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Abstract

Anticancer topoisomerase ‘‘poisons’’ exploit the break-and-rejoining mechanism of topoisomerase II (TOP2) to generate
TOP2-linked DNA double-strand breaks (DSBs). This characteristic underlies the clinical efficacy of TOP2 poisons, but is also
implicated in chromosomal translocations and genome instability associated with secondary, treatment-related,
haematological malignancy. Despite this relevance for cancer therapy, the mechanistic aspects governing repair of
TOP2-induced DSBs and the physiological consequences that absent or aberrant repair can have are still poorly understood.
To address these deficits, we employed cells and mice lacking tyrosyl DNA phosphodiesterase 2 (TDP2), an enzyme that
hydrolyses 59-phosphotyrosyl bonds at TOP2-associated DSBs, and studied their response to TOP2 poisons. Our results
demonstrate that TDP2 functions in non-homologous end-joining (NHEJ) and liberates DSB termini that are competent for
ligation. Moreover, we show that the absence of TDP2 in cells impairs not only the capacity to repair TOP2-induced DSBs
but also the accuracy of the process, thus compromising genome integrity. Most importantly, we find this TDP2-dependent
NHEJ mechanism to be physiologically relevant, as Tdp2-deleted mice are sensitive to TOP2-induced damage, displaying
marked lymphoid toxicity, severe intestinal damage, and increased genome instability in the bone marrow. Collectively, our
data reveal TDP2-mediated error-free NHEJ as an efficient and accurate mechanism to repair TOP2-induced DSBs. Given the
widespread use of TOP2 poisons in cancer chemotherapy, this raises the possibility of TDP2 being an important etiological
factor in the response of tumours to this type of agent and in the development of treatment-related malignancy.
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Introduction

The double-stranded helical structure of DNA creates topolog-

ical problems in all processes that involve opening of the double

helix and accessing the genetic information [1,2]. In particular, the

transcription and duplication of DNA and its condensation into

chromosomes generates knots and tangles that need to be resolved

to avoid interference with diverse cellular processes and to ensure

faithful chromosome segregation during mitosis. DNA topoisom-

erases are enzymes that introduce transient breaks in DNA to solve

these topological problems. Type II topoisomerases, such as

topoisomerase II in eukaryotes (TOP2) are essential homodimeric

enzymes that relax, unknot and decatenate DNA molecules by

catalyzing the passage of duplex DNA through a transient DNA

double strand break (DSB) created by the enzyme [3]. Two

isoforms of TOP2, a and b, exist in higher eukaryotes, with

primary roles in replication and chromosome segregation and in

transcription, respectively.

A key intermediate of TOP2 activity is the cleavage complex, in

which each of two topoisomerase subunits is covalently linked to the 59-

terminus of an enzyme-generated DSB via a phosphodiester bond

between the active-site tyrosine and the 59-phosphate. The cleavage

complex is normally a very short-lived intermediate, because the

topoisomerase rapidly re-ligates the DSB once DNA strand passage

through the DSB has occurred. However, under certain circumstances,

such as the presence of nearby DNA lesions, cleavage complexes can

be stabilized resulting in an increased likelihood of collision with RNA

or DNA polymerases [4]. Such collisions can convert cleavage

complexes into potentially clastogenic or lethal DSBs that require

cellular DNA repair pathways for their removal.
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Cleavage complexes are the target of a widely used class of anti-

tumor agents that ‘poison’ topoisomerase activity, thereby

prolonging the half-life of the intermediate and increasing the

possibility of DSB formation [4,5]. Thus, these drugs kill tumor

cells by inducing high levels of TOP2-associated DSBs. Conse-

quently, TOP2 poisons are commonly used antineoplastic drugs in

the treatment of a broad range of tumor types including malignant

lymphomas, sarcomas, leukemias, and lung, ovarian, breast and

testicular cancers [5]. However, similar to other chemotherapeutic

agents, TOP2-targeting drugs are only partially selective for

tumour cells, resulting in unwanted toxicity in normal tissues and

in therapy-associated chromosome translocations and secondary

leukemias [6–14]. Moreover, some breakpoints in such transloca-

tions have actually been correlated with preferential sites of

cleavage by TOP2 [13–17].

A characteristic feature of TOP2-induced DNA breaks is

covalent attachment of the enzyme to 59 ends of the DNA, which

must be removed by cellular end-processing enzymes if DSB

repair is to occur [18]. Until recently, the only known mechanism

for removal TOP2 peptide from DNA 59-termini in mammalian

cells involved excision of the DNA fragment linked to the peptide

using nucleases such as the MRN complex, CtIP or Artemis [19–

21]. Recently, however, we identified a human 59-tyrosyl DNA

phosphodiesterase (59-TDP) that can cleave 59-phosphotyrosyl

bonds and thereby release TOP2 from DSB termini without the

need to also remove DNA sequence [22]. Consequently, this

enzyme, which was previously known as signalling protein and

transcription cofactor TTRAP/EAPII [23,24], is now denoted

tyrosyl DNA phopshodiesterase-2 (TDP2; Human Gene Nome-

clature Organisation). Notably, consistent with its enzyme activity,

TDP2 is required for cellular resistance to the anti-cancer TOP2

poison etoposide, but is not required for cellular resistance to

ionizing radiation or methylmethane sulphonate [22,25]; agents

that induce DNA damage independently of TOP2 activity.

Following DNA end processing, DSBs can be repaired either by

homologous recombination (HR) or by non-homologous end

joining (NHEJ) [26]. However, these pathways utilize fundamen-

tally different mechanisms for rejoining DSBs and consequently

differ in their accuracy. In particular, HR utilizes undamaged

sister chromatids to replace any nucleotides removed from DNA

termini during DNA end processing and consequently is normally

‘error-free’. However, this process is available only during S phase

or G2, when sister chromatids are available. In contrast, NHEJ is a

‘cut-and-splice’ process in which DSB termini are ligated together

following DNA end processing without accurate replacement of

missing nucleotides, and thus is potentially ‘error-prone’.

Here, we employ avian and murine experimental models to

show that TDP2/Tdp2 deletion results in hypersensitivity to a

structurally diverse range of anti-cancer TOP2 poisons. Moreover,

we present genetic, biochemical and cellular evidence for TDP2

functioning in a mechanism of NHEJ that protects genome

integrity in response to TOP2-induced damage. Finally, we show

that this TDP2 dependent pathway also operates in vivo, as, upon

exposure to TOP2 poisons, it is required for normal adult mouse

lymphopoiesis, intestinal mucosa homeostasis and the mainte-

nance of genome stability in the bone marrow. Collectively, our

results suggest that TDP2 defines an error-free mechanism of

NHEJ in mammals, which is specialized in the repair of TOP2-

induced DSBs and reduces both tissue toxicity and genome

instability in response to this particular type of DNA damage.

These findings suggest the possibility of TDP2 being a significant

etiological factor in the clinical tolerance and response to widely

used TOP2 poisons.

Results

TDP2 is required for cellular resistance to clinical TOP2
poisons and is the major 59-TDP activity in the mouse

The discovery of TDP2 as the first 59-TDP activity raised the

possibility of it being an important factor in the clinical response to

TOP2 poisons [22,25]. Indeed, TDP2 deleted avian DT40 cells

are hypersensitive to etoposide [22,25]. To address this question

further, we examined the sensitivity of TDP22/2/2 cells to two

additional, structurally diverse, TOP2 poisons. These drugs,

denoted doxorubicin and amsacrine (m-AMSA), are employed

widely during cancer therapy but in contrast to etoposide, ‘poison’

TOP2 by intercalating into DNA [5]. Nevertheless, similarly to

etoposide, TDP22/2/2 cells displayed significant hypersensitivity

to both doxorubicin and m-AMSA (Figure 1A). Moreover, a

functional TDP2 phosphodiesterase domain was required for

cellular resistance to this type of drug, because expression of wild-

type human TDP2 (hTDP2) rescued the sensitivity of TDP22/2/2

DT40 cells to m-AMSA, whereas hTDP2D262A harbouring an

inactivating mutation in the catalytic active site [5] did not

(Figure 1A). These results show that TDP2 is required for cellular

resistance to a range clinically relevant and structurally diverse

TOP2 poisons, and support our contention that this requirement

reflects the 59-TDP activity of this enzyme.

To determine the impact of TDP2 on TOP2-induced DNA

damage in mammals, and thus its possible relevance to anti-cancer

therapy, we adopted a mouse model in which the first three exons

of Tdp2, plus the 59-UTR, were deleted by Cre-mediated excision

(Figure 1B; see Materials and Methods). Mice homozygous for the

deleted allele (Tdp2flD, from here-on denoted Tdp2D1–3) are viable,

and so far we have not detected any abnormal pathology

(unpublished observations). However, transformed Tdp2D1–3

mouse embryonic fibloblasts (MEFs) were hypersensitive to

etoposide (Figure 1C, left, and Figure S1), but were not

hypersensitive to DNA damage induced independently of TOP2

by c-irradiation (Figure 1C, right).

Author Summary

DNA double-strand breaks (DSBs) are dangerous because
they can lead to cellular death and tissue degeneration if
not repaired, or to genome rearrangements, which are a
common hallmark of cancer, if repaired incorrectly.
Although required for all chromosomal transitions in cells,
transient DNA cleavage by topoisomerase II (TOP2) is a
potential endogenous source of DSBs, which are charac-
teristic in that TOP2 remains covalently bound to the DNA
termini. In addition, numerous chemotherapeutic regimes
rely on compounds that ‘‘poison’’ TOP2 activity, stimulat-
ing the formation of DSBs that target tumour cells.
However, these compounds also affect healthy tissue
and confer undesirable side effects, including the stimu-
lation of genome rearrangements that can trigger
secondary malignancies (mainly acute leukemia). Identify-
ing the factors that participate in the repair of TOP2-
induced DSBs and fully understanding their mechanism of
action are therefore important for the design of chemo-
therapeutic regimes that are more effective and safer. Here
we demonstrate that TDP2, a recently identified protein
that can liberate DSB termini from blocked TOP2, functions
as part of established cellular DSB repair processes and is
required to safeguard genome integrity upon treatment
with TOP2 poisons, both in cells and in mice. These results
can therefore have important implications in cancer
treatment.

TDP2 and Genome Stability
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Protein extracts from spleen, thymus, and bone marrow from

wild type mice possess robust 59-TDP activity, but, importantly,

this activity was absent in analogous protein extracts from

Tdp2D1–3 mice, confirming successful inactivation of the enzyme

(Figure 2A). Cell extracts prepared from primary Tdp2D1–3 MEFs

also lacked detectable 59-TDP activity (Figure 2B). This was true

Figure 1. TDP2 promotes survival following TOP2-induced DSBs. A. Clonogenic survival of the indicated DT40 cell line; wild-type, TDP22/2/2

and TDP22/2/2 complemented with human TDP2 (hTDP2) and catalytic-dead human TDP2 (hTDP2 262A) or empty vector (Empty V); following
continuous treatment with the indicated concentrations of doxorubicin (left) or mAMSA (right). Average 6 s.e.m. of at least three independent
experiments and statistical significance at the highest indicated dose when compared to TDP22/2/2 cells by Two-way ANOVA with Bonferroni post-
test is shown. B. Scheme showing the strategy for targeted deletion of the first three exons of Tdp2 in mouse. The wild-type (Tdp2+), conditional
(Tdp2flEx1–3,neo) and deleted (Tdp2flD) alleles are depicted. The EcoRI-EcoRI fragment of Tdp2 was used in the targeting construct. Southern-blot analysis
of PstI-digested DNA from wild-type (+/+), heterozygous (+/flD) and knock-out (flD/flD, from now on denoted Tdp2D1–3) mice, using the indicated
probe (red line), is shown (bottom right). C. Clonogenic survival of wild-type and Tdp2D1–3 transformed MEFs after 3 h acute exposure to the indicated
concentrations of etoposide (left) or the indicated dose of c-irradiation (right). Average 6 s.e.m. of three independent experiments and statistical
significance by Two-way ANOVA test with Bonferroni post-test is shown. In all figures (*P#0.05; **P#0.01; ***P#0.005).
doi:10.1371/journal.pgen.1003226.g001

TDP2 and Genome Stability
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not only for blunt-ended DSB substrates, but also for DSB

substrates harbouring a 4-bp 59-overhang (Figure 2C), character-

istic of TOP2-induced DSBs. Additionally, EDTA-mediated

chelation of Mg2+, which is essential for TDP2 function,

completely eliminates 59-TDP activity in wild type MEF extracts.

These observations are significant because the related enzyme

TDP1, whose activity is Mg2+ independent, was recently reported

to possess weak activity on this type of substrate [27]. Our data

therefore suggest that TDP2 is the primary, if not only, source of

59-TDP activity in MEF extracts (Figure 2C).

TDP2 creates ligatable DSBs and functions in NHEJ
Based on the mechanism of TOP2 cleavage, we anticipated that

TDP2 activity would reconstitute ‘clean’ DSBs (59 phosphate and

39 hydroxyl termini) with 4-bp overhangs, which would be an ideal

substrate for ligation by NHEJ. Interestingly, these ligation events

would accurately preserve the DNA sequence, suggesting the

possibility of an error-free NHEJ mechanism that specifically acts

on TOP2-induced DSBs. To test this hypothesis, we examined

whether TDP2 action at DSBs typical of those induced by TOP2

creates termini that can be ligated by T4 DNA ligase. Indeed,

inclusion of T4 DNA ligase in reactions containing wild type MEF

extract resulted in the additional appearance of a product of 46-nt,

indicative of the completion of DSB repair by DNA ligation.

However, this product was not observed if reactions contained cell

extract from Tdp2D1–3 MEFs, confirming that DNA ligation was

dependent on TDP2 activity (Figure 2D). Interestingly, the length

of the product is consistent with a ligation event in which DNA

sequence is preserved. To analyse ligation events directly catalysed

by cell extracts, we generated linear plasmids harbouring 59

phosphate or 59 phosphotyrosine ends by PCR amplification with

the corresponding modified primers. The incubation of these

substrates with NHEJ-competent nuclear extracts [28] results in

plasmid circularization events that can be scored as colonies

following bacterial transformation. As can be seen in Figure 2E,

nuclear extracts from Tdp2D1–3 MEFs efficiently circularized linear

plasmids with 59 phosphate ends but not linear plasmids

harbouring 59-phosphotyrosine. This difference was lost upon

addition of recombinant TDP2 to the reaction, confirming the

TDP2–dependent nature of the repair reaction. Collectively, our

data suggest that TDP2 activity facilitates NHEJ of 59 tyrosine-

blocked ends by generating DSBs with ligatable termini, consistent

with our hypothesis that this enzyme can support error-free NHEJ

of TOP2-induced DNA damage.

To genetically test whether TDP2 functions indeed during

NHEJ, we generated TDP22/2/2 DT40 cells harboring a targeted

deletion of Ku70, a core component of the NHEJ pathway (Figure

S2). Whilst both TDP22/2/2 and KU702/2 cells were hypersen-

sitive to etoposide, cells in which both genes were deleted

(TDP22/2/2/KU702/2) were no more hypersensitive than cells

in which Ku70 alone was deleted (Figure 3A). In contrast to this

epistatic relationship with a core NHEJ factor, transient knock-

down of TDP2 further enhances etoposide sensitivity of HR

defective (BRCA2 mutated) human fibroblasts (Figure 3B). Based

on these genetic relationships, we conclude that TDP2 functions in

a NHEJ-mediated and HR-independent pathway for the repair of

TOP2-induced DSBs.

To further assign a role for TDP2 in the NHEJ pathway for DSB

repair, we measured DSB repair rates in primary Tdp2D1–3 MEFs by

immunodetection of cH2AX, a phosphorylated derivative of histone

H2AX that arises at sites of chromosomal DSBs [29]. We measured

DSB repair in specific phases of the cell cycle, because whilst NHEJ is

operative throughout, HR-mediated DSB repair is operative only in S/

G2 [30]. Notably, DSB repair rates were markedly reduced in

Figure 2. Deletion of Tdp2 in mouse abolishes 59-TDP activity and ligation of 59 phosphotyrosine-blocked ends. A. Duplex substrate
harbouring a 59phosphotyrosine blunt end (left) was incubated with 9 mg Tdp2+/+ or Tdp2D1–3 tissue extract from bone marrow (BM), thymus and
spleen for 1 h. B. Substrate in ‘‘A’’ was incubated with 1.5 mg of cellular extract from Tdp2+/+ or Tdp2D1–3 primary MEFs for the indicated time. C.
Duplex substrate harbouring a 59phosphotyrosine self-complementary overhang end (left) was incubated with 10 mg cellular extract from Tdp2+/+ or
Tdp2D1–3 transformed MEFs for 2 h in the presence or absence of 50 mM EDTA. D. Self-ligation of 59 phosphate (P) and 59 phosphotyrosine (Y–P)
overhang substrates as depicted in ‘‘C’’ incubated for 1.5 h with 3.3 mg cellular extract from Tdp2+/+ or Tdp2D1–3 transformed MEFs in the presence of
T4 DNA ligase. In all cases migration of the 59 phosphotyrosine substrate (Y–P), 59 phosphate (P) and ligation (lig) products are indicated. E.
Circularization efficiency of a linear plasmid with 59 phosphotyrosine (Y–P) and 59 phosphate (P) catalysed by Tdp2D1–3 transformed MEFs extracts in
the presence and absence of recombinant human TDP2 (hTDP2). Reaction products were transformed into E. coli and the number of transformants
obtained per mg of initial substrate DNA (average 6 s.e.m. of three independent experiments) is shown. Statistical significance by Two-way ANOVA
test with Bonferroni post-test is indicated is shown.
doi:10.1371/journal.pgen.1003226.g002

TDP2 and Genome Stability
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Tdp2D1–3 MEFs following etoposide treatment, both in G0/G1

(Figure 3C) and G2 (Figure 3D), consistent with TDP2 functioning,

as NHEJ, independently of cell cycle. These results were not specific to

murine cells, since similar results were observed in TDP2-depleted

human A549 cells (Figure S4). In contrast to treatment with etoposide,

the rate of DSB repair was normal in Tdp2D1–3 MEFs following c-

irradiation, consistent with a role for TDP2 specifically at TOP2-

induced DSBs (Figure 3E). Collectively, these data demonstrate that

TDP2 is required in mammalian cells for rapid repair of TOP2-

induced DSBs by NHEJ, and for cellular resistance to these lesions.

Figure 3. TDP2 promotes repair of TOP2-induced DSBs by NHEJ. A. Clonogenic survival of wild-type, TDP22/2/2, KU702/2 and TDP22/2/2

KU702/2 DT40 cells following continuous treatment with the indicated concentrations of etoposide. Average 6 s.e.m. of at least three independent
experiments and statistical significance at the highest indicated dose by Two-way ANOVA with Bonferroni post-test is shown. B. Clonogenic survival
of wild-type and BRCA2-mutant human transformed fibroblasts with (Tdp2si) and without (control) TDP2 depletion following 3 h acute exposure to
the indicated concentrations of etoposide. Western blot analysis of TDP2 levels in wild type and BRCA2-mutant cell extracts after 48 h of transfection
is indicated (inset). Other details as in ‘‘A’’. C. cH2AX foci induction after 30 min 20 mM etoposide treatment and repair at different times following
drug removal in confluency arrested Tdp2+/+ and Tdp2D1–3 primary MEFs. Representative images of the 3 h repair time point including DAPI
counterstain (right) and average 6 s.e.m. of at least three independent experiments (left) are shown. Statistical significance by Two-way ANOVA test
with Bonferroni post-test is indicated. D. G2 primary MEFs (see Matherials and Methods) following 30 min 10 mM etoposide treatment. Other details
as in ‘‘C’’. E. Confluency arrested primary MEFs exposed to 2Gy c-irradiation. Other details as in ‘‘C’’.
doi:10.1371/journal.pgen.1003226.g003

TDP2 and Genome Stability
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TDP2 promotes genome stability following TOP2-
induced DNA damage

We hypothesized that this TDP2-mediated error-free NHEJ

mechanism would be important to maintain genome integrity

upon exposure to TOP2 poisons. To address this possibility, we

quantified the frequency of micronuclei (MN), nucleoplasmic

bridges (NB), and chromosomal aberrations following etoposide

treatment. These events constitute well-established indicators of

genome instability caused by misrepair of DSBs in which acentric,

dicentric and aberrant chromosomes or chromosome fragments

can be formed. As expected, etoposide increased the number of

micronuclei and nucleoplasmic bridges in both transformed

Tdp2+/+ and Tdp2D1–3 MEFs, but this increase was significantly

higher (up to three-fold) in Tdp2D1–3 cells (Figure 4A). Primary

Tdp2D1–3 MEFs at low passage (P3–4) similarly displayed elevated

levels of micronuclei and nucleoplasmic bridges following etopo-

side treatment, compared to wild type primary MEFs (Figure 4B),

although in the case of nucleoplasmic bridges the low number of

cells displaying these structures prevented the difference from

reaching statistical significance.

An additional indicator of genome instability is elevated

frequencies of chromosome aberrations. Consequently, we quan-

tified the frequency of chromosome breaks and exchanges in

metaphase spreads of transformed Tdp2+/+ and Tdp2D1–3 MEFs.

In agreement with the increased cell cycle arrest of TDP22/2/2

DT40 cells in G2 following etoposide treatment [25], we noted an

etoposide-dependent reduction in metaphase cells that was

particularly severe in Tdp2D1–3 MEFs (unpublished observations).

However, of those metaphases observed and scored, both

chromosome exchanges and breaks were significantly higher (2

to 5-fold) in Tdp2D1–3 MEFs than in Tdp2+/+ MEFs (Figure 4C). A

similar increase in these events in Tdp2D1–3 MEFs, compared to

wild type cells, was observed if low-passage primary MEFs were

employed, ruling out the possibility that the elevated genome

instability in Tdp2D1–3 MEFs was an artefact of cellular transfor-

mation (Figure 4D). In the latter case, etoposide treatment almost

ablated the appearance of mitotic cells in populations of both wild

type and Tdp2D1–3 MEFs, necessitating the use of caffeine to

prevent G2 arrest. Taken together these results demonstrate that

loss of TDP2 results in increased genome instability following

TOP2-induced DNA strand breakage.

Loss of TDP2 results in elevated homologous
recombination

The above results demonstrate increased genome instability in

Tdp2D1–3 MEFs, consistent with a role for TDP2 in error-free

NHEJ-mediated repair of TOP2-induced DSBs. In this scenario,

we considered the possibility that loss of TDP2 might also result in

channelling of DSB repair towards HR. To address this question,

we analyzed the formation of RAD51 foci, a well-established

indicator of repair by HR. Following treatment with etoposide, the

average number of Rad51 foci per cell was ,3-fold higher in

Tdp2D1–3 than in wild-type MEFs (Figure 5A), in agreement with

an increase in the use of HR to repair TOP2-induced DSBs when

TDP2 is not present. Furthermore, we compared the frequency of

etoposide-induced sister chromatid exchanges (SCEs), a molecular

hallmark of HR [31], in wild type and Tdp2D1–3 MEFs (Figure 5B).

Notably, SCE levels increased substantially in transformed MEFs

following acute etoposide exposure, being significantly higher in

Tdp2D1–3 cells at two etoposide concentrations tested (1 and

2.5 mM). These data confirm that, upon etoposide treatment, the

frequency of HR is elevated in Tdp2D1–3 MEFs, consistent with

TDP2 functioning in NHEJ.

Elevated hypersensitivity to TOP2-induced DNA damage
in Tdp2D1–3 mice

To address the relevance of TDP2-mediated repair of TOP2-

induced DSBs in vivo, we compared the impact of etoposide on

adult (8 wk) wild type and Tdp2D1–3 mice. A single intraperitonal

injection of etoposide (75 mg/kg) caused a decrease in body

weight in the initial 4 days post-treatment both in wild type and

Tdp2D1–3 animals (Figure 6A). However, whereas Tdp2+/+ mice

exhibited relatively mild and transient weight loss, Tdp2D1–3

littermates lost weight progressively and were sacrificed at day 6 to

prevent suffering. No differences in body weight were observed

between mock-treated (with DMSO) wild type and Tdp2D1–3 mice.

Histopathological analysis of Tdp2D1–3 mice sacrificed 6 days after

etoposide treatment revealed marked villous atrophy in the small

intestinal mucosa as the likely cause of the drastic weight loss

(Figure 6B). This was not observed in either wild-type and/or

DMSO treated animals (data not shown), suggesting a protective

role for TDP2 against adverse effects of etoposide in vivo.

TOP2-induced DNA damage results in increased
lymphoid toxicity in Tdp2D1–3 mice

In addition to severe intestinal damage, etoposide administra-

tion resulted in elevated splenic and thymic atrophy in Tdp2D1–3

mice, compared to wild type mice (Figure 6C), consistent with the

known hypersensitivity of these organs to this drug [32].

Histological analysis of these tissues revealed a marked reduction

in the cellular content in Tdp2D1–3 animals (Figure 6C, right, note

the low density of dark-stained nuclei). In light of these results, we

analysed B-cell and T-cell maturation in wild type and Tdp2D1–3

mice (Figure 6D and Figure S5). In the case of B-cell precursors in

bone marrow, treatment with etoposide resulted in a decrease of

30–50% in the fraction of cells that were CD43+ B220+

progenitors (Pro-B cells) and a decrease of .95% in the fraction

of cells that were CD432 B220low (Pre-B cells) or CD432 B220high

(immature B cells) precursors. In all cases the reduction in B-cell

precursors was greater in Tdp2D1–3 mice, but the differences were

not statistically significant at the administered dose. In contrast, in

the case of T-cell maturation, whereas etoposide treatment

reduced the fraction of CD4+ CD8+ immature T cells by 30–

40% in wild type mice, these cells were almost completely

eliminated in Tdp2D1–3 mice (Figure 6A, bottom right). No effect

was observed in CD11b/Mac-1+ myeloid cells in the bone marrow

(Figure S6). Taken together, these results suggest that loss of TDP2

increases cellular attrition in the lymphoid system, particularly in

the T-cell lineage, in response to TOP2-induced DNA damage.

Tdp2D1–3 mice display increased TOP2-induced genome
instability in bone marrow

A major side-effect of cancer therapy employing TOP2 poisons

is secondary hematological malignancy, and in particular acute

leukemia, resulting most likely from error prone/erroneous repair

of TOP2-induced DSBs and chromosome translocations [4,7].

Given our findings that TDP2 limits genome rearrangements

induced by etoposide in cells, we examined whether TDP2 also

promotes genome stability in bone marrow in vivo. We quantified

the fraction of micronucleated polychromatic erythrocytes (PCEs)

in bone marrow smears from Tdp2D1–3 and Tdp2+/+ mice 24 hour

after intraperitoneal injection of etoposide (1 mg/kg). The rodent

erythrocyte micronucleus test is a standard procedure to detect

cytogenetic damage in toxicological studies and is based on the

detection of micronuclei in erythrocyte precursors (Hayashi et al

1994). As expected, etoposide increased the fraction of PCEs that

were micronucleated in both wild type and Tdp2D1–3 animals
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Figure 4. The absence of TDP2 increases etoposide-induced genome instability in mammalian cells. A. Micronuclei (MN, left) and
nucleoplasmic bridges (NB, right) in binucleated (following cytochalasin B-mediated cell cycle arrest) Tdp2+/+ and Tdp2D1–3 transformed MEFs
following acute treatment (30 min) with indicated dose of etoposide. See insets for representative images. Histogram bars represent the average 6
s.e.m. of n$600 cells coming from three independent experiments. Statistical significance by Mann-Whitney test. B. Primary MEFs in the absence of
cytochalasin B treatment (n$1500). Other details as in ‘‘A’’. C. Break-type (left) and exchange-type (right) chromosomal aberrations in transformed
Tdp2+/+ and Tdp2D1–3 MEFs following acute treatment (30 min) with indicated dose of etoposide. See insets for a representative image. Plots show
the number of breaks/exchanges per 100 chromosomes from individual metaphase spreads (n = 100) obtained in at least two independent
experiments. Average 6 s.e.m. and statistical significance by Mann-Whitney test is also indicated. D. Metaphase spreads from primary MEFs (n = 50).
Caffeine was added 4 h after etoposide treatment. Other details as in ‘‘C’’.
doi:10.1371/journal.pgen.1003226.g004
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(Figure 7). However, this increase was ,2-fold higher in Tdp2D1–3

mice than in wild type mice, suggesting that TDP2 protects

heamatopoietic cells from genome instability induced by anti-

cancer TOP2 poisons.

Discussion

TDP2 is the major 59-tyrosyl DNA phosphodiesterase in
mammals

In the current study we observe that Tdp2 deletion ablates

detectable 59-TDP activity in different mouse tissues and MEFs,

consistent with our previous observations in DT40 cells [25]. It is

worth noting that other roles have been assigned to this protein, in

other cellular processes such as signal transduction and transcrip-

tional regulation [33]. So far, however, we have been unable to

detect any spontaneous phenotype caused by TDP2 loss, either at

cellular level or in vivo, while dramatic effects are observed upon

etoposide treatment. This suggests that the most important

function of TDP2, following Top2 induced DNA damage at least,

is related to the 59 TDP activity of this enzyme. Additionally, our

data suggest that alternative, TDP2–independent, mechanisms of

DSB repair are sufficient to cope with the endogenous level of

TOP2 damage arising during normal mouse development and life.

A role for human TDP1 in repairing TOP2-induced DSBs was

recently suggested by a weak 59-TDP activity of human

recombinant protein on DSBs possessing 4-bp 59-overhangs, and

on a mild sensitivity of TDP12/2 DT40 cells to etoposide [27].

This is also consistent with the increased resistance to etoposide

reported in cells highly overexpressing TDP1 [34], and with the

reported 59-TDP activity of Tdp1 in Saccharomyces cerevisiae [35].

However, while our standard activity assays employs DSBs with

blunt-ended 59-phosphotyrosyl termini, in the current study we

similarly failed to detect residual 59-TDP activity in Tdp2D1–3 MEF

extracts on DSB substrates with 4-bp 59-overhangs (Figure 2C). In

addition, in our hands, TDP12/2 DT40 cells are not hypersen-

sitive to etoposide, and deletion of TDP1 in TDP22/2/2 DT40

cells does not increase sensitivity to etoposide above that observed

by TDP2 deletion alone [36]. Consequently, we conclude that

TDP2 is the major if not only 59-TDP activity in mammals (as in

DT40 chicken cells), at physiologically relevant enzyme concen-

trations at least.

TDP2 is required for survival and efficient repair upon
induction of TOP2-mediated DSBs in mammals

We have shown that Tdp2-deleted mouse cells are hypersensitive

to TOP2-induced DNA damage, but not to ionizing radiation, in

agreement with previous results with TDP22/2/2 DT40 cells [25].

Moreover, we demonstrate that this hypersensitivity correlates

with a defect in the repair of etoposide-induced DSBs, as measured

by immunostaining for sites of cH2AX, which suggests that

TDP2-mediated repair promotes tolerance to TOP2-induced

DNA damage in mammalian cells. Remarkably, we observed that

TDP2 is required for resistance to TOP2-induced DNA damage

not only at the cellular level, but also at the whole-organism level.

Indeed, etoposide administration in Tdp2D1–3 mice resulted in both

increased mortality due to intestinal damage and in elevated

Figure 5. The absence of TDP2 increases etoposide induced homologous recombination. A. Total number of foci per RAD51 foci-
containing cell in Tdp2+/+ and Tdp2D1–3 primary MEFs following 30 min 10 mM etoposide treatment and 2 h recovery (left). Replicating cells were
excluded from the analysis. A representative image is shown (right). Average 6 s.e.m. from 3 independent experiments and statistical significance by
T test is indicated. B. Sister chromatid exchanges (SCEs) scored in Tdp2+/+ and Tdp2D1–3 transformed MEFs after 30 min acute treatment with the
indicated concentration of etoposide. Plots show the number of SCEs per chromosome from individual metaphase spreads (n$50) obtained in at
least two independent experiments. Average 6 s.e.m. and statistical significance by Mann-Whitney test is also indicated.
doi:10.1371/journal.pgen.1003226.g005
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Figure 6. The absence of TDP2 causes etoposide sensitivity in vivo. A. 8-week old wild-type and Tdp2D1–3 littermates were intraperitoneally
injected with a single 75 mg/kg dose of etoposide or vehicle (DMSO) and body weight was recorded in the following 6 days. Average 6 s.e.m. of the
percentage of initial body weight from at least 8 mice and statistical significance by One-way ANOVA with Bonferroni post-test is shown. B.
Representative image of hematoxylin-eosin stained jejunum slices from wild-type and Tdp2D1–3 animals 6 days after etoposide treatment. C.
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toxicity in lymphoid tissue, established in vivo targets of etoposide

[32]. TDP2 is therefore a critical factor in the cellular and

physiological response to TOP2 poisons.

TDP2 functions in NHEJ and protects genome integrity
One important result of our study was to uncover the

relationship between TDP2 and the major DSB-repair pathways,

NHEJ and HR. We have shown that TDP2 can convert DSBs

with 59-phosphotyrosyl termini into DSBs that are directly

ligatable, and might thus be of particular utility in facilitating an

error-free NHEJ pathway for repair of TOP2-induced DSBs.

Several of our observations support the idea that TDP2 is a

component of NHEJ. First, the contribution of TDP2 to cellular

resistance to TOP2 induced DNA damage is dependent on the

NHEJ machinery and independent on HR, as, with regards to

etoposide sensitivity, KU70 is epistatic over TDP2 deletion in

DT40 cells while an additive effect is observed when TDP2 is

depleted in BRCA2-deficient human fibroblasts. Second, loss of

TDP2 results in a DSB repair defect not only in G2 but also in

G0/G1, cell cycle stages in which NHEJ is the main if not only

DSB repair mechanism available [26,30,37,38]. Third, Tdp2D1–3

MEFs exhibit increased levels of HR-mediated DSB repair, as

measured by elevated frequencies of RAD51 foci and sister

chromatid exchange in response to etoposide treatment, which is a

phenotype observed in other cell lines in which NHEJ is defective

[39–41]. Additionally, we have been unable to generate DT40

cells in which both TDP2 and XRCC3 are deleted, suggesting that

loss of both TDP2 and HR-mediated DSB repair is cell lethal

(unpublished observations).

Whilst the above observations argue strongly that TDP2 is a

component of NHEJ, it is important to note that TDP-

independent NHEJ mechanisms to process TOP2-linked termini

most likely also exist and employ nucleases such as MRN complex,

CtIP or Artemis [5,18–21]. This explains why KU702/2 DT40

cells exhibit much greater hypersensitivity to etoposide than

TDP22/2/2 DT40 cells, and why Tdp2D1–3 MEFs still repair a

significant fraction of etoposide-induced DSBs in G0/G1 (when

NHEJ is the only DSB repair pathway available). Whilst nuclease-

mediated NHEJ can support cell survival in response to TOP2-

induced DNA damage, they most likely do so at the expense of

increased genetic instability. This is because the removal of

sequence from 4-bp complementary 59-overhang during NHEJ

will, on the one hand, likely result in chromosome deletions, and

on the other hand, increase the propensity for DSB misjoining and

chromosome translocation. In contrast, HR provides an error-free

pathway to repair TOP2-induced DSBs that have been processed

by nucleases, by restoring any missing DNA sequence from and

intact sister chromatid in S and G2 [30,37,42]. In this scenario, the

increased etoposide-induced genome instability in Tdp2D1–3 mice,

both in cultured cells from these animals and in bone marrow in

vivo, likely reflects the use of TDP2–independent NHEJ in cellular

contexts in which HR-mediated DSB repair is unavailable (e.g. in

cells in G0/G1), or is saturated by the number of etoposide-

induced DSBs.

In summary, based on these and our previously published data,

we suggest that TDP2 defines a novel error-free NHEJ sub-

pathway that converts TOP2-linked 59-termini into ligatable DNA

termini. We suggest that this may be particularly important during

G1 and in post-mitotic cells, which lack HR-mediated repair, and

thus in which it may be the only mechanism for error-free DSB

repair of TOP2-induced DSBs (Figure 8).

TDP2 and cancer therapy
The results presented here can have important implications in

the treatment of cancer. Given the widespread use of TOP2

poisons in cancer therapy, and the observed hypersensitivity to

TOP2 poisons of cells lacking TDP2, our findings suggest that

TDP2 could affect the response of tumour cells to chemotherapy.

In this context, TDP2 expression is reportedly elevated in the

majority of non-small cell lung cancer cells [43], and mutant-p53-

dependent over-expression of TDP2 has been implicated in

cellular resistance to etoposide in lung cancer cells [44]. TDP2

might therefore be a valid target for overcoming tumour resistance

to TOP2 poisons and/or a useful predictive biomarker for clinical

response to these agents.

In addition, our toxicity assays in mice and the increased

genome instability in cells and in mouse bone marrow correlate

well with known side effects of treatment with TOP2 poisons

during cancer therapy. This raises the possibility that heteroge-

neity in expression levels or activity of TDP2 could be an

Macroscopic (left) and histological (right) representative image of spleen and thymus from wild-type and Tdp2D1–3 animals 6 days after treatment.
Average weight of these organs 6 s.e.m. and statistical significance by Two-way ANOVA with Bonferroni post-test is shown (centre). D. FACS analysis
of B-cells in bone marrow (top and bottom-left) and T-cells in thymus (bottom right) in wild-type and Tdp2D1–3 animals 6 days after treatment. See
insets to compare etoposide treated samples when required. Average percentage of the indicated cell type among the total number of cells in the
corresponding tissue 6 s.e.m. of at least 3 animals and statistical significance by Two-way ANOVA with Bonferroni post-test is shown.
doi:10.1371/journal.pgen.1003226.g006

Figure 7. The absence of TDP2 increases etoposide-induced genome instability in vivo. Percentage of micronucleated polychromatic
erythrocytes (MN-PCE) among the total number of polychromatic erythrocytes (PCE), examples of which are shown (right), in bone marrow smears of
wild-type and Tdp2D1–3 mice 24 h after intraperitoneal injection of 1 mg/kg etoposide or vehicle (10% DMSO). Average 6 s.e.m. of 4 (DMSO) and 6
(VP16) animals and statistical significance by paired T test is shown.
doi:10.1371/journal.pgen.1003226.g007
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important etiological factor both in the toxicity that accompanies

chemotherapy involving TOP2 poisons [45] and on the incidence

of treatment-related hematological malignancy, typically acute

leukemia occurring in a relatively high proportion of patients

[4,7,8]. Like other acute leukemias, therapy-related malignancies

are linked to specific translocations that result in the expression of

fusion proteins and contribute in some way to disease develop-

ment. Intriguingly, in some cases, these translocations map to

regions of preferential TOP2 cleavage, supporting a model in

which the translocations arise via erroneous repair of TOP2-

induced DSBs. These translocations are also surprisingly similar to

those found in infant leukemia [46], suggesting that erroneous

repair of TOP2-induced DSBs may also be a source of primary

malignancy. Consistent with this idea, TOP2-induced DSBs are

implicated in translocations commonly associated with prostate

cancer [47]. In the light of our findings, it is tempting to speculate

that TDP2 activity reduces the likelihood of oncogenic transloca-

tions, by ensuring rapid and accurate repair of TOP2-induced

DSBs. It is possible, however, that TDP2 might occasionally

promote a translocation, by liberating a DSB that engages in

erroneous DNA ligation, as might be the case in some extremely

conservative rearrangements that have been reported [12,13].

Conclusions
We have shown that TDP2 protects mouse cells from the

cytotoxic and clastogenic effects of TOP2 poisons, most likely by

functioning in error-free pathway for NHEJ. These results have

important implications in the treatment of cancer. For example,

development of small molecule inhibitors for TDP2 may provide a

way of sensitizing particular types of tumor to chemotherapy,

though precaution is necessary to consider the possible conse-

quences of TDP2 inhibition on normal cells and on the generation

of secondary malignancies.

Materials and Methods

Ethics statement
All animal procedures were performed in accordance with

European Union legislation and with the approval of the Ethical

Committee for Animal Experimentation of the University of

Leuven and the University of Seville, respectively.

Cells and cell culture
Chicken DT40 B lymphoma cells were cultured at 39uC, 5%

CO2 in RPMI 1640 medium supplemented with 1025 M b-

mercaptoethanol, penicillin, streptomycin, 10% fetal calf serum

(FCS), and 1% chicken serum (Sigma). TDP22/2/2 cell line was

previously described [25]. To generate KU70 deletion constructs,

Hygromycin (HygroR) or Neomycin (NeoR) resistance cassettes

were inserted between sequences of 1.6 kb and 3.3 kb in length

from the KU70 locus [48]. KU70-HygroR and KU70-NeoR

deletion constructs were sequentially transfected into wild-type

and TDP22/2/2 cells. The gene targeting events were confirmed

by Southern blot analysis of EcoRI -digested genomic DNA

hybridized to an external probe (Figure S1).

Transformed human fibroblast lines 1BR (wild-type) and

HSC62 (BRCA2-mutant) were described previously [49]. Cells

were cultured in DMEM supplemented with penicillin, strepto-

mycin and 15% FCS.

Primary MEFs were isolated from littermate embryos at day 13

p.c. and cultured at 37uC, 5% CO2, 3% O2 in Dubelcco’s

Modified Eagle’s Medium (DMEM) supplemented with penicillin,

streptomycin, 10% FCS and non-essential aminoacids. All

experiments were carried out between P2 and P4. MEFs were

transformed by retroviral delivery of T121, a fragment of the

SV40 large T antigen that antagonizes the three Rb family

members but not p53 [50]. Transformed MEFs were maintained

at 37uC, 5% CO2 in DMEM supplemented with penicillin,

streptomycin and 10% FCS.

Generation of Tdp2 conditional and knockout mice
A targeting construct was generated for Tdp2 in which the first

three exons were flanked by loxP sites, followed by an FRT- and

loxP-flanked neomycin-resistance (neo) cassette. These three exons

encode for the N-terminal half of TDP2 and contain mapped

interaction domains for e.g. TDP2 itself, CD40 and TRAF6 [23].

The Tdp2flEx1–3,neo targeting construct was electroporated in E14

(129Ola) ES cells and correctly recombined ES cell clones were

confirmed by Southern blot analysis. The functionality of the loxP

sites was shown in vitro by electroporation of a correctly targeted

ES cell clone with a Cre-expressing vector. Several correctly

targeted ES cell clones were used for aggregation with CD1

morulae and transferred into pseudo-pregnant recipient females to

Figure 8. Model for the repair of TOP2-induced DSBs. (a) TDP2-mediated cleavage of the 59 phosphodiester link between TOP2 peptide and
DNA results in 39 hydroxyl (OH) 59 phosphste (P) cohesive ends that are easily ligatable by NHEJ resulting in error-free repair. (b) Alternatively,
nucleolytic attack on the DNA backbone can also remove the protein adduct from the DSB but genetic information is lost from the ends. Accurate
repair of this break would therefore need HR to copy the missing information from the sister chromatid, while NHEJ would result in error-prone
repair.
doi:10.1371/journal.pgen.1003226.g008
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obtain chimaeric mice. Three chimaeric males produced hetero-

zygous offspring after breeding with CD1 wild-type females. The

obtained offspring was genotyped with both a loxP-specific and a

neo-specific PCR. Intercrosses between Tdp2flEx1–3,neo/+ mice led to

the generation of homozygous floxed Tdp2 mice which were viable

and fertile. To delete the critical exons we crossed the

heterozygous Tdp2 mice with an EIIa-Cre mouse (Adenovirus

EIIa-promoter driven Cre) and obtained Tdp2flD/+ mice. Inter-

crosses of the latter mice resulted in viable homozygous knockout

mice (from now on denoted Tdp2D1–3) at the normal 25%

Mendelian distribution. Southern blot analysis confirmed the

complete recombination of the loxP-flanked sequences in the

homozygous mice and hence the generation of Tdp2 knockout

mice.

59-TDP activity in vitro
Labelled double-stranded 59-phosphotyrosyl substrates were

generated essentially as previously described [22,22,25]. For 59

overhang substrates 59-Y-P-AATTCTTCTCTTTCCAGGGC-

TATGT-39 (Midland Certified Reagents) and 59-AGACA-

TAGCCCTGGAAAGAGAAG-39 (Sigma) oligonucleotides were

annealed. Cell and tissue extracts were prepared by mild

sonication in Lysis Buffer (40 mM Tris–HCl, pH 7.5, 100 mM

NaCl, 0.1% Tween-20, 1 mM DTT) supplemented with 1 mM

PMSF and protease inhibitor cocktail (Sigma) and clarification by

centrifugation 10 min 16500 g 4uC. Protein concentration was

measured with Bradford reagent (Sigma). 59-TDP reactions

contained 50 nM substrate, 80 mM competitor single-stranded

oligonucleotide and the indicated amount of protein extract in a

total volume of 6 ml Reaction Buffer (50 mM Tris-Cl, pH 7.5,

50 mM KCl, 1 mM MgCl2, 1 mM DTT, 100 mg/ml BSA).

Ligation reactions with oligos contained in addition 5 units of T4

DNA ligase (Fermentas) and 1 mM ATP (Sigma) Reactions were

stopped by the addition of 3 ml 36 Formamide Loading Buffer

and 5 min 95uC incubation. Samples were resolved by denaturing

polyacrylamide gel electrophoresis and analysed by phosphorima-

ging in a Fujifilm FLA5100 device (GE Healthcare).

Plasmid circularization assays
Substrates were generated by PCR-mediated amplification of

plasmid pEGFP-Pem1-Ad2 [51] with primers 59-

AATTCTTCTCTTTCCAGGGCTATGT-39 and 59- AATT-

CATCCCCAGAAATGTAACTTG-39 harbouring phosphate

(Sigma) or phosphotyrosine (Midland Certified Reagents) moieties

at 59 ends. NHEJ-competent nuclear extracts were prepared as

previously described [28]. Reactions were performed by incubat-

ing (6 h at 16uC) 100 ng of each substrate with 7 mg of nuclear

extracts in NHEJ Buffer (50 mM Tris-HCl pH 7.5, 50 mM KCl,

1 mM DTT, 2 mM MgCl2, 1 mM ATP, 100 mg/ml BSA) in the

presence or absence of 50 nM hTDP2 recombinant protein

(purified as previously described [22]). Reactions were stopped by

addition of EDTA (to a final concentration of 100 mM) and

treated 309 with Proteinase K (0.2 mg/ml). DNA was purified

using FavorPrep GEL/PCR Purification Mini Kit (Favorgen) and

transformed into MegaX DH10B T1 Electrocompetent Cells

(Invitrogen). Positive transformants were selected by plating on LB

agar plates containing kanamycin (25 mg/ml).

Clonogenic survival assays
To determine sensitivity in DT40, cells were plated in 5 ml of

medium containing 1.5% (by weight) methylcellulose (Sigma) in 6-

well plates at 50, 500, and 5000 cells/well per treatment condition.

Media also contained the indicated concentration of doxorubicin

(Sigma), mAMSA (Sigma) or etoposide (Sigma). In all experiments,

cells were incubated for 7–11 days and visible colonies were

counted.

Survival assays in MEFs were carried out seeding 2000 cells in

100 mm dishes, in duplicate for each experimental condition.

After 6 hours, cells were irradiated or treated with the indicated

concentrations of etoposide for 3 hours, washed with PBS and

fresh medium was added. Cells were incubated for 10–14 days and

fixed and stained for colony scoring in Crystal violet solution

(0.5% Crystal violet in 20% ethanol). The surviving fraction at

each dose was calculated by dividing the average number of visible

colonies in treated versus untreated dishes.

Human fibroblasts were transfected with non-targeting Negative

Control and TDP2 smartpool siRNAs (Thermo Scientific) using

HyperFect transfection reagent (Invitrogen). Cells were transfected

twice in two consecutive days and used for survival 48 hours after

second transfection. Other details as described above.

Immunofluorescence and antibodies
MEFs grown on coverslips for the required time, 7 days for

confluency-arrested cells and 2 days for cycling cells, were treated

as indicated and fixed (10 min in PBS-4% paraformaldehyde),

permeabilized (2 min in PBS-0.2% Triton X-100), blocked

(30 min in PBS-5% BSA) and incubated with the required

primary antibodies (1–3 h in PBS-1% BSA). Cells were then

washed (365 min in PBS-0.1% Tween 20), incubated for 30 min

with the corresponding AlexaFluor-conjugated secondary anti-

bodies (1/1000 dilution in 1% BSA-PBS) and washed again as

described above. Finally, they were counterstained with DAPI

(Sigma) and mounted in Vectashield (Vector Labs). Rad51 foci

scoring requires 30 sec. pre-extraction in PBS-0.1% Triton X-100

prior to fixation. cH2AX and Rad51 foci were manually counted

(double-blind) in 40 cells from each experimental condition. When

necessary to identify replicating cells, 5-ethynyl-29-deoxyuridine

(EdU, Invitrogen) was added throughout treatment and repair at a

final concentration of 10 mM. Click chemistry reaction was

performed before DAPI staining by incubating (30 min r.t.) with

1 mM AlexaFluor-conjugated azide (Invitrogen) in reaction cock-

tail (100 mM TrisHCl pH 8.5, 1 mM CuSO4, 100 mM ascorbic

acid). For the analysis of G0/G1 confluency-arrested cells only

Cyclin A negative cells were scored. For G2, as EdU was present

(10 mM) during and after treatment, only Cyclin A positive cells

without EdU incorporation were scored (see Figure S3). Primary

antibodies were used at the indicated dilution: cH2AX (Millipore,

05-636) 1/1000, Cyclin A (Santa Cruz, sc-751) 1/500, Rad51

(Abcam, ab213) 1/200 and Tubulin (Santa Cruz, sc-5286) 1/

2500.

Cytogenetic analysis
Micronuclei and nucleoplasmic bridges were analysed in

transformed and low passage primary MEFs previously seeded

onto coverslips. Following treatment, cytochalasin B (Sigma) was

added at 4 mg/ml to transformed but not to primary MEFs. 22 h

(transformed) or 30 h (primary) post-treatment, cells were fixed

and subject to DAPI staining as described above. In transformed

cells only binucleated cells were scored, which was confirmed by

visualization of the cytoplasm with anti Tubulin immunofluores-

cence (performed as described above).

Chromosomal aberrations were scored in Giemsa stained

metaphase spreads. Following treatment, recovery in fresh

medium was allowed for 2 h (transformed MEFs) or 4 h (primary

MEFs) and demecolcine (Sigma) was added at a final concentra-

tion of 0.2 mg/ml. Caffeine (Sigma) was also added at a final

concentration of 0.1 mg/ml but only to primary cells. 4 h later cells

were collected by trypsinisation, subject to hypotonic shock for
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1 hour at 37uC in 0.3 M sodium citrate and fixed in 3:1

methanol:acetic acid solution. Cells were dropped onto acetic

acid humidified slides and stained 20 minutes in Giemsa-modified

(Sigma) solution (5% v/v in H2O).

For SCEs 10 mM BrdU (Sigma) was added to the medium for

two complete cycles (approximately 48 hours) before collection.

Drug treatment was applied for 30 minutes 6–8 hours before cell

collection. Metaphase spreads were obtained as described above.

Before Giemsa staining, slides were incubated in Hoescht 33258

solution (10 mg/ml) for 20 minutes, exposed to UV light (355 nm)

for 1 hour and washed for 1 hour at 60uC in 206 SCC.

Animal maintenance
The mouse colony was maintained in an outbred 129Ola, CD1

and C57BL/6 background under standard housing conditions, at

2161uC with a photoperiod of 12:12 h (lights on at 8:00). They

were housed in isolated cages with controlled ventilation trough

HEPA-filters and were in flow cabins. Sterile food pellets and

water were available ad libitum. Breeding pairs between heterozy-

gotes (Tdp2+/flD6Tdp2+/flD) were set to obtain wild-type (Tdp2+/+)

and knock-out (Tdp2D1–3) littermates for analysis. Mice were

genotyped with Phire Animal Tissue Direct PCR Kit (Thermo)

following manufacturer instructions and using primers 59-

CCTTCATTACTTCTCGTAGGTTCTGGGTC-39, 59-AC-

CCGCTCTTCACGCTGCTTCC-39 and 59-TACACCGTGC-

CATAATGACCAAC-39. This results in amplification of a 429 bp

fragment from the wild-type allele or 561 bp fragment from the

mutant allele.

In vivo etoposide sensitivity
At 8 weeks of age, Tdp2+/+ and Tdp2D1–3 mice underwent

intraperitoneal injection with 3 ml/g of body weight of either

DMSO (vehicle control) or etoposide at 25 mg/ml in DMSO for a

final dose of 75 mg/kg. Weight and general health status was

monitored daily from the day of injection (inclusive). 6 days post-

treatment mice were sacrificed by cervical dislocation and

dissected for histopathological analysis. Weight of spleen and

thymus was recorded prior to their histological or cell content

analysis. Bone marrow (BM) from femurs and tibias of each mouse

was also obtained.

For histological analysis organs were fixed in 4% paraformal-

dehyde for 2 days, embedded in paraffin, cut in 6 mm slices by

microtome, stained with Hematoxylin-Eosin and visualized under

the microscope. For cell content analysis by FACS, BM and

thymus were homogenized in EDTA Buffer (140 mM NaCL,

1.5 mM KH2PO4, 2.7 mM KCl, 8.1 mM Na2HPO4, 0.6 mM

EDTA). Cells from both tissues were immunolabelled with the

appropriate fluorescently-labelled antibodies according to manu-

facture’s recommendations and analyzed using a FACScalibur

flow cytometer (Becton Dickinson): B220-APC (17-0452), CD43

FITC (11-0431), CD8 APC (17-0081) and CD4 FITC (11-0043)

(eBiosciences); CD11b/Mac-1 PE (550019) (Becton Dickinson).

Data was compiled and analysed using CellQuest software (Becton

Dickinson).

Micronuclei analysis in vivo
At 8 weeks of age, Tdp2+/+ and Tdp2D1–3 mice underwent

intraperitoneal injection with 2.5 ml/g of body weight of either

10% DMSO (vehicle control) or etoposide at 400 mg/ml in 10%

DMSO for a final dose of 1 mg/kg. Mice were sacrificed by

cervical dislocation 24 h after injection and BM from one femur

and tibia was extracted and homogenized in 3 ml FBS. Cellular

content was concentrated in 150 ml FBS by centrifugation and

smears were prepared on glass slides. Following 5 min fixation in

methanol, slides were stained 30 min in Giemsa-modified (Sigma)

solution (5% v/v in 100 mM Tris-HCl pH 6.8) and visualized

under the microscope. 2000 polychromatic erythrocytes (PCE)

were scored for the presence of micronuclei (MN-PCE) in each

slide.

Supporting Information

Figure S1 TDP2 promotes survival following TOP2-induced

DSBs in mammalian cells. Clonogenic survival of wild-type and

Tdp2D1–3 transformed MEFs after continuous exposure to the

indicated concentrations of etoposide. Average 6 s.e.m. of three

independent experiments and statistical significance by Two-way

ANOVA test with Bonferroni post-test is shown.

(TIF)

Figure S2 Targeted deletion of KU70 in DT40 cells. Southern-

blot analysis of EcoRI-digested DNA from wild-type (+/+),

heterozygous (+/2) and knock-out (2/2) DT40 cells in TDP2+/

+/+ and TDP22/2/2 background. A probe hybridizing to a region

of the KU70 locus not contained in the deletion construct was used.

The 5.5-kb (wild-type) and 2.8-kb (deleted) expected bands are

indicated. Note that two clones were selected for further analysis.

(TIF)

Figure S3 Cell cycle dependent induction of DSBs following

etoposide treatment in primary MEFs. DSBs detected as cH2AX

foci (bottom left), Cyclin A content (Cyc A, top right), 5-ethynyl-29-

deoxyuridine incorporation (EdU, bottom right) and DAPI

counterstain (top left) are shown. G1 (Cyc A negative, EdU

negative), S-phase (Cyc A positive, EdU positive) and G2 (Cyc A

positive, EdU positive) nuclei are indicated (arrows).

(TIF)

Figure S4 TDP2 depletion impairs repair of TOP2-induced

DSBs in human A549 cells. A. cH2AX foci induction after 30 min

50 mM etoposide treatment and repair at different times following

drug removal in G1 TDP2-depleted (pS-TDP2) and control non-

depleted (pS) cells. B. G2 cells with 10 mM etoposide treatment.

Other details as in ‘‘A’’. Average 6 s.e.m. of at least three

independent experiments is shown. Statistical significance by Two-

way ANOVA test with Bonferroni post-test is indicated. TDP2

depletion was performed as previously described [22].

(TIF)

Figure S5 The absence of TDP2 sensitizes lymphocyte precur-

sors to etoposide treatment in vivo. FACS analysis of B-cells in bone

marrow (A) and T-cells in thymus (B) in wild-type and Tdp2D1–3

animals 6 days after treatment with 75 mg/kg etoposide or vehicle

control (DMSO). Pro-B cell (CD43+ B220+), Pre-B cell (CD432

B220low) immature B cell (CD432 B220high) and immature T cell

(CD4+ CD8+) populations are indicated (rectangles).

(TIF)

Figure S6 Myeloid cells are not significantly affected by

etoposide treatment. FACS analysis of Mac1+ myeloid cells in

bone marrow in wild-type and Tdp2D1–3 animals 6 days after

treatment with 75 mg/kg etoposide or vehicle control (DMSO).

Scatter plot (A) and quantification (B) are shown. The mild

increase correlates with the observed decrease in lymphocite

precursors.

(TIF)
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