
analyzed. (C) Lifespan assay of BY4742 cgi121A mutant strain. (D) Telomeric Southern blot and lifespan assay of tic1A cgi121A pre-senescing cells. Spores
with different genotypes and the same mating type a were grown for 50 generations and then subjected to telomere Southern blot (left) and lifespan analysis
(right). (E) After super-elongation of telomeres, telomere length and lifespan of spores with different genotypes and mating type a were determined as in (D).

doi:10.1371/journal.pgen.1005071.g003
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We constructed heterozygous diploid cells with one copy of telomerase RNA gene TLCI and
CGI121 deleted (BY4743 TLCI1/ tlcIA CGI121/cgi121A). After sporulation and tetrad dissection,
spores with different genotypes (tlc1A and tlcIA cgil121A) were identified. Spores from the same
tetrad were used for further analysis as they had the same initial telomere lengths. Cells were cul-
tured for 50 generations after tetrad dissection and genomic DNA was extracted. Telomere PCR
was then performed as previously described to amplify the TG; _; sequence of telomere IL
[51,52]. The PCR products were then cloned to T vector for sequencing analyses. About 100
clones of each genotype were obtained and analyzed. The results showed that 20.59% of telo-
meres (21 out of 102) were elongated through recombination in tlcIA cells (Fig. 3B). In contrast,
only 11.54% of telomeres (12 out of 104) were repaired through recombination in tlcIA cgilI2IA
cells (Fig. 3B). These results confirmed that Cgil21 plays a positive regulatory role in telomere
recombination in both telomere-positive and -negative cells [35].

Inactivation of Cgi121 promotes cell longevity

Since Cgil21 promotes telomere recombination (Fig. 3A and 3B), and inhibition of telomere
recombination restores cellular lifespan (Fig. 1C and 1D), we reasoned that deletion of CGI121
would suppress the recombination activity at telomeres, and thereby extend the replicative life-
span. Following this thought, we deleted CGI121 in a long lived yeast strain BY4742 (Mat o)
which is commonly used in aging research and examined lifespan of the mutant. Deletion of
CGI121 slowed down aging process strikingly, both the mean and maximum lifespan of
cgil21A cells increased about 50% (Fig. 3C). The long live phenotype was also observed in the
isogenic BY4741 cgil21A strain of Mat a mating type (S2A Fig.), indicating that Cgil21 affects
lifespan independently of the mating type. Thus, we identified Cgil21 as a novel

longevity regulator.

As we have mentioned above, in wild-type cells telomeres are maintained mainly by telome-
rase while telomere recombination occasionally occurs and brings the risk of genome instabili-
ty. Deletion of CGI121 in these wild-type cells may inhibit telomere recombination and
promote genome stability and cell longevity. If this is the case in the presence of telomerase, the
activated telomere recombination in the absence of telomerase could also be compromised by
deletion of CGI121, and extension of lifespan in telomerase-null cells would be expected.

To examine the role of Cgil21 on lifespan of telomerase-null pre-senescing cells, we ob-
tained spores from heterozygous diploid cells (BY4743 TLCI1/tlc1A CGI121/cgi121A) by tetrad
dissection. Spores with Mat o (the same mating type as that of BY4742) were selected to per-
form the following lifespan assays. According to previously published data in our lab, cells im-
mediately dissected have lifespan similar to that of wild-type cells as telomere recombination is
not activated yet [40]. Thus, in our experiment, spores were grown for 50 generations after dis-
section so that telomeres are modestly shortened and telomere recombination level is elevated
(Fig. 3D, left). These cells were then subjected to lifespan assay. As expected, ticIA senescing
cells show shortened lifespan, and deletion of CGI121 extends lifespan of tlc1A mutant
(Fig. 3D, right). Consistently, this phenotype is also observed in est2A mutant (S2B Fig.). We
noticed that lifespan of tlc1A cgil121A double mutant was not restored to the level seen in the
cgil121A single mutant (Fig. 3D, right). That’s likely attributed to the continuous telomere
shortening in the double mutant as the lifespan assay progressing. The emerging critically
short telomeres can trigger cell cycle arrest and senescence. Therefore, the double mutant
doesn’t have a full replicative capacity as the cgil12IA single mutant.

To avoid the interference of critically short telomere(s) on lifespan, we generated heterozy-
gous diploid cells with over-elongated telomeres by introducing a plasmid harboring a Cdc13-
Est2 fusion protein [53]. Cells were serially passaged and telomeres were examined by
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telomeric Southern blot. Expression of the fusion gene conferred super-long telomeres of about
1 kb to the diploid cells (S2C Fig.). Then the plasmid encoding Cdc13-Est2 fusion protein was
popped-out by negative selection and tetrad dissection was performed to obtain spores with
different genotypes. The super-long telomeres in the dissected spores are about 800 bp (Fig. 3E,
left), a length that prevents critically short telomeres from emerging during the lifespan assay.
Over-elongating telomere has no effect on lifespan of wild-type cells (S2D Fig.). The tlcIA mu-
tant with long telomeres shows similar lifespan to that of wild-type cells (Fig. 3E, right), proba-
bly because the long telomeres in this mutant result in similar telomere recombination state to
that of wild-type strain. Deletion of CGI121 extends lifespan of tlcIA mutant significantly and
the double mutant has lifespan similar to that of cgi121A single mutant (Fig. 3E, right). These
data further support our hypothesis that inhibition of telomere recombination by deletion of
CGI121 promotes cellular longevity.

Deletion of CGI7121 promotes longevity in yku80-4 mutant

It remains elusive how Cgil21 promotes telomere recombination to affect cell longevity. One
possibility is through regulating generation of telomeric ssDNA which is essential for initiation
of recombination events. Previous report suggests that Cgil21 functions in generation of telo-
meric ssDNA, as deletion of CGI121 inhibits accumulation of telomeric ssDNA in the tempera-
ture sensitive cdc13-1 mutant [33]. In wild-type cells, the level of telomeric ssDNA is relatively
low. In yku80A cells, telomeres become deprotected and telomeric ssDNA is accumulated
[23,25], and accordingly the replicative lifespan is shortened (S3 Fig.) [54]. However, the short-
ened lifespan of yku80A mutant is not restored to the length of wild-type cells by deletion of
CGI121 (S3 Fig.). Considering that yKu80 plays multiple roles in DNA damage repair, as well
as telomere maintenance, we then used a separate-of-function yku80™ allele, yku80-4, which
retains the ability of DNA end-joining and telomerase activity regulation, but displays severe
defects in telomere protection [55]. The yku80-4 mutant was constructed by integrating a plas-
mid bearing a yku80-4 allele into the genome of yku80A strain. In parallel, the vector plasmid
or the plasmid harboring a wild-type copy of YKUS80 was integrated to yku80A mutant respec-
tively. As the yku80A null mutant, the yku80-4 mutant also shows significantly shortened life-
span (Fig. 4A), probably due to accumulated ssDNA [55]. Strikingly, the lifespan of yku80-4
cgi121A double mutant is fully restored and extended to a level equivalent to that of the
cgil121A single mutant (Fig. 4B). These data support the conclusion that Cgil21 may facilitate
ssDNA generation at telomeres [33], and therefore accelerate cellular aging.

Cgi121 and Fob1 independently regulate cellular lifespan

In budding yeast, the rDNA consists of ~ 150 copies of 9.1 kb rRNA genes, and is highly
recombinogenic [56,57,58]. rDNA instability is promoted by Fob1-dependent DNA replication
fork stalling which may cause DSBs within the rDNA [59,60,61]. Elimination of FOBI gene re-
duces the rate of rDNA recombination [61], and significantly extends cellular lifespan [62]. In
contrast, deletion of SIR2 gene disrupts the heterochromatin structure of rDNA loci and rDNA
recombination level is elevated which confers shortened lifespan [54,63,64,65]. To investigate
whether the effect of Cgil21 on cell longevity is attributed to rDNA recombination, we per-
formed a marker loss assay to analyze the rDNA recombination rate [40]. As controls, sir2A
cells show significantly elevated rDNA recombination level while fobIA cells have very low
level of IDNA recombination (Fig. 5A). The rDNA recombination rate in ¢gi121A mutant was
comparable to that in wild-type cells (Fig. 5A), indicating that Cgi121 is not involved in rDNA
recombination. Consistently, the long lifespan of ¢giI21A cells could be further extended by de-
leting FOBI (Fig. 5B). These results demonstrate that rDNA recombination and telomere
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Fig 4. Inactivation of CGI/121 extends lifespan of yku80-4 cells. (A) Lifespan assay of the yku80 mutants.
(B) Lifespan analysis of yku80-4 and yku80-4 cgi121A mutants.

doi:10.1371/journal.pgen.1005071.g004

recombination affect cellular lifespan in different pathways, and inhibition of both recombina-
tion activities have additive effect on cell longevity. Interestingly, deletion of Cgil21 affects nei-
ther homologous recombination activity at other genomic loci (S4A Fig.) nor the NHE]
efficiency (S4B Fig.), and the gross chromosomal rearrangement (GCR) rate is modestly elevat-
ed in cgi12IA mutant (S4C Fig.). Thus, we conclude that the effect of Cgil21 in longevity regu-
lation is attributed specifically to its role in telomere recombination.

Extension of lifespan in cgi121A cells requires TOR1

Calorie restriction (CR) slows aging and increases life span in many organisms [66,67]. The life
span extension by CR in yeast is mediated by the coordinated activity of three nutrient-respon-
sive kinases: TOR (target of rapamycin), Sch9, and protein kinase A (PKA) [68,69,70,71]. To
better understand the longevity regulation by Cgil21, we examined the lifespan of cgi121A cells
under CR condition. CR treatment was achieved by reducing the glucose concentration in the
growth medium from 2% to 0.05% [72]. In this assay, CR treatment extends lifespan of wild-
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doi:10.1371/journal.pgen.1005071.g005

type cells while the long lifespan of ¢gil12IA cells could not be maintained under CR condition
(Figs. 6A and S5A). Consistently, deletion of TORI which genetically mimics CR [69] shortens
the mean and maximum life span of ¢gi12IA cells (Fig. 6B). The phenotype of lifespan shorten-
ing by CR in cgil12]1A mutant is quite unexpected, but similar to those observed in W303AR
cells, which has been commonly used in yeast aging research [73], as well as in long-lived Osh6
overexpression cells [74].

The observation that the longevity of ¢gil121A cells requires TOR activity leads us to specu-
late that Tor1 might be involved in telomere recombination. To test this possibility, we
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Fig 6. CR shortens lifespan of cgi121A mutant. (A) Lifespan assay of cgi721A mutant under CR condition
(reducing glucose concentration in the medium from 2% to 0.05%). (B) Lifespan assay of tor1A and tor1A
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doi:10.1371/journal.pgen.1005071.g006

constructed heterozygous diploid cells with one copy of TORI and TLCI deleted, and then ob-
tained spores with different genotypes by tetrad dissection. These spores were cultured and se-
rially passaged in solid or liquid medium to see whether deletion of TORI affects either type of
telomere recombination. When cultured on solid medium, Type I survivors were readily ob-
tained in torlA tlc1A cells. 9 out of the 10 randomly selected clones were Type I survivors and
the other clone was Type II (S5B Fig.). The emerging frequency of Type I survivors (90%) is
highly consistent with previous reports [38,39], suggesting that Y’ recombination is unaffected
by deletion of TORI. On the other hand, when cultured in liquid medium, ticIA cells showed a
typical senescence phenotype, and deletion of TORI had no effect on senescence rate according
to the growth curve (S5C Fig.). Southern blot analysis revealed that Type II survivors arised in
both clones of either tIc1A or torIA ticIA cultures (S5D Fig.), arguing that TORI does not affect
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TG recombination. Taken together, these data suggest that Torl doesn’t affect
telomere recombination.

Discussion

Homologous recombination (HR) is generally a universal biological process across the living
organisms. It not only serves to eliminate deleterious chromosome lesions (such as DSBs and
interstrand crosslinks), but also is critical for the stabilization of stalled replication forks and
chromosome segregation in meiosis. Therefore HR is indispensable for general maintenance of
genome integrity and stability. Deletion of the genes in RAD52 epistasis group inhibits telo-
mere recombination, but also results in inability of repairing deleterious lesions inevitably oc-
curring at other chromosomal loci than telomeres. Thus the overall impact of inactivation of
RAD5?2 epistasis genes on lifespan is negative, leading to genome instability and lifespan short-
ening [11]. In this work, we surprisingly found that HR activities at telomeres can elicit genome
instability and pose a negative effect on cellular longevity. Deletion of the KEOPS subunit gene
CGI121 specifically inhibits telomere recombination and significantly slows down replicative
aging (Fig. 3). Cgil21 appears to be only required for HR at telomeres (Fig. 3A and 3B), but not
for regular DSB repair by HR at other genomic loci including the rDNA (Figs. 5A and S4A),
nor for other DNA repair pathways like NHE] or GCR (S4B and S4C Fig.). Such a separation-
of-function property of Cgil21 provides us a specific tool to assess the effect of telomere re-
combination in cellular longevity.

Telomerase and HR activities function competitively in telomere
maintenance and longevity regulation

Although telomerase-mediated telomere replication is the major pathway that elongates telo-
meres in most eukaryotes, there are eukaryotes that do not have telomerase, but solely use re-
combination to maintain telomeres. From the evolutional point of view, HR may represent the
earliest telomere maintenance mechanism, which precedes the evolution of telomerase-depen-
dent maintenance of chromosomal termini [75]. In budding yeast, both telomerase and recom-
bination can efficiently function to replicate telomeres, though the former is more preferred. In
telomerase-proficient cells, the engagement of recombination in telomere elongation can have
both beneficial and detrimental effects (Fig. 7A). On one hand, the recombination activity
seems to be complementary to telomerase activity in telomere elongation (Fig. 2). This idea is
also supported by the study in the Kluyveromyces lactis stn1-M1 mutant, in which recombina-
tion takes a dominant role in telomere elongation in spite of proficient telomerase activity [76].
Thus it is not surprising, but rather logical, to see that HR is able to function as a back-up sys-
tem for telomere replication when telomerase pathway fails. On the other hand however, telo-
meres possess multiple characteristics of DSBs and recruit HR activity to undergo “repair”
process. The HR-mediated repair activity tangles or competes with telomerase activity on telo-
meres (Fig. 2), leading to false-alarms which make the cells undergo aging. Thus, the balance of
both activities results in metastable telomeres and normal lifespan (Fig. 7A).

In cells with no or less HR activities at telomeres (Fig. 7B), telomerase is not (or less) “ha-
rassed” by the HR activity, and the more stable telomeres result in longer lifespan (Fig. 7B).
The KEOPS complex subunit Cgil21 is required for efficient telomere recombination
(Fig. 3A), probably by functioning in telomeric ssDNA generation (Fig. 4B) [33]. Deletion of
CGI121 specifically inhibits telomere recombination and confers extended lifespan (Fig. 3).

In telomerase-negative yeast cells, HR becomes the only means to maintain telomere length,
and the unstable telomeres elicit genome instability. The trade-off of ensuring the viability of a
population of cells through telomere recombination is to partially sacrifice the longevity of the
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mother cells (Fig. 7C). This notion is supported by several lines of evidence. The yeast cells that
solely relied on HR (telomerase-null survivors) exhibited shorter lifespan than those that use
telomerase to replicate telomeres (wild-type cells) (Fig. 1A) [40]. Additionally, replenishment
of telomerase in telomerase-null yeast cells efficiently inhibits telomere recombination

(Fig. 1B), and at least partially restores lifespan (Fig. 1C and 1D). Furthermore, attenuation of
telomere recombination by deletion of CGI121 significantly increases lifespan in telomerase-
negative cells (Figs. 3D, 3E and S2B). Therefore, we prefer the model that the illegitimate re-
combination activity involuntarily competes and interferes with telomerase activity to cause ge-
nome instability at telomeres, and results in acceleration of replicative aging (Fig. 7). It is
possible that both genome stability and cell longevity are driving forces for the evolution of
HR-to-telomerase in telomere maintenance mechanism.

HR activities at different genomic loci have additive effects on aging

HR is prone to take place at the genomic loci that share similar or the same DNA sequences. In
yeast genome, both telomere regions and rDNA loci have repetitive sequence, and they are hot
spots for intra and/or inter-chromosomal HR. At chromosomal ends, telomere recombination
occurs in the presence of telomerase (Fig. 2). Deletion of CGI121 specifically inhibits telomere
recombination and extends cell longevity both in telomerase-positive and -negative cells

(Fig. 3). At rDNA loci, the Fob1-dependent replication fork stall causes replication stress and
rDNA instability, and triggers recombination-mediated pop-out of rDNA circles [59,60,61].
Deletion of FOBI reduces rDNA recombination [61], and extends cellular lifespan [62]. In
spite of the differences between telomere and rDNA recombination, inhibition of recombina-
tion at both sites seen in the foblA cgi121A double mutant cells has additive effect on slowing
down of aging (Fig. 5B). This evidence further supports our model that the unregulated and/or
illegitimate HR events occurring at certain genomic loci such as telomeres and rDNA elicit ge-
nome instability, and thereby pose a negative impact on cell longevity. It might be
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therapeutically significant to find a means to promote cell longevity by blocking recombina-
tion-mediated repair of telomeres.

The KEOPS complex and aging regulation

In addition to Cgil21, the KEOPS complex contains four other subunits including a protein ki-
nase (Bud32) and an ATPase (Kael) [33,34]. It remains elusive whether the other subunits also
regulate longevity. Due to the severe growth defect of the other four KEOPS mutants, lifespan
assay could not be performed. When a second copy of the KEOPS genes respectively integrated
into the genome, the mRNA levels of these genes were elevated respectively according to the
qRT-PCR results, suggesting that the five subunits were overexpressed respectively (S6A Fig.).
However, the lifespan of the cells overexpressing any of the five subunits was unchanged (S6B
and S6C Fig.). We speculate that the subunits of KEOPS complex do not function individually,
but rather as a whole complex to regulate aging. Considering the high conservation of KEOPS
complex in evolution, it is also intriguing to investigate whether the counterpart of the KEOPS
in higher organisms functions in the same way as in yeast in longevity regulation.

Materials and Methods
Yeast strains

All the yeast strains used in this study were listed in S1 Table. Strains used in lifespan assay
were all in BY4742 background unless stated otherwise. The de novo telomere addition system
was modified from that reported by Gottschling’s lab [45]. The yku80-4 and related strains
were constructed by integrating an MscI-linearized plasmid pRS303 bearing a copy of yku80-4
or YKUS0 gene, or simply the vector plasmid into the his3AI locus in the genome of yku80A
mutant. Strains overexpressing KEOPS subunits were constructed by integrating an Mscl-line-
arized plasmid pRS303 bearing sequences including ORF, endogenous promoter and termina-
tor of the target genes into the his3A1 locus in the genome. Yeast strains were constructed
either by transformation with a lithium acetate procedure or genetic cross (mating and tetrad
dissection). The plasmids for gene deletion were constructed based on the pRS series [77].

Replicative lifespan assay

Lifespan assay was performed as described previously [40]. Yeast strains were pre-grown over-
night on solid YPD plates at 30°C. Cells were then streaked onto fresh YPD plates and grew for
about 2 hours. Single cells were randomly selected and arrayed to the plates using a microma-
nipulator (Singer MSM). After 2 hours (about 1-2 divisions), virgin daughter cells were isolat-
ed as buds from mother cells and subjected to lifespan analysis. Daughter cells were then
removed by gentle agitation with a dissecting needle and tabulated every 1-2 cell divisions
until all the cells stopped dividing. Each experiment was performed with 50-60 cells for each
strain. Statistical significance was determined by a Wilcoxon rank sum test using Stata 8 soft-
ware and significant differences were stated for p < 0.05. The statistical data of the replicative
lifespan experiments in this study were shown in S2 Table.

Telomere Southern blot

Genomic DNA was extracted and digested with Xhol and then subjected to telomere Southern
blot as described previously using the TG;_; probe [52].
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Cell viability assay for chromosome healing

Yeast cells were inoculated in yeast complete medium lacking both uracil and lysine (YCY™),
containing 2.5% of raffinose (Sigma). The TG81 rad52A or TG81 rad50/rad51/rad52A cells
were inoculated in YC medium lacking lysine (YC®'). Proportional cells were plated onto YC
medium lacking uracil, containing glucose (2%) or galactose (3%) (Sigma). The repair efficien-
cy was defined as the number of colonies on galactose plates (cut) divided by that on glucose
plates (uncut). The data were summarized from four independent experimental duplicates and
the error bars indicates the standard deviations. Statistic significances were calculated by Stu-
dent t-test ("p < 0.05and **p < 0.01).

Y’ recombination detection

Yeast cells were inoculated in YCU™ medium plus 2.5% of raffinose, then diluted into YC~
plus 2.5% of raffinose and cultured to logarithmic phase. For TG81 rad52A or TG81 rad50/
rad51/rad52A strain, cells were inoculated in YCX medium and diluted into complete YC me-
dium. Galactose was then added to a final concentration of 3%, and cells were cultured for an
additional 24 h. Cells were harvested and genomic DNA was extracted following PCR amplifi-
cation with primers specific for TRP1 promoter and consensus sequence of all the Y’ elements.
The PCR products were subjected to Southern blot using a probe specific for TG, _; repeats as
used in other telomeric Southern blot in this study. Proportional genomic DNA was digested
with EcoRI endonuclease to generate a POL1 DNA fragment of about 1 kb which was detected
by a probe specific for POLI gene and serves as internal control. Meanwhile, aliquots of the
PCR products were cloned to pMD18-T vector (TAKARA) and subjected to sequencing.

Telomere sequencing

Spores derived from diploid strain BY4743 TLCI1/tlc1A CGI121/cgi121A were cultured for
about 50 generations after dissection. Genomic DNA was extracted and subjected to telomere
PCR as described previously [51,52]. PCR products were cloned to pMD18-T vector
(TAKARA) and then subjected to sequencing.

rDNA recombination rate

rDNA recombination rate is assessed by the rate of loss of the URA3 reporter gene inserted at
rDNA loci [40]. Cells grown in log phase were plated to YC medium with or without 0.15% 5-
FOA. rDNA recombination rate is determined by dividing the number of colonies grown on 5-
FOA-containing YC plates by that on YC plate without 5-FOA. The error bars indicates the
standard deviations of data from three independent experiments. Significant differences were
stated for *p < 0.05 and **p < 0.01.

Supporting Information

S1 Fig. The full sequences of the three clones of Y’ recombination PCR products in the
presence of telomerase. The sequences comprise part of the TRPI promoter (in green), vari-
able lengths of TG, _; tracts (including the TG seed in purple and the recombined TG tracts in
orange) and the proximal sequences of the Y’ elements (in grey). Clone #1 and #2 contain se-
quence of Y’ from telomere VIL (Tel0O6L-YP, in gray), while clone #3 has Y’ sequence from telo-
mere VIIIR (TelO8R-YP, in grey).

(PDF)
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S2 Fig. Deletion of CGI121 extends lifespan in both telomerase-positive and pre-senescing
telomerase-negative cells. (A) BY4741 cgil121A mutant is subjected to lifespan analysis. (B)
Spores with different genotypes and the same mating type o were applied to telomere Southern
blot (left) and lifespan analysis (right) as in Fig. 3D. (C) After introduction of a plasmid bearing
the CDC13-EST2 fusion gene or the vector plasmid as a control, the heterozygous diploid cells
were continuously passaged and telomere length was examined at the indicated time point by
telomeric Southern blot. The numbers above the lanes indicate the numbers of restreaks. (D)
Spores of wild-type cells with normal or long telomeres were subjected to telomere length (left)
and lifespan analysis (right).

(PDF)

S3 Fig. Deletion of CGI121 does not affect lifespan of yku80A mutant. Lifespan of yku80A
and yku80A cgil121A mutants was examined.
(PDF)

$4 Fig. Cgil21 does not regulate HR at other genomic loci, NHE]J or GCR efficiency. (A)
HR efficiency at other genomic loci was detected for ¢gi121A mutant (refer to the “Supporting
Materials and Methods” session of S1 Text). The error bars indicates the standard deviations.
*p < 0.05and **p < 0.01. (B) NHE] efficiency of cgi121A mutant. The error bars indicates the
standard deviations. *p < 0.05 and **p < 0.01. (C) GCR efficiency of cgi12IA mutant. The
error bars indicates the standard deviations. *p < 0.05 and **p < 0.01.

(PDF)

S5 Fig. Tor1 does not affect both types of telomere recombination. (A) Lifespan of ¢gil121A
mutant under different glucose concentration. (B) Southern blot analysis of 10 clones of ticIA
tor1A strain obtained by solid medium passage. (C) Growth curve of liquid cultured spores dis-
sected from heterozygous diploid (BY4743 TLC1/tlc1A TOR1/tor1A). (D) Southern blot analy-
sis of 2 clones each of tlc1A and ticIA torlA cells with liquid medium passage.

(PDF)

S6 Fig. Overexpression of individual KEOPS genes does not affect lifespan. (A) qRT-PCR
analysis of the mRNA level of individually overexpressed KEOPS genes. (B) Lifespan analysis
of strains overexpressing BUD32 or KAEI. (C) Lifespan analysis of strains overexpressing
CGI121, GON7 or PCCI.

(PDF)

S1 Table. Yeast strains used in this study.

(PDF)

$2 Table. Statistical data of lifespan experiments in this study.
(PDF)

S1 Text. Supporting materials and methods.
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