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Abstract

Recent publications have described and applied a novel metric that quantifies the genetic distance of an individual with
respect to two population samples, and have suggested that the metric makes it possible to infer the presence of an
individual of known genotype in a sample for which only the marginal allele frequencies are known. However, the
assumptions, limitations, and utility of this metric remained incompletely characterized. Here we present empirical tests of
the method using publicly accessible genotypes, as well as analytical investigations of the method’s strengths and
limitations. The results reveal that the null distribution is sensitive to the underlying assumptions, making it difficult to
accurately calibrate thresholds for classifying an individual as a member of the population samples. As a result, the false-
positive rates obtained in practice are considerably higher than previously believed. However, despite the metric’s
inadequacies for identifying the presence of an individual in a sample, our results suggest potential avenues for future
research on tuning this method to problems of ancestry inference or disease prediction. By revealing both the strengths and
limitations of the proposed method, we hope to elucidate situations in which this distance metric may be used in an
appropriate manner. We also discuss the implications of our findings in forensics applications and in the protection of GWAS
participant privacy.
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Introduction

In the recently published article ‘‘Resolving Individuals

Contributing Trace Amounts of DNA to Highly Complex

Mixtures Using High-Density SNP Genotyping Microarrays’’

[1], the authors describe a method by which the presence of a

individual with a known genotype may be inferred as being part of

a mixture of genetic material for which marginal minor allele

frequencies (MAFs), but not sample genotypes, are known.

The method [1] is motivated by the idea that the presence of a

specific individual’s genetic material will bias the MAFs of a

sample of which they are part in a subtle but systematic manner,

such that when considering multiple loci, the bias introduced by a

specific individual can be detected even when his DNA comprises

only a small fraction of the mixture. More generally, it is well

known that samples of a population will exhibit slightly different

MAFs due to sampling variance following a binomial distribution;

the genotype of the individual in question contributes to this

variation, and so may be ‘‘closer’’ to a sample containing him than

to a sample which does not. Based on this intuition, the article [1]

defines a genetic distance statistic to measure the distance of an

individual relative to two samples, summarized as follows:

Consider an underlying population P from which two samples

F (of size nF ) and G (of size nG ) are drawn independently and

identically distributed (i.i.d.) [in [1], these are referred to as

‘‘reference’’ and ‘‘mixture’’ respectively]. Consider now an

additional sample Y ; we wish to detect whether Y was drawn

from G, versus the null hypothesis that Y was drawn from P

independent of G and F . Given the MAFs fi and gi at locus i for F
and G, respectively, and given the MAFs yi for sample Y with

yi [ f0,0:5,1g (corresponding to homozygous major, heterozy-

gous, and homozygous minor alleles) at each locus i, [1] defines

the relative distance of sample Y from F and G at i as:

Di(Y )~ yi{fij j{ yi{gij j : ð1Þ

By assuming only independent loci are chosen and invoking the

central limit theorem for the large number of loci genotyped in

modern studies, the article [1] asserts that the z-score of Di across

all loci will be normally distributed,

T(Y )~
SDiT{m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Di)=s

p ~
SDiTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(Di)=s
p *N(0,1) ð2Þ

where S:T denotes the average over all SNPs i, s is the number of

SNPs, and Equation 2 exploits the assumption [1] that an

individual who is in neither F nor G will be on average equidistant

to both under the null hypothesis, i.e., m0~0. Per Equation 2, the

null hypothesis that Y is in neither F nor G is rejected for values of

T(Y ) which exceed the quantiles of N(0,1) at the chosen

significance level.
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The article [1] proposes using this approach in a forensics

context, in which G is a mixture of genetic material of unknown

composition (e.g., from a crime scene), and Y is suspect’s

genotype; by choosing an appropriate reference sample for group

F , it is hypothesized that large, positive T will be obtained for

individuals whose genotypes are included in G, and hence bias gi,

while individuals whose genotypes are not in G should have

insignificant T since they should intuitively be no more similar to

the mixture sample G than they are to the reference sample F . In

[1], the authors applied this test to a multitude of individuals Y ,

each of which are present in the samples constructed by them for

F or G, and report near-zero false negative rates. The article

concludes that it is possible to identify the presence of DNA of

specific individuals within a series of highly complex genomic

mixtures, and that these ‘‘findings show a clear path for identifying

whether specific individuals are within a study based on summary-

level statistics.’’ In response, many GWAS data sources have

retracted the publicly available frequency data pending further

study of this method due to the concern that the privacy of study

participants can be compromised. However, because no samples

absent from both F and G were used, false positive rates—

significant T for individuals neither in G nor F—are not assessed

in practice; rather, they are simply assumed (Equation 2) to follow

the nominal false-positive rate a given by quantiles of the standard

normal.

The conclusion that T(Y ) is comparable to a standard normal

rests on several assumptions:

1. that F , G and Y are all samples of the same underlying

population P;

2. that F and G are similarly sized samples; and

3. that the SNPs i used to compute T are independent.

Because these assumptions are difficult to control in practice,

the effect of deviations from these assumptions is of interest. In this

manuscript, we expand on [1] by investigating these effects both

analytically and by applying Equations 1, 2 to null samples (those

present in neither F nor G). We also consider the accuracy of the

classification when a relative of Y is present in sample G.

Our tests reveal a good separation of the distributions for

positive (i.e., in F or G) and null (in neither) samples, suggesting

that a suprising amount of information remains in pooled data.

However, our results indicate that membership classification via

Equation 2 is sensitive to the underlying assumptions such that the

distribution for null samples does not follow N(0,1), yielding

misleadingly large T for null samples. As a result, applying the

method from [1] is tricky in practice since additional information

is often necessary to set appropriate thresholds for significance.

Finally, we conclude with a discussion of the implications of our

findings, both in forensics as well as regarding identification of

individuals contributing DNA in GWAS.

Methods

We explore the performance of the method described in [1]

both analytically and empirically. For the empirical studies, we

attempt to classify sample genotypes derived from publicly

available data sources in order to assess the chances that an

individual is mistakenly classified into a group which does not

contain his specific genotype.

Genotype data
2287 genotypes were obtained from the Cancer Genomic

Markers of Susceptibility (CGEMS) breast cancer study. The

samples were sourced as described in [2]. Briefly, the samples

comprised 1145 breast cancer cases and a comparable number

(1142) of matched controls from the participants of the Nurses

Health Study. All the participants were American women of

European descent. The samples were genotyped against the

Illumina 550K arrays, which assays over 550,000 SNPs across the

genome. To assess the genetic identity shared between samples, we

computed the fraction of SNPs with identical alleles for all possible

pairs of individuals; none exceeded 0:62.

Additionally, 90 genotypes of American individuals of European

descent (CEPH) and 90 genotypes of Yoruban individuals were

obtained from the HapMap Project [3]. In both cases, the 90

individuals were members of 30 family trios comprising two

unrelated parents and their offspring. SNPs in common with those

assayed by the CGEMS study and located on chromosomes 1–22

were kept in the analysis (sex chromosomes were excluded since

the CGEMS participants were uniformly female); a total of

481,482 SNPs met these criteria.

Classification of genotypes
The method as described in [1] and summarized in the

Introduction was implemented using R [4]. Subsets of the data

described above were used to construct pools F and G, using the

remaining genotypes as test samples for which the null hypothesis

is true. A summary of the tests is provided in Table 1. In each test,

SNPs which did not achieve a minor allele frequency w0:05 in

both F and G were excluded from the computation.

Results

The assertion that T(Y ) as given in Equation 2 follows a

standard normal distribution under the null hypothesis that Y is in

neither F nor G is based upon the assumptions that

1. F , G and Y are all samples of the same underlying population

P;

2. F and G are similarly sized samples; and

3. the SNPs i used to compute T are independent.

Author Summary

In this report, we evaluate a recently-published method for
resolving whether individuals are present in a complex
genomic DNA mixture. Based on the intuition that an
individual will be genetically ‘‘closer’’ to a sample
containing him than to a sample not, the method
investigated here uses a distance metric to quantify the
similarity of an individual relative to two population
samples. Although initial applications of this approach
showed a promising false-negative rate, the accuracy of
the assumed null distribution (and hence the true false-
positive rate) remained uninvestigated; here, we explore
this question analytically and describe tests of this method
to assess the likelihood that an individual who is not in the
mixture is mistakenly classified as being a member. Our
results show that the method has a high false-positive rate
in practice due to its sensitivity to underlying assumptions,
limiting its utility for inferring the presence of an individual
in a population. By revealing both the strengths and
limitations of the proposed method, we elucidate situa-
tions in which this distance metric may be used in an
appropriate manner in forensics and medical privacy
policy.

Identifying Individuals in Pooled Genomic Data
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We investigated the effect of deviation from these assumptions. A

full treatment is presented in Text S1, and we summarize the results

briefly here. In the case where F , G, and Y are not samples of the

same underlying population, the differences in the minor allele

frequencies of the source populations dominate Di(Y ) such that

deviations from zero are no longer attributable to the subtle influence

of Y’s presence in F or G. In the case where F , G, and Y are samples

of the same population but F and G are of differing sizes, the larger

one will be a more representative sample of the underlying population

and hence closer, on average, to a future sample Y . Both violations of

assumptions 1 and 2 above will lead to non-zero m0 for null samples.

Considering that the difference in T with and without the m0~0
assumption in Equation 2 is

T{Tm0~0~
m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(Di)=s
p ð3Þ

and that the number of SNPs s is on the order of 105, even slight

deviations away from the assumed m0~0 can have a pronounced

effect when comparing T against a standard normal as given by

Equation 2. Equation 2 also presumes that the SNPs are independent,

such that the variance of the mean of Di can be estimated as

Var(Di)=s in the denominator of Equation 2; as shown in Text S1,

even a slight average correlation amongst the SNPs (due, for instance,

to linkage disequilibrium) will cause the distribution of T in practice

to be much wider than that assumed in Equation 2, once again owing

to the large number of SNPs considered. Because it appears that slight

deviations from the assumptions outlined above may have a strong

effect on the obtained T values, the false-positive rate of the method

proposed in [1] may in practice be considerably higher than the

nominal false-positive rate a given by quantiles of N(0,1).

Empirical tests
To explore the performance of the method in realistic situations,

we carried out the computations described by Equations 1,2 for

various F , G, and Y as described in Table 1. Distributions of T for

each of the tests described in Table 1 are shown in the corresponding

figures listed in the table. We find that while the distributions of in-F,

in-G and in-neither values of T are distinct, calibrating thresholds for

classifying an unknown sample is difficult without additional

information. This is due to the fact that the distribution of T for

null samples deviates strongly from a standard normal in practice.

We begin first by considering a best-case situation in which F and

G are both large samples of the same underlying population P, and

the samples to be classified are also from P. Here, we randomly

select 100 cases and 100 controls from CGEMS to form an out-of-

pool test sample set comprising 200 individuals, using the remaining

1045 CGEMS cases and 1042 CGEMS controls as pools G and F ,

respectively. (Several such random subsets were created; the results

were consistent and hence we present a single representative one.) T
(Equation 1, 2) was computed for all the samples and compared to a

standard normal ( Tj jw1:64 yields a nominal a (p-value) of 0.05 and

Tj jw4:75 yields a nominal a~10{6). The sensitivity and

specificities obtained are given in Table 2.

Distributions of T values for all three groups of CGEMS

samples are shown in Figure 1A. Notably, the distributions of in-F,

in-G, and in-neither samples are all quite distinct. For the positive

samples (those in F or G), the classifier performs fairly well,

correctly classifying 2083 samples (and calling 4 as in neither F nor

G). However, of the 200 test samples which were in neither F nor

G, only 62 have Tj jv1:64; the rate of false positives is thus 69% if

T is used as an indicator of group membership under the

assumptions in [1] at the nominal a~0:05 (see Table 2).

Next, we consider a less ideal, yet probable, case in which the null

samples are not from the same underlying population P. Here, we

leave F and G as above, and apply Equation 1, 2 to 90 HapMap

American individuals of European descent (whom, one might

assume, would be relatively similar to the Americans of European

descent comprising groups G and F ). A plot of the T value

distributions is given in cyan in Figure 1B. Again, there is little

Table 2. Empirical sensitivity and specificity for the tests
shown in Figure 1 assuming m0~0.

481,382 SNPs 50,000 SNPs

a~0:05 a~10{6 a~0:05 a~10{6

Sensitivity 99.8% 97.5% 96.3% 36.3%

Specificity, 200
CGEMS

31.0% 70.5% 79.0% 99.5%

Specificity, 90
HapMap CEPH

5.5% 27.7% 45.5% 100.0%

Specificity, 90
HapMap YRI

0.0% 0.0% 4.4% 97.7%

Classification results are given for two different nominal false positive rates
a~0:05 and a~10{6.
doi:10.1371/journal.pgen.1000668.t002

Table 1. Summary of tests performed.

Y individuals F population G population T distribution

100 CGEMS cases not in G 1042 CGEMS controls 1045 CGEMS cases Figure 1

100 CGEMS controls not in F

90 HapMap CEPH

90 HapMap YRI

HapMap YRI mothers 16–30 HapMap YRI mothers 1–15 and fathers 1–15 HapMap YRI children 1–15 and fathers 16–30 Figure 2

HapMap YRI children 16–30

HapMap CEPH mothers 16–30 HapMap CEPH mothers 1–15 and fathers 1–15 HapMap CEPH children 1–15 and fathers 16–30 Figure 2

HapMap CEPH children 16–30

Summary of tests described. In the last four rows, the numbers refer to the families in the HapMap YRI and CEPH populations, such that child 1 is the offspring of mother
1 and father 1, et cetera.
doi:10.1371/journal.pgen.1000668.t001

Identifying Individuals in Pooled Genomic Data
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overlap with the true positive distributions, but when comparing the

T values against N(0,1), the sensitivity is quite low (see Table 2). A

yet more extreme case, in which 90 HapMap Yoruban individuals

were classified with respect to F and G, results in a distribution of T
values that overlaps with the T values from group G (Figure 1B,

blue curve) and exceedingly low specificity (Table 2). We thus see in

practice a strong dependence of T upon the assumption that F , G,

and Y are samples of the same population.

The reason for the high false-positive rates in practice despite the

stringent nominal false positive rate is clear from the plots Figure 1A

and 1B: namely, it can be seen that the putative null distribution

(light grey line, N(0,1), cf Equation 2) does not correspond to the

observed distribution for samples for which the null hypothesis is

correct, with differences in both the location and width.

The overall shift in the location of the distributions is a result of

violations of the assumption that each sample F , G, and Y are

drawn on from the same underlying population P. The magnitude

of this effect is derived in Text S1 as m0~S(1{4piz2p2
i )(fi{gi)T,

where pi are the MAFs of the population from which Y is drawn

(hence the different rightward shifts of the CGEMS, CEPH, and

YRI distributions). Because of the large number of SNPs s in

Equation 2, small deviations from m0~0 are magnified; even

ancestrally similar populations, such as the 200 CGEMS test

samples and the HapMap CEPHS, have different distributions of T .

The broadening of the T distribution is a result of correlation

between SNPs. In Equation 2, it is assumed that the variance of

the mean of Di be estimable by the mean of the variance, ie,

Var(SDiT)~Var(Di)=s, which is true for independent SNPs.

Figure 1. Comparison of T distributions. Comparison of T distributions for true positive and null samples versus putative null distribution,
starting with 481,382 SNPs in (A,B) and 50,000 SNPs in (C,D). In all plots, true positive F (1042 CGEMS controls) is shown as a solid green curve, true
positive G (1045 CGEMS cases) is shown as a solid red curve, and the putative null N(0,1) is given as a thin grey curve. The dark and light grey regions
represent the areas for which the null hypothesis would be accepted at a~0:05 and a~10{6 , respectively. In plots (A,C), CGEMS test samples in
neither F nor G (100 CGEMS cases and 100 CGEMS controls) are given by a heavy black curve. The CGEMS case and CGEMS control distributions
within this group are shown as dashed red and green lines, respectively. In plots (B,D), T distributions are given for HapMap CEPHs (cyan) and YRIs
(blue). Vertical lines mark the 0.05 and 0.95 quantiles of the negative CGEMS samples (black), HapMap CEPHs (cyan), and HapMap YRIs (blue).
doi:10.1371/journal.pgen.1000668.g001

Identifying Individuals in Pooled Genomic Data
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However, if there exists average correlation r amongst the SNPs

(due to linkage disequilibrium),

Var(SDiT)~
1

s
z

s{1

s
r

� �
Var(Di), ð4Þ

which can be quite large even for small average correlation r due

to the high number s of SNPs. The result of increased LD is a

broader distribution of T values, as observed in Figure 1A and 1B:

we observe a narrower distribution of T for the HapMap YRI

samples versus the Caucasian CGEMS participants and HapMap

CEPHs (the Yoruban individuals, who come from an older

population, have lower average LD).

The effect of LD on the distribution of T may be countered by

selecting fewer SNPs; the results of this approach can be seen in

Figure 1C and 1D and in Table 2. Here, 50,000 SNPs were

selected, uniformly distributed across of the 481,382 SNPs used in

Figure 1A and 1B. 50,000 SNPs was shown in [1] to be a

reasonable lower bound to detect at nominal a&10{5 one

individual amongst 1000, which is the concentration of true

positive individuals in this test. As is clear from Figure 1, reducing

the number of SNPs narrows the distributions considerably, yet at

the same time brings them closer together such that the crisp

separation previously obtained is reduced. Using this method, we

see that the 200 CGEMS samples now have a distribution closer to

that of the putative null N(0,1) such that using a threshold of

a~0:05 yields an improved—yet still larger than nominal—21%

false-positive rate while maintaining a high 96.3% true positive

rate. However, the misclassification rate is still over 50% for both

HapMap samples, and improving these values requires compro-

mising the sensitivity, a direct result of the overlapping T
distributions for the G and HapMap samples.

Despite the low sensitivities obtained in our tests, it is apparent

from Figure 1 that the true positive individuals have a significantly

different distribution of T values than do the null samples, such

that if appropriate thresholds were selected the classification could

be improved (note that in practice, the distributions of the true

positive individuals are unknown, since reconstructing them

requires full genotypes, not just the MAFs, of F and G). One

simple apprach, motivated by the observed separation of

distributions in Figure 1, would be to collect a set of presumed-

null genotypes from which to estimate the null T distribution.

Consider a situation in which we have fi and gi, along with an

individual Y who is one of the 200 CGEMS samples not in F or

G, but no other genotypes. We might reasonably turn to publicly

available HapMap genotypes as a group from which to construct

an empirical null distribution for setting thresholds. The lines in

Figure 1A and 1C depict this case. Using the 0.05 and 0.95

quantiles obtained from the HapMap CEPH T distribution (cyan

bars) as thresholds improves the accuracy relative to using N(0,1)
quantiles, but still incorrectly classifies half of the 200 CGEMS

samples; the false positive rate is yet greater (and the true-positive

rate smaller) when using the HapMap YRI quantiles (blue bars).

Likewise, roughly a quarter of the HapMap CEPHs and the

majority of HapMap YRIs lie outside the thresholds set from the

200 CGEMS samples in Figure 1B and 1D.

These examples, as well as the analytical results described in

Text S1, show that deviations from the assumptions that F , G, and

Y are i.i.d. samples of the same population P can produce

misleadingly large values of T . While Equations 1, 2 produce good

separation of the F , G and null sample distributions, appropriately

calibrating the thresholds for classification is difficult in practice.

Classification of relatives. We briefly consider the

classification of individuals who are relatives of true positives.

This can be investigated by using HapMap trios, since we can

reasonably expect that the children will bear a greater resemblance

to their parents than their parents do to one another. Recalling

that the HapMap pools consist of thirty individual mother-father-

offspring pedigrees, we construct pools as follows:

N F = Mothers from pedigrees 1–15 and fathers from pedigrees

1–15

N G = Children from pedigrees 1–15 and fathers from pedigrees

16–30

and then compute T for mothers and children from pedigrees 16–

30 using the same SNP criteria as before. The results of these tests

for both the CEPH and YRI pedigrees, given in Figure 2, are as

expected, with the children having a significantly higher

distribution of T than the mothers; the T values for all the

children were so large that p-values %10{16 were obtained when

comparing to N(0,1). By contrast, 5/15 of the YRI mothers from

pedigrees 16–30 and 10/15 of the CEPH mothers from pedigrees

16–30 yielded Tj jw1:64 (with distributions roughly centered

about T~0). The wider distribution amongst the CEPHS again

reflects the effect of LD. In Figure 2 we can see that the method

has the power to resolve three groups: those in a group, those

related to members of a group, and those who are neither. Note,

however, that without having the distribution of T for true

positives (which necessitates knowing the genotypes of true

positives), it is not clear that setting a threshold to distinguish

between true positives and their relatives is possible.

Positive predictive value of the method. The effect of the

modest specificity—even in the best of cases described above—on the

posterior probability that the individual Y is in F or G is considerable,

given that the prior probability is likely to be relatively small in most

applications of this method. Let us consider the positive predictive

value (PPV), which quantifies the post-test probability that an

individual Y with a positive result (i.e., significant T ) is in F or G.

This probability depends on the prior probability that the individual is

in F or G, i.e., on the prevalence of being a member of F or G. PPV

follows directly from Bayes’ theorem, and is defined as

PPV~
Sens:Prev

Sens:Prevz(1{Spec)(1{Prev)
, ð5Þ

where the PPV is the posterior probability that Y is in F=G given a

prior probability of Prev. We can write this equivalently in terms of the

positive likelihood ratio LRz,

Posterior odds~LRz
:Prior odds ð6Þ

LRz~
Sens

(1{Spec)
: ð7Þ

A plot of PPV vs. prevalence is given in Figure 3. Even with the best

sensitivity (96.3%) and specificity (79%) obtained in Table 2—that in

which F , G, and Y were strictly drawn on the same underlying

population P, 50,000 SNPs were used, and a nominal a~0:05 was

used as a threshold—the prior probability (prevalence) of Y being in

F=G needs to exceed 66% in order to achieve a 90% post-test

probability that the subject is in F=G. For a PPV of 99%, the prior

probability needs to exceed 72% for any specificity under 95%,

assuming the observed sensitivity of 99%. The low specificities obtained

in practice thus require a strong prior belief that Y is in F or G.

The difference between the empirical false-positive rate and the

nominal false-positive rate based on the standard normal has a strong

effect on the posterior probabilities. Consider that LRz at 87%

Identifying Individuals in Pooled Genomic Data
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specificity and 99% sensitivity is 7.6, versus 990000 if the nominal

false-positive rate a~10{6 were correct. For prior probability of 1/

1000, the first case yields a posterior probability of 1.1/1000, while

the second yields a posterior probability of 998/1000. These

differences, which are difficult to measure without additional, well-

matched null sample genotypes and which depend strongly on the

degree to which the assumptions underlying the method are met

(consider the differences between the CGEMS and HapMap CEPH

specificities in Table 2), pose a severe limitation on the utility of using

Equations 1,2 to resolve Y’s membership in samples F or G.

Discussion

In this work, we have further characterized and tested the

genetic distance metric initially proposed in [1]. This metric,

summarized here by Equations 1,2, quantifies the distance of an

individual genotype Y with respect to two samples F and G using

the marginal minor allele frequencies fi and gi of the two samples

and the genotype yi. The article [1] proposes to use this metric to

infer the presence of the individual in one of the two samples, and

the authors demonstrate the utility of their classifier on known

positive samples (i.e., samples which are in either F or G) showing

that in this situation their method yields classifications of high

sensitivity. Our investigations confirm that the sensitivity is quite

high (correctly classifying true positives into groups F and G) and

that in-F, in-G, and null samples have distinct distributions of T
values. However, we also find that the distribution of T for null

samples does not follow the presumed standard normal, and thus

the specificity is considerably less than that predicted by the

quantiles of the putative null distribution N(0,1). Calibrating a

Figure 2. Distribution of T. Distributions of T for out-of-group samples who are related (red line) and unrelated (blue line) to individuals in G for
HapMap YRI (A) and HapMap CEPH (B) populations. (C) and (D) show the same distributions as (A) and (B) respectively, with the addition (green line)
of individuals who are in G and unrelated to F (i.e., true positives). Dashed black lines indicate the T significance thresholds of 61.64 at nominal
a~0:05.
doi:10.1371/journal.pgen.1000668.g002
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more accurate set of thresholds is difficult in practice, limiting the

utility of Equations 1, 2 to positively identify Y’s presence in

samples F or G.

In this work we have shown that high T values, significant when

compared against N(0,1), may be obtained for samples that are in

neither of the pools due to violations of the assumptions that F , G
and Y are all samples of the same underlying population; that F
and G are similarly sized samples; and that the SNPs i used to

compute T are independent. The high false positive rates in

Table 2 result from deviations of the first and third assumptions.

These assumptions are difficult to meet; for instance, HapMap

CEPH and CGEMS samples are sufficiently dissimilar that the

HapMap CEPH samples exhibit greater deviation from violations

of the first assumption, despite the fact that both samples are

Americans of European descent. Additionally, the conclusion that

high T values result from Y’s presence in G relies upon the

questionable assumption that individuals in neither F nor G will

be equidistant from both, resulting in false positives for relatives of

true positive individuals, even when the other assumptions are

met.

The low false positive rate in practice, resulting from the

difficulty in accurately calibrating the significance of T , results in a

likelihood ratio (and hence post-test probability) that is also low.

When the prior probability of Y’s presence in F or G is modest,

strong evidence (i.e., high specificity) is needed to outweigh this

prior, which was not achieved in our tests. On the other hand,

when samples were known a priori to be in one of the groups F/G,

Equations 1,2 correctly identify the sample of which the individual

is part.

These findings have implications both in forensics (for which the

method [1] was proposed) and GWAS privacy (which has become

a topic of considerable interest in light of [1]). We briefly consider

each:

Forensics implications
The stated purpose [1] of the method—namely, to positively

identify the presence of a particular individual in a mixed pool of

genetic data of unknown size and composition—is difficult to

achieve. In this scenario, we have gi (from forensic evidence) and a

suspect genotype yi. To apply the method, we would need 1) to

assume that Y and G are indeed i.i.d. samples of the same

population P; 2) to obtain a sample F which is also a sample of the

underlying population P, well-matched in size and composition to

G; 3) to obtain an estimate of the sample size of G such that

sample-size effects can be appropriately discounted (see Text S1);

and 4) to assume that the p-values at the selected classification

thresholds are accurate. The high false-positive rates which result

from even small violations of these criteria make it exceedingly

likely that an innocent party will be wrongly identified as

suspicious; it is even more likely for a relative of an individual

whose DNA is present in G.

GWAS privacy implications
Here the scenario of concern is that of a malefactor with the

genotype of one (or many) individuals, and access to the case and

control MAFs from published studies; could the malefactor use this

method to discern whether one of the genotypes in his possession

belongs to a GWAS subject? In this case, F and G are known to be

samples of the same underlying population P (due to the careful

matching in GWAS), and their sample sizes are large and known.

However, the malefactor still needs 1) to assure that Y is a

member of this population as well (as shown by the poor results

when HapMap samples were classified using CGEMS MAFs) and

2) to assume that the p-values at the selected classification

thresholds are accurate. Additionally, the prior probability that

any of the genotypes in the malefactor’s possession comes from a

GWAS subject is likely to be quite small, since GWAS samples are

a tiny fraction of the population from which they are drawn. Even

if the malefactor were able to narrow down the prior probability to

one in three, a sensitivity of 99% and a specificity of 95% is needed

to obtain a 90% posterior probability that the individual is truly a

participant.

On the other hand, if the malefactor does have prior knowledge

that the individual Y participated in a certain GWAS but does not

know Y’s case status, Equations 1, 2 permit the malefactor to

discover with high accuracy which group Y was in. Additionally,

Figure 3. Positive predictive value (PPV) as a function of
prevalence and specificity given 99% sensitivity. In (A), PPV is
shown on the y axis and color corresponds to specificity. The black
curve depicts the 87% sensitivity line—the best sensitivity obtained in
the empirical tests in Table 2. In (B), PPV is shown by color, and the y
axis corresponds to specificity.
doi:10.1371/journal.pgen.1000668.g003
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in the case of a priori knowledge, the participant’s genotype is not

strictly necessary, since a relative’s DNA will yield a large T score

that falls on the appropriate F=G side of null.

Despite these limitations, we observe that the distributions of T
values for in-F, in-G, and null samples separate strongly, suggesting

that each individual contributes a pattern of allele frequencies that

remains in the pooled data. While calibrating thresholds to

distinguish these distributions without additional information is

not presently possible, the potential for more sophisticated

methods to overcome these barriers cannot be discounted and

presents an avenue for future work.

Moreover, we believe that the distance metric (Equations 1, 2)

as presented may still have forensic and research utility. It is clear

from both our studies and the original paper [1] that the sensitivity

is quite high; in the (rare) case that a sample has an insignificant

Tj jv1:64, it is very likely that Y is in neither F nor G. We can

also see that genetically distinct groups have T distributions with

little overlap (Figure 1), and so it may be worth investigating the

utility of Equations 1,2 for ancestry inference.

On this note, let us once more consider the quantity which

Equation 1 measures, namely the distance of yi from fi relative to

the distance of yi from gi. Referring to Figure 1A and 1C, we can

see that samples Y which are more like those in sample G have a

distribution that lies to the right of samples which are more similar

to F , as expected; that is, in Figure 1A and 1C, the distribution of

null (not in F ,G) CGEMS cases (dashed red line) is shifted to the

right with respect to the distribution of null CGEMS controls, as

might be expected from Equation 1, i.e., the CGEMS case Ys are

closer to CGEMS case Gs than are the CGEMS control Ys.

Although this difference is not statistically significant, one could

imagine that it may be possible to select SNPs for which the shift is

significant, i.e., a selection of SNPs for which unknown cases are

statistically more likely to be closer (via Equation 1) to the cases in

G and unknown controls are statistically more likely to be closer to

the controls in F . In this case, a subset of SNPs known to be

associated with disease may potentially be used with Equations 1, 2

to predict the case status of new individuals; conversely, finding a

subset of SNPs which produce significant separations of the test

samples may be indicative of a group of SNPs which play a role in

disease. Because this type of application would use fewer SNPs and

would involve the comparison of two distributions of T (cases

6 [fF ,Gg vs. controls 6 [fF ,Gg), it may be possible to circumvent

some of the problems stemming from the unknown width and

location of the null distribution described above; still, much work is

needed to investigate this possible application. If successful, the

metric proposed in [1], while failing to function as a tool to

positively identify the presence of a specific individual’s DNA in a

finite genetic sample, may if refined be a useful tool in the analysis

of GWAS data.

Supporting Information

Text S1 Di and T under the null hypothesis.

Found at: doi:10.1371/journal.pgen.1000668.s001 (0.22 MB PDF)
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