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Abstract

Admixture—the mixing of genomes from divergent populations—is increasingly appreciated

as a central process in evolution. To characterize and quantify patterns of admixture across

the genome, a number of methods have been developed for local ancestry inference. How-

ever, existing approaches have a number of shortcomings. First, all local ancestry inference

methods require some prior assumption about the expected ancestry tract lengths. Second,

existing methods generally require genotypes, which is not feasible to obtain for many next-

generation sequencing projects. Third, many methods assume samples are diploid, how-

ever a wide variety of sequencing applications will fail to meet this assumption. To address

these issues, we introduce a novel hidden Markov model for estimating local ancestry that

models the read pileup data, rather than genotypes, is generalized to arbitrary ploidy, and

can estimate the time since admixture during local ancestry inference. We demonstrate that

our method can simultaneously estimate the time since admixture and local ancestry with

good accuracy, and that it performs well on samples of high ploidy—i.e. 100 or more chro-

mosomes. As this method is very general, we expect it will be useful for local ancestry infer-

ence in a wider variety of populations than what previously has been possible. We then

applied our method to pooled sequencing data derived from populations of Drosophila mela-

nogaster on an ancestry cline on the east coast of North America. We find that regions of

local recombination rates are negatively correlated with the proportion of African ancestry,

suggesting that selection against foreign ancestry is the least efficient in low recombination

regions. Finally we show that clinal outlier loci are enriched for genes associated with gene

regulatory functions, consistent with a role of regulatory evolution in ecological adaptation of

admixed D. melanogaster populations. Our results illustrate the potential of local ancestry

inference for elucidating fundamental evolutionary processes.
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Author Summary

When divergent populations hybridize, their offspring obtain portions of their genomes

from each parent population. Although the average ancestry proportion in each descen-

dant is equal to the proportion of ancestors from each of the ancestral populations, the

contribution of each ancestry type is variable across the genome. Estimating local ancestry

within admixed individuals is a fundamental goal for evolutionary genetics, and here we

develop a method for doing this that circumvents many of the problems associated with

existing methods. Briefly, our method can use short read data, rather than genotypes and

can be applied to samples with any number of chromosomes. Furthermore, our method

simultaneously estimates local ancestry and the number of generations since admixture—

the time that the two ancestral populations first encountered each other. Finally, in apply-

ing our method to data from an admixture zone between ancestral populations of Dro-
sophila melanogaster, we find many lines of evidence consistent with natural selection

operating to against the introduction of foreign ancestry into populations of one predomi-

nant ancestry type. Because of the generality of this method, we expect that it will be useful

for a wide variety of existing and ongoing research projects.

Introduction

Characterizing the biological consequences of admixture—the mixing of genomes from diver-

gent ancestral populations—is a fundamental and important challenge in evolutionary genet-

ics. Admixture has been reported in a variety of natural populations of animals [1,2], plants

[3–5] and humans [6,7], and theoretical and empirical evidence suggests that admixture may

affect a diverse suite of evolutionary processes. Individuals’ ancestry can affect disease suscepti-

bility in admixed populations, and inferring and correcting for sample population ancestries is

a common practice in human genome wide association studies [8–10]. More generally, admix-

ture has the potential to influence patterns of genetic variation within populations [11,12], to

introduce novel adaptive [13,14] and deleterious variants [7,15,16], as well as to disrupt epi-

static gene networks [17,18]. Therefore, developing a comprehensive understanding of the

extent of admixture in natural populations and resulting mosaic genome structures is essential

to furthering our understanding of a variety of evolutionary processes.

Estimating genome-wide ancestry proportions has become a common practice in popula-

tion genetic inference. For example, the program STRUCTURE [19], originally released in

2000, uses a Bayesian framework to model the ancestry proportions of individuals derived

from any number of source populations based on genotype data at a set of unlinked genetic

markers. More recently, this model for ancestry proportion estimation has been extended to

cases where individual genotypes are not known, but can be studied probabilistically using

low-coverage sequencing short read sequencing data [20], which is an important step towards

accommodating modern sequencing practices. Additionally, Bergland et. al. [21] developed a

method for estimating ancestry proportions in pooled population samples of relatively high

ploidy (i.e. 40–250 distinct chromosomes) from short read sequencing data. In general, it is

straightforward to estimate genome-wide ancestry proportions using a number of sequencing

strategies and applications.

It is substantially more challenging to accurately estimate local ancestry (LA) at markers

distributed along the genome of a sample. Nonetheless, analyses of LA have the potential to

yield more nuanced insights into our understanding of the evolutionary processes affecting

ancestry proportions across the genome. One of the first LA inference (LAI) methods was an
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extension of the STRUCTURE [19] framework that modeled the correlation in ancestry

among markers due to linkage. Because the ancestry at each locus is not observed, Falush et al.
[22] suggested that a hidden Markov model (HMM) is a straightforward means of inferring

the ancestry states at each site in the genome (which are unobserved) based on observed geno-

type data distributed along a chromosome. Most subsequent LAI methods have also used an

HMM framework, and the majority are geared towards estimating LA in admixed human pop-

ulations (e.g. [23,24]). Consequently, most existing LAI methods are limited to diploid

genomes with high quality genotype calls. Furthermore, many methods require phased refer-

ence panels [24,25], and require the user to provide an estimate of, or make implicit assump-

tions about, the number of generations since the initial admixture event [2,23–25]. This is

straightforward with human population genomic samples, where abundant high quality geno-

typed samples are available and for which well-documented demographic histories are some-

times known. However for most other species, demographic histories are less well

characterized, and assumptions about admixture times may bias the result of LAI methods.

A number of approaches exist to estimate the time since admixture based on well character-

ized ancestry tract length distributions [26–29] but in general, these parameters are unknown

prior to LAI. Conversely, another class of methods can be used to estimate the time of admix-

ture based on the decay of linkage disequilibrium without performing LAI [30–32]; however

as with LAI procedure above, these approaches are also limited to diploid genotype data. We

may therefore expect to improve LAI by simultaneously estimating LA and demographic

parameters (e.g. admixture time). Furthermore, in the majority of sequencing applications, rel-

atively low individual sequencing coverage is often used to probabilistically estimate individual

and population allele frequencies (e.g. [33]) but these data are often not sufficient to determine

high confidence genotypes that are required for existing LAI applications. Hence, there is a

clear need for a general LAI method that can accommodate genotype uncertainty and requires

less advanced knowledge of admixed populations’ demographic histories.

Here, we introduce a framework for simultaneously estimating LA using short read pileup

data and the time of admixture within a population. Briefly, as with many previously proposed

LAI methods, we model ancestry across the genome of a sample as a HMM. We estimate LA

by explicitly modeling read counts as a function of sample allele frequencies within an admixed

population. Our method is generalized to accommodate arbitrary sample ploidies, and is there-

fore applicable to haploid (or inbred), diploid, tetraploid, as well as pooled sequencing applica-

tions. We show that this approach accurately infers the time since admixture when data are

simulated under the assumed model. Furthermore, our method yields accurate LA estimates for

simulated datasets, including samples of high sample ploidy and including evolutionary scenar-

ios that violate the assumptions of the neutral demographic model. In comparisons between

ours and an existing LAI method, WINPOP [34], we find that our approach offers a significant

improvement and is accurate over longer time scales. Furthermore, we demonstrate, using a

published dataset, that even state-of-the-art LAI methods can be significantly impacted by

assumptions about the time since admixture, and that our method provides a solution to this

problem.

Finally, we apply this method to a Drosophila melanogaster ancestry cline on the east coast

of North America. This species originated in sub-Saharan Africa, and approximately 10,000–

15,000 years ago a subpopulation expanded out of the ancestral range. During this expansion,

the derived subpopulation experienced a population bottleneck that resulted in decreased nucle-

otide polymorphism, extended linkage disequilibrium within the derived population and sub-

stantial genetic differentiation between ancestral and derived populations [2,35–39]. Hereafter,

the ancestral population will be referred to as “African” and the derived population as “Cosmo-

politan”. Following this bottleneck, descendant populations of African and Cosmopolitan
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D. melanogaster have admixed in numerous geographic regions [2,11,21]. Of particular rele-

vance to this work, North America was colonized recently by a population descendent from

African individuals from the South, and by a population descendent from cosmopolitan D. mel-
anogaster in the North [11,21,38]. Where these populations encountered each other in eastern

North America, they form an ancestry cline where southern populations have a greater contri-

bution of African ancestry than northern populations [21].

Previous work on these ancestry clines has shown that ancestry proportions vary across

populations with increasing proportions of cosmopolitan alleles in more temperate localities.

Evidence suggests spatially varying selection affects the distribution of genetic variants [40–

45]. Furthermore, strong epistatic reproductive isolation barriers partially isolate individuals

from northern and southern populations along this ancestry cline [46,47]. This may be gener-

ally consistent with recent observations of ancestry-associated epistatic fitness interactions

within a D. melanogaster population in North Carolina [17], and with the observation of wide-

spread fitness epistasis between populations of this species more generally [48]. There is there-

fore good reason to believe that natural selection has acted to shape LA clines that are tightly

linked to selected mutations in these D. melanogaster populations.

Here, we show that African ancestry in North American D. melanogaster populations is

negatively correlated with recombination rates, consistent with more efficient selection against

foreign ancestry in high recombination rate regions of the genome. We also find that the X

chromosome displays a higher rate of LA outlier loci, potentially consistent with a greater

role of the X chromosome in clinal adaptation. Clinal loci are disproportionately likely to be

associated with high level gene regulatory protein complexes, and may play important roles in

ecological divergence between African and Cosmopolitan D. melanogaster populations. Fur-

thermore, we identify numerous loci with decreased African ancestry across all populations,

which suggests that these alleles that are disfavored on predominantly cosmopolitan genetic

backgrounds. This subset of loci is enriched for genes related to oogenesis, potentially consis-

tent with epistatic interactions that affect female reproductive success in these populations.

Results and Discussion

The Model

Although admixed populations often are diploid, we derived a general model of ploidy in

which the individual has n gene copies at each locus, i.e. for diploid species n = 2. In practice,

sequences are often obtained from fully or partially inbred individuals (e.g. [39,49]), which

represent only a single uniquely derived chromosome. It is also common to pool individuals

prior to sequencing for allele frequency estimation, so called pool-seq (e.g. [21,40,42,50–53]).

If the pooling fractions are exactly equal, such a sample of b diploid individuals can be treated

as a sample from a single individual with ploidy n = 2b. Although that requirement is restric-

tive, pool-seq has been experimentally validated as a method for accurate allele frequency esti-

mation—i.e. alleles are approximately binomially sampled from the sample allele frequencies

[54]. We therefore aimed to derive a model that can accommodate arbitrary sample ploidies.

In the model, we assumed that the focal population was founded following a single discrete

admixture event between two ancestral subpopulations, labeled 0 and 1, with admixture pro-

portions 1-m and m, respectively, at a time t generations in the past. We modeled emission

probabilities such that the method can work directly on read pileup data, rather than high

quality known genotypes. Briefly, in our model, we specify an HMM {Hv} with state space S =

{0,1,. . .,n}, where Hv = i, i 2 S, indicates that in the vth position i chromosomes are from popu-

lation 0 and n–i chromosomes are from population 1. In other words, this HMM enables one

to estimate what ancestry frequencies are present at a given site along a chromosome within a
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sample. Importantly, we designed this method to simultaneously estimate the time of admix-

ture, which is related to the correlation between ancestry informative markers along a chromo-

some. See Methods for a complete description of the HMM including the emissions and

transition probability calculations. The source code and manual are available at https://github.

com/russcd/Ancestry_HMM. For this model, it is assumed that the number of chromosomes

present in a sample, n, is known and that the global ancestry proportion, m, is known. As there

are many methods for accurately estimating m in a wide variety of contexts implemented in

standard population genetic analysis pipelines [19,20], we believe this assumption is not too

restrictive.

Admixture Simulation Framework

In order to test our method with data of known provenance, we also developed an approach

for simulating chromosomes sampled from admixed populations. Briefly, we first simulated

genetic diversity consistent with ancestral populations using a coalescent simulation method

[55]. We then generated ancestry tracts consistent with admixture models developed to test

our inference method using the forward-time admixture simulation program, SELAM [56].

We retained a portion of each coalescent-generated population to serve as a reference panel

for allele frequency and LD estimation. We then took the remaining chromosomes and placed

them on the appropriate ancestry tracts in admixed chromosomes. Finally, we generated read

counts for these chromosomes, or pools of chromosomes for samples with ploidy greater than

one, via binomial sampling from the genotype frequencies of the sample. Implicitly, this proce-

dure assumes that the allele frequencies in the reference panel and the admixed individuals

whose ancestry is from a given reference panels are equivalent. For large, well-mixed popula-

tions such as those of D.melanogaster, this is likely to be a reasonable assumption. Nonetheless,

below we assess the impact of differences in the ancestral allele frequencies for plausible demo-

graphic models in this species.

Dependence on Ancestral Linkage Disequilibrium

Within an admixed population, there are two sources of LD. LD that is induced due to the cor-

relation of alleles from the same ancestry type (i.e. admixture LD), and LD that is present

within each of the ancestral populations (ancestral LD). Admixture LD, is the signal of LA that

we seek to detect using the HMM. The second type, ancestral LD, limits the independence of

the ancestral information captured by each marker, and is expected to confound HMM-based

analyses, particularly as we aimed to estimate the time since admixture within this framework.

We therefore sought to quantify the effect of ancestral LD by discarding one of each pair of

sites in LD within either ancestral population. We found that ancestral LD tends to increase

admixture time estimates obtained using our method, and we decreased the cutoff of the LD

parameter, |r|, by 0.1 until the time estimates obtained for single chromosomes were unbiased

with respect to the true time since admixture. We found that |r|� 0.4 fit this criterion, al-

though for relatively ancient admixture events with highly skewed ancestry proportions—i.e.
m< 0.1 or m> 0.9—some residual bias was apparent in the estimates of admixture time (Fig

1). This reflects the fact that the SMC’ ancestry tract distribution performs poorly with highly

skewed ancestry proportions and especially for long times since admixture [57].

Fig 1 also reveals a striking difference between otherwise equivalently skewed admixture

proportions. For example when m = 0.1, there was a much larger effect of ancestral LD than

when m = 0.9. This is due to differences in the variability of LD within the ancestral popula-

tions. That is, due to the strong population bottleneck, cosmopolitan D. melanogaster popula-

tions have substantially more LD and fewer polymorphic sites than African D. melanogaster
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populations. Because the time estimation procedure appears to be sensitive to the amount of

ancestral LD present in the data, simulations of the type we described here may be necessary to

determine what |r| cutoffs are required to produce unbiased time estimates given the ancestral

LD of the populations in a given analysis using this method.

Accuracy and Applications to Diploid and Pooled Samples

We next sought to quantify the accuracy of our approach across varying sample ploidies and

times since admixture (Fig 2). Especially for moderate and short admixture times (i.e. 0–500

generations), our method performed well for all ploidies considered and we were able to accu-

rately recover the correct admixture time with relatively little bias. However, as true admixture

time increases, the time estimates for pooled samples become significantly less reliable and

show a clear negative bias. Nonetheless, across the range of times presented in Fig 2, samples

of ploidy one and two showed little bias, and we therefore believe our method will produce suf-

ficiently accurate admixture time estimates for a wide variety of applications.

All measures of accuracy decrease with increasing time since admixture (Fig 2). However,

even for relatively long times since admixture—2000 generations—and for large sample ploi-

dies, the mean posterior error remained relatively low for all ancestry proportions and for long

times since admixture. This indicates that this approach may be sufficiently accurate for a wide

variety of applications, sequencing depths, and sample ploidies. Nonetheless, the proportion of

sites within the 95% credible interval decreased with larger pool sizes and it is clear that for

larger pools the posterior credible interval tends to be too narrow. Therefore, correcting for

this bias may be necessary for applications that are sensitive to the accuracy of the credible

interval.

Fig 1. The effect of increasing stringency with ancestral LD pruning. From left to right, ancestry proportions are 0.1, 0.25, 0.5, 0.75 and 0.9. |r| cutoffs

are: none (red), 1.0 (orange), 0.9 (yellow), 0.8 (green), 0.7 (dark blue), 0.6 (cyan), 0.5 (indigo), and 0.4 (violet). The solid line indicates the expectation for

unbiased time estimation. All read data were simulated with ploidy = 1. True admixture time was drawn from a uniform (0, 2000) distribution.

doi:10.1371/journal.pgen.1006529.g001
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An important consideration is that estimates of t will be reliable only if the local recombina-

tion rates are known with reasonably high accuracy [58]. In many species, an accurate broad-

scale map is available. However, fine-scale variation in recombination rates has only been

Fig 2. Time estimates and accuracy statistics for samples of varying ploidies. From left to right, ancestry proportions are 0.1, 0.25, 0.5, 0.75 and 0.9.

Each sample ploidy is represented by one point color with ploidy one (black), two (red), ten (blue) and twenty (green). From top to bottom, each row is the

estimated time in generations, the proportion of sites where the true state is within the 95% credible interval, the width of the 95% credible interval, the mean

posterior error, and the proportion of sites where the maximum likelihood estimate is equal to the true state.

doi:10.1371/journal.pgen.1006529.g002
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documented for a few model species. Therefore, for relatively short to moderate times since

admixture, error in the genetic map is expected to have a limited impact on date estimates.

However, for longer times since admixture, this factor has the potential to bias estimates of t
[58], particularly in species with large variance in local recombination rates (e.g. due to hot-

spots). Since D. melanogaster has one of the best recombination maps currently available in

any species [59] and because we do not aim to estimate time in our applications, we do not

believe this will heavily impact the analyses we present below. However, for most applications,

it will be necessary to consider the impact of error in the assumed genetic map to accurately

interpret estimates of t obtained using this method. We emphasize that this challenge is not

unique to this application, but will impact virtually all ancestry estimation methods that rely

on a genetic map for estimating the time since admixture.

Non-Independence Among Ancestry Tracts

As described above, estimates of the time of admixture demonstrate an apparent bias in pools

of higher ploidy (Fig 2). Specifically, time tends to be slightly overestimated for relatively short

admixture times and underestimated at relatively long admixture times. This is particularly

apparent at highly skewed ancestry proportions. Given that this bias is primarily evident in

pools of 10 to 20 individuals, we hypothesized that it might be due to the non-independence of

ancestry tracts among chromosomes, which should tend to disproportionately affect samples

of higher ploidy because all ancestry breakpoints are assumed to be independent in our model.

To test this, we simulated genotype data from independent and identically distributed expo-

nential tract lengths as is assumed by our model. When we ran our HMM on this dataset, we

found that no bias is evident for simulations of up to 2000 generations (S1 Fig), indicating that

the primary cause of this bias was violations in the real data of the independence of ancestry

tracts that we assumed when computing the transition probabilities. However, it should be

possible to quantify and correct for this bias in applications of this method that aim to estimate

the time since admixture.

Robustness to Unknown Population Size

The transition probabilities of this HMM depend on knowledge of the population size. In

practice, this parameter is unlikely to be known with certainty. Hence, to assess the impact of

misspecification of the population size, we performed simulations using a range of population

sizes that span three orders of magnitude (N = 100, 1000, 10000, and 100000). All analyses pre-

sented here were conducted by applying our HMM to haploid and diploid samples, but quali-

tatively similar results hold for samples of larger ploidy. We then analyzed these data assuming

the default population size, 10000, is correct. For relatively short times since admixture, there

was not a clear bias for any of the true population sizes considered. However, at longer true

admixture times, estimated admixture times for both N = 100 and N = 1000 asymptote at a

number of generations near to the population sizes. This result reflects the fact that smaller

populations will tend to coalesce at a portion of the loci in the genome relatively quickly, and

ancestry tracts cannot become smaller following coalescence. Nonetheless, the accuracy of LAI

remained high even when time estimates were unreliable (S2 Fig) for the tested marker densi-

ties and patterns of LD. Furthermore, in some cases it should be straightforward to determine

if a population has coalesced to either ancestry state at a large portion of the loci in the genome,

potentially obviating this issue.

A more subtle departure from the expectation was evident for population sizes that are larger

than we assumed in analyzing these data (S2 Fig). This likely reflects the fact that the probability

of back coalescence to the previous marginal genealogy to the left after a recombination event is
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inversely related to the population size. Hence, the rate of transition between ancestry types is

actually slightly higher in larger populations where back coalescence is less likely than we

assumed during the LAI procedure. This produced a slight upward bias in the estimates of

admixture time when the population was assumed to be smaller than it is in reality. However,

this bias appears to be relatively minor, and we expect that time estimates obtained using this

method will be useful so long as population sizes can be approximated to within an order of

magnitude. Of course, this bias is not unique to our application, and it will affect methods that

aim to estimate admixture time after LAI as well. That is, estimating the correct effective popu-

lation size is an inherent problem for all admixture demographic inference methods.

Application to Ancient Admixture

Although it is clear that accurately estimating relatively ancient admixture times is challenging

in higher ploidy samples, we sought to determine the limits of our approach for LAI and time

estimation for longer admixture times for haploid sequence data. Because of rapid coalescence

in smaller samples (see above), we performed admixture simulations with a diploid effective

population size of 100,000. It is clear that there is a limit to the inferences that can be made

directly using our method. Like the higher ploidy samples, time estimates for haploid samples

departed from expectations shortly after 2,000 generations since admixture (S3 Fig). Nonethe-

less, the magnitude of this bias is slight, and it is likely that it could be corrected for when

applying this method even for very ancient admixture events. For all admixture times consid-

ered, LAI remained acceptably accurate despite the slight bias in time estimates (S3 Fig).

Reference Panel Size

One question is what effect varying the reference panel sizes will have on LAI inference using

this method. We therefore compared results from reference panels of size 10 chromosomes

with those from panels of size 100 chromosomes (S4 Fig). As with results obtained for refer-

ence panels of size 50, panels of size 100 were sufficient to accurately estimate admixture time

and LA over many generations since admixture. Whereas, when panel sizes were just 10 chro-

mosomes, time estimates were clearly biased and the result was variable across ancestry pro-

portions (S4 Fig). However, since there was a strong correlation between true and estimated

admixture times even with relatively small panel sizes, it may therefore be possible to infer the

correct time by quantifying this bias through simulation and correcting for it. Furthermore,

although LAI is clearly less reliable with smaller panels, these results are not altogether discour-

aging and this approach, in conjunction with modest reference panels may still be effective for

some applications.

Allele Frequency Differences Between Ancestral and Admixed

Populations

Ultimately, there are three reasons why allele frequencies in the reference panels and in the

admixed population panel would be expected to differ beyond that expected from binomial

samples with the same mean. First, some amount of genetic drift may have occurred in the

ancestral population and in the admixed population in the time since the admixed population

was founded. Second, in some cases, it is infeasible to sample the ancestral population of an

admixed group, and a genetically divergent population must suffice as the reference panel if

this method is to be used. Third, divergent selection may quickly modify allele frequencies

between admixed and ancestral populations. Hence, genetic divergence between reference and

admixed populations may be an important challenge for this method.

Estimating Local Ancestry and Admixture Time in Samples of Arbitrary Ploidy
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To address this, we simulated the second scenario, where increasingly divergent popula-

tions are used as the reference panels to study admixed populations. In order to make this rele-

vant to the application to D. melanogaster populations, below, we selected times for divergence

that might be consistent with differences across continental populations in Sub-Saharan Africa

and in Cosmopolitan populations. Although time estimates obtained using this approach are

weakly positively biased with increasing divergence between the ancestral population and ref-

erence panels, the accuracy of this LAI method is largely unaffected (S5 Fig). Hence, for biolog-

ical scenarios potentially consistent with those of D. melanogaster ancestral populations, we do

not expect this challenge to strongly bias our method. Nonetheless, in applications to other

populations, with potentially differently structured ancestral populations, it would be neces-

sary to examine the effects of this bias in detail.

High Sample Ploidy

In a wide variety of pool-seq applications, samples are pooled in larger groups than we have

considered above (e.g. [40,50,52]). We are therefore interested in determining how our method

will perform on pools of 100 individuals. Towards this, we performed simulations as before,

but we designed our parameters to resemble those of the pooled sequencing data that we ana-

lyze in the application of this method below. Specifically, we simulated data with a mean

sequencing depth of 25, a time since admixture of 1500 generations, and an ancestry propor-

tion of 0.8. Consistent with results for ploidy 20, we found that time tends to be dramatically

underestimated (i.e. the mean estimate of admixture time was 680 generations). However,

when we provided the time since admixture, our method produced reasonably accurate LAIs

for these samples. Although the posterior credible interval was again too narrow, the mean

posterior error was just 0.053 when expressed as an ancestry frequency, indicating that this

approach can produce LA estimates that are close to their true values for existing sequencing

datasets (e.g. Fig 3). However, the HMM’s run time increases dramatically for higher ploidy

samples and higher sequencing depths, a factor that may affect the utility of this program for

some analyses. Nonetheless, for more than 36,000 markers, a sample ploidy of 100 and a mean

sequencing depth of 25, the average runtime was approximately 42 hours. In contrast, for the

same set of parameters, but where individuals are sequenced and analyzed as diploids, the

mean runtime was just 8 minutes (See S1 Table for a comparison of run times across many

parameter sets).

Robustness to Deviations From the Neutral Demographic Model

An important concern is that many biologically plausible admixture models would violate the

assumptions of this inference method. In particular, continuous migration and selection acting

on alleles from one parental population are two potential causes of deviation from the expected

model in the true data. To assess the extent of this potential bias, we performed additional sim-

ulations. First, we considered continuous migration at a constant rate that began t generations

prior to sampling. In simulations with continuous migration, additional non-recombinant

migrants enter the population each generation. Relative to a single pulse admixture model, this

indicates that the ancestry tract lengths will tend to be longer than those under a single pulse

admixture model in which all individuals entered at time t. Indeed, we found that admixture

times tended to be underestimated with models of continuous migration. However, the accu-

racy of LAI remained high across all situations considered here (Table 1), indicating that the

LAI aspect of this approach may be robust to alternative demographic models.

In the second set of simulations, we considered additive selection on alleles that are per-

fectly correlated with local ancestry in a given region (i.e. selected sites with frequencies 0 in
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population 0 and frequency 1 in population 1), and experience relatively strong selection

(selective coefficients were between 0.005 and 0.05). We placed selected sites at 2, 5, 10 and 20

loci distributed randomly across the simulated chromosome, where admixture occurred

through a single pulse. Ancestry tracts tend to be longer immediately surrounding selected

sites, and we therefore expected admixture time to be underestimated when selection is wide-

spread. When the number of selected loci was small, time estimates were nearly unbiased

(Table 2), suggesting that our approach can yield reliable admixture time estimates despite the

presence of a small number of selected loci (i.e. 2 selected loci on a chromosome arm). How-

ever, with more widespread selection on alleles associated with local ancestry, time estimates

showed a downward bias that increased with increasing numbers of selected loci. This is likely

because selected loci will tend to be associated with longer ancestry tracts due to hitchhiking.

However, the accuracy of the LAI remains high for all selection scenarios that we considered

here, further indicating that our method can robustly delineate LA, even when the data violate

assumptions of the inference method (Tables 1 and 2).

Comparison to WinPop

We next compared the results of our method to those of WinPop [34]. Because WinPop accepts

only diploid genotypes, we provided this program diploid genotype data. However, for these

comparisons, we still ran our method on simulated read pileups with the mean depth equal to 2.

WinPop was originally designed for local ancestry inference in very recently admixed popula-

tions. As expected, WinPop performed acceptably for very short admixture times, but rapidly

decreased in performance with increasing time (S6 Fig). However, by default, WinPop removes

Fig 3. Accuracy of the HMM for samples of high ploidy. The 95% credible interval (shaded blue region), and the posterior mean (red) contrasted with the

true ancestry frequencies (black). Simulated data were generated with an admixture time of 1500 generations, an ancestry proportion of 0.2, a sample ploidy

of 100, and a mean sequencing depth of 25.

doi:10.1371/journal.pgen.1006529.g003
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sites in strong LD within the admixed samples, which includes ancestral LD, but also admixture

LD—the exact signal LAI methods use to identify ancestry tracts.

We therefore reran WinPop, but instead of pruning LD within the admixed population, we

removed sites in strong LD within the ancestral populations as described above in our method.

With this modification, WinPop performs nearly as well as our method, but remains slightly

less accurate especially at longer admixture times (S6 Fig). This difference presumably reflects

the windowed-based approach of WinPop. At longer times since admixture a given genomic

window may overlap a breakpoint between ancestry tracts. Although the performance is nearly

comparable with this modification, we emphasize that our method enables users to estimate

the time since admixture, where this must be supplied for WinPop, and allows for LAI on read

pileups, therefore incorporating genotype uncertainty into the LAI procedure. Indeed our

method is more accurate at longer timescales even when supplied with considerably lower

quality read data. However WinPop supports LAI with multiple ancestral populations, which

Table 1. Parameter estimation and LAI when admixture occurs at a constant rate, rather than in a single pulse.

Admixture

Time

Migration

Rate

Sample

Ploidy

Estimated

Time

Proportion in 95%

CI

Mean 95% CI

Width

Mean Posterior

Error

Proportion MLE

Correct

100 0.0005 1 53 1.000 0.002 0.001 1.000

2 49 1.000 0.006 0.001 0.998

10 129 0.963 0.305 0.017 0.839

20 98 0.545 0.328 0.033 0.353

0.001 1 55 1.000 0.004 0.001 0.999

2 53 1.000 0.013 0.002 0.997

10 156 0.951 0.558 0.028 0.727

20 90 0.551 0.719 0.043 0.179

0.002 1 54 1.000 0.006 0.002 0.999

2 52 0.999 0.019 0.003 0.996

10 123 0.949 0.758 0.035 0.671

20 74 0.679 1.115 0.045 0.176

0.004 1 43 1.000 0.008 0.002 0.998

2 54 0.999 0.035 0.005 0.993

10 91 0.955 1.085 0.044 0.605

20 75 0.860 1.788 0.045 0.248

500 0.0005 1 254 0.999 0.033 0.010 0.993

2 250 0.997 0.121 0.018 0.974

10 331 0.956 1.395 0.027 0.557

20 333 0.882 2.321 0.051 0.261

0.001 1 266 0.999 0.049 0.014 0.990

2 268 0.996 0.198 0.027 0.962

10 325 0.967 1.887 0.063 0.521

20 366 0.926 3.049 0.055 0.294

0.002 1 294 0.999 0.055 0.016 0.989

2 297 0.996 0.238 0.032 0.956

10 352 0.977 2.076 0.064 0.542

20 370 0.951 3.238 0.054 0.336

0.004 1 346 0.999 0.038 0.010 0.993

2 350 0.997 0.164 0.021 0.973

10 403 0.989 1.634 0.045 0.692

20 462 0.979 2.773 0.041 0.473

doi:10.1371/journal.pgen.1006529.t001
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our method currently does not (but see Conclusions). Furthermore many LAI algorithms uti-

lize haplotype information, which may be particularly valuable in populations where LD

extends across large distances as in e.g. human populations.

Assessing Applications to Human Populations

Given the strong interest in studying admixture and local ancestry in human populations (e.g.
[22–25]), it is useful to ask if our method can be applied to data consistent with admixed popu-

lations of humans. Towards that goal, we simulated data similar to what would be observed in

admixture between modern European and African lineages and applied our HMM to estimate

admixture times and LA. We found that our method can accurately estimate admixture times

for relatively short times since admixture, however, substantially more stringent LD pruning in

the reference panels is necessary to produce unbiased estimates (Fig 4). This may be expected

given that linkage disequilibrium extends across longer distances in human populations than it

Table 2. Parameter estimation and LAI when a subset of loci experience natural selection in the admixed population.

Admixture

Time

Migration

Rate

Sample

Ploidy

Estimated

Time

Proportion in 95%

CI

Mean 95% CI

Width

Mean Posterior

Error

Proportion MLE

Correct

100 0.0005 1 53 1.000 0.002 0.001 1.000

2 49 1.000 0.006 0.001 0.998

10 129 0.963 0.305 0.017 0.839

20 98 0.545 0.328 0.033 0.353

0.001 1 55 1.000 0.004 0.001 0.999

2 53 1.000 0.013 0.002 0.997

10 156 0.951 0.558 0.028 0.727

20 90 0.551 0.719 0.043 0.179

0.002 1 54 1.000 0.006 0.002 0.999

2 52 0.999 0.019 0.003 0.996

10 123 0.949 0.758 0.035 0.671

20 74 0.679 1.115 0.045 0.176

0.004 1 43 1.000 0.008 0.002 0.998

2 54 0.999 0.035 0.005 0.993

10 91 0.955 1.085 0.044 0.605

20 75 0.860 1.788 0.045 0.248

500 0.0005 1 254 0.999 0.033 0.010 0.993

2 250 0.997 0.121 0.018 0.974

10 331 0.956 1.395 0.027 0.557

20 333 0.882 2.321 0.051 0.261

0.001 1 266 0.999 0.049 0.014 0.990

2 268 0.996 0.198 0.027 0.962

10 325 0.967 1.887 0.063 0.521

20 366 0.926 3.049 0.055 0.294

0.002 1 294 0.999 0.055 0.016 0.989

2 297 0.996 0.238 0.032 0.956

10 352 0.977 2.076 0.064 0.542

20 370 0.951 3.238 0.054 0.336

0.004 1 346 0.999 0.038 0.010 0.993

2 350 0.997 0.164 0.021 0.973

10 403 0.989 1.634 0.045 0.692

20 462 0.979 2.773 0.041 0.473

doi:10.1371/journal.pgen.1006529.t002
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does in D.melanogaster. In other words, the scales of ancestral LD and admixture LD become

similar rapidly in admixed human populations. Furthermore, this approach yields accurate time

estimates for shorter times since admixture than with genetic data consistent with D. melanoga-
ster populations. For a relatively short time since admixture, around 100 generations, it is possi-

ble to obtain accurate and approximately unbiased estimates of the admixture time over a wide

range of ancestry proportions, indicating that this method may be applicable to recently admixed

human populations as well (Fig 4). Nonetheless, this result underscores the need to examine

biases associated with LD pruning in this approach prior to application to a given dataset.

Bias in LAI due to Uncertainty in Time of Admixture

To demonstrate that assumptions about the number of generations since admixture have the

potential to bias LAI, we analyzed a SNP-array dataset from Greenlandic Inuits [60,61]. The

Fig 4. Admixture time estimates for simulated data consistent with variation present in modern European and African populations. From left to

right, m = 0.1, m = 0.25, m = 0.5, m = 0.75, m = 0.9. The top row is completely phased chromosomes and the bottom row is unphased diploid data.

doi:10.1371/journal.pgen.1006529.g004
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authors had previously noted a significant impact of t on the LAI results produced using

RFMix [24], which we were able to reproduce here for chromosome 10 (S7 Fig). Indeed, even

for comparisons between t = 5 and t = 20, both of which may be biologically plausible for these

populations, the mean difference in posterior probabilities between samples estimated using

RFMix was 0.0903 (S7 Fig). However, when we applied our method to these data, a clear opti-

mum from t was obtained at approximately 6–7 generations prior to the present, which is

close to the plausible times of admixture for these populations (S7 Fig). This comparison there-

fore demonstrates that even relatively minor changes in assumptions of t have the potential to

strongly impact LAI results, and underscores the importance of simultaneously performing

LAI while estimating t.
However, these results also indicate that our method may not be robust in situations where

the background LD is high and ancestry informative markers are neither common nor distrib-

uted evenly across the genome. When we compared the results of our method at t = 5 and at

t = 20, we also obtained differences in the mean posterior among individuals as with RFMix.

However, one notable difference is that the mean posterior difference using RFMix has a

particularly high variance and therefore higher mean error (S7 Fig), but actually a lower

median difference than we found using our method. There are likely two causes for differences

observed in the mean ancestry posterior among individuals. First, the datasets considered were

generated with a metabochip SNP-chip [62], which contains a highly non-uniform distribu-

tion of markers across the genome. Second, the ancestral LD in the Inuit population is exten-

sive [61], and we could only retain a relatively small proportion of the markers after LD

pruning in the reference panels. These results therefore also underscore the challenges of LAI

when the signal to noise ratio is low as may be the case in some human populations, for which

LD is extensive, and for some sequencing strategies.

Bias due to Incorrect Estimates of t and m

Although in general it is straightforward to estimate m from genome-wide data, in some cases

this parameter may be misestimated prior to LAI. We therefore sought to quantify this poten-

tial effect by performing LAI after supplying incorrect values of m. In general, we found that

values close to the true range, i.e. within 0.05 of the true m, tend to yield reasonably accurate

time estimates. However, increasingly incorrect values produce sharply downwardly biased

time estimates and this effect is especially pronounced for highly skewed true m (S8 Fig). As

could be expected given the robustness of LAI to many perturbations (above), when the incor-

rect t is supplied to the program, the LA results remain reasonable. However it is worth noting

that the penalty appears to be greatest when t is too small rather than too large (S9 Fig).

Estimating Confidence Intervals for t

Although this is not a primary focus for this work, for some users it may be of interest to con-

struct confidence intervals for estimates of t. We recommend the block bootstrap as the pre-

ferred method for estimating confidence interval for t, and we have written a script that will

produce these (available on the github page for this project: https://github.com/russcd/

Ancestry_HMM). Simulations confirm that this can produce confidence intervals overlapping

the true t (S10 Fig), but bias in t estimates for higher ploidy samples may still be apparent in

some cases.

Patterns of LA on Inversion Bearing Chromosomes in D. melanogaster

Given their effects suppressing recombination in large genomic regions, chromosomal inver-

sions may be expected to strongly affect LAI [2,63]. Although we attempted to limit the impact
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of chromosomal inversions by eliminating known polymorphic arrangements from the refer-

ence panels (see methods), many known inversions are present within the pool-seq samples

we aimed to analyze [64]. We therefore focused on known inverted haplotypes within the

DGPR samples [63,65–67], which are comprised of inbred individuals, and therefore phase is

known across the entire chromosome.

In comparing LA estimates between inverted and standard arrangements, it is clear that

chromosomal inversions can substantially affect LA across the genomes (Fig 5). In general, the

chromosomal inversions considered in this work originated in African populations of D. mela-
nogaster [63], and consistent with this observation, most inversion bearing chromosomes

showed evidence for elevated African ancestry. This was particularly evident in the regions

surrounding breakpoints, where recombination with standard arrangement chromosomes is

most strongly suppressed. Importantly, this pattern continued outside of inversion break-

points as well, consistent with numerous observations that recombination is repressed in het-

erokaryotypes in regions well outside of the inversion breakpoints in Drosophila (e.g.
[2,63,68]). In(3R)Mo is an exception to this general pattern of elevated African ancestry within

inverted arrangements (Fig 5). This inversion originated within a cosmopolitan population

[63], and has only rarely been observed within sub-Saharan Africa [69,70]. Consistent with

these observations, In(3R)Mo displayed lower overall African ancestry than chromosome arm

3R than standard arrangement chromosomes.

Although chromosomal inversions may affect patterns of LA in the genome on this ancestry

cline, we believed including chromosomal inversions in the pool-seq datasets would not

heavily bias our analysis of LA clines. Inversions tend to be low frequency in most populations

studied [64], and because they affect LA in broad swaths of the genome—sometimes entire

chromosome arms—including inversions is unlikely to affect LA cline outlier identification

which appears to affect much finer scale LA (below). Furthermore, inversion breakpoint

regions were not enriched for LA cline outliers in our analysis (S2 Table), suggesting that

inversions have a limited impact on overall patterns of local ancestry on this cline. Nonethe-

less, the LAI complications associated with chromosomal inversions should be considered

when testing selective hypotheses for chromosomal inversions as genetic differentiation may

be related to LA, rather than arrangement-specific selection in admixed populations such as

those found in North America.

Application to D. melanogaster Ancestry Clines

Finally, we applied our method to ancestry clines between cosmopolitan and African ancestry

D. melanogaster. Genomic variation across two ancestry clines have been studied previously

[21,38,40,52]. In particular, the cline on the east coast of North America has been sampled

densely by sequencing large pools of individuals to estimate allele frequencies, and previous

work has shown that the overall proportion of African ancestry is strongly correlated with lati-

tude [21]. Consistent with this observation, we found a significant negative correlation for all

chromosome arms between proportion of average African ancestry and latitude (rho = -0.891,

-0.561, -0.912, -0.913, and -0.755, for 2L, 2R, 3L, 3R, and X respectively).

Although global ancestry proportions have previously been investigated in populations on

this ancestry cline [21,38], these analyses neglected the potentially much richer information in

patterns of LA across the genome. We therefore applied our method to these samples. Because

of the relatively recent dual colonization history of these populations and subsequent mixing

of genomes, a genome-wide ancestry cline is expected [21]. However, loci that depart signifi-

cantly in clinality from the genome-wide background levels may indicate that natural selection

is operating on a site linked to that locus.
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LA is Correlated with Recombination Rate

Previously Pool (2015) found that regions of low recombination are disproportionately

enriched for African ancestry in the Raleigh, NC population [17]. Here, we find a similar

Fig 5. Local ancestry of inversion bearing chromosomes (red) compared with those of standard arrangement chromosomes (black) for the same

chromosome arm. Positions of inversion breakpoints, as reported in [63,67] are shown as vertical dashed lines.

doi:10.1371/journal.pgen.1006529.g005

Estimating Local Ancestry and Admixture Time in Samples of Arbitrary Ploidy

PLOS Genetics | DOI:10.1371/journal.pgen.1006529 January 3, 2017 17 / 40



pattern and we further find that is replicated across all populations that were assayed on this

ancestry cline. Specifically, in all populations studied the proportion of African ancestry is sig-

nificantly negatively correlated with local recombination rates (Fig 6). Ultimately, this correla-

tion may have two causes. First, if selection is more efficient at purging African alleles in high

recombination regions, these loci will tend to be removed preferentially in those genomic

regions. An alternative explanation is that introgressing African alleles that are favored by

selection would tend to bring larger linkage blocks along with them in the predominantly low

recombination regions. Regardless of the specific source of natural selection, a neutral admix-

ture model would not predict this robust correlation between LA and recombination rates

within all populations, indicating that natural selection has played an important role in shap-

ing LA on this ancestry cline.

Robustness of LAI to Genomic Heterogeneity

Previous studies have found that heterogeneity in the genome with respect to ancestry infor-

mative markers may impact the accuracy of LAI [71]. To assess this possibility, we computed

the mean difference between posterior mean estimates for the two samples from Florida and

between the two samples from Maine. Importantly, because these pooled samples were created

using different isofemale lines [40], this is a conservative test of our method since there will be

true biological differences as well as stochastic sequencing differences between replicates from

each population. We found no correlation between the mean difference of the posterior means

and local recombination rates (P = 0.2353 and P = 0.7529, Spearman’s rank correlation for

Florida and Maine respectively), indicating that the correlation observed between local recom-

bination rates and LA is unlikely to be an artifact of differential accuracy of LAI in different

genomic regions. However, it should be acknowledged that in some genomic regions it maybe

challenging to unambiguously infer LA [17,71].

Fig 6. The relationship between the proportion of African ancestry proportion and local recombination rates in 100 ancestry

informative SNP windows within the Raleigh, NC population (left). The correlation between the proportion of African ancestry

proportion and local recombination rates in 100 ancestry informative SNP windows in all populations assayed (right). Lines indicate the

95% confidence interval obtained via block bootstrap replicates (see Methods).

doi:10.1371/journal.pgen.1006529.g006
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Outlier LA Clines

Selection within admixed populations may take several distinct forms. On the one hand, loci

that are favorable in the admixed population—either because they are favored on an admixed

genetic background, enhance reproductive success in an admixed population, or are favorable

in the local environment—will tend to achieve higher frequencies, and we would expect these

sites to have a more positive correlation with latitude than the genome-wide average. Con-

versely, loci that are disfavored within the admixed population may be expected to skew

towards a more negative correlation with latitude.

Although it is not possible to distinguish between these hypotheses directly, a majority of

evidence suggests that selection has primarily acted to remove African ancestry from the

largely Cosmopolitan genetic backgrounds found in the Northern portion of this ancestry

cline. First, abundant evidence suggests pre-mating isolation barriers between some African

and cosmopolitan populations [72–74]. Second, there is strong post-mating isolation between

populations on the ends of this cline [46,47]. Third, we report here a strong negative correla-

tion between LA frequency and local recombination rates (above). Finally, circumstantially,

the local environment on the east coast of North America is perhaps most similar to the envi-

ronment of Cosmopolitan compared to African ancestral populations, which further suggests

that Cosmopolitan alleles are likely favored through locally adaptive mechanisms. For these

reasons, we therefore examined loci that are outliers for a negative partial correlation with lati-

tude, as this is the expected pattern for African alleles that are disfavored in more temperate

populations. In other words, the outlier regions show a significantly stronger negative correla-

tion between local African ancestry and latitude than the chromosome arm does on average.

There is an ongoing debate about the relative merits of an outlier approach versus more

sophisticated models for detecting and quantifying selection in genome-wide scans. We

believe that the difficulties of accurately estimating demographic parameters for this ancestry

cline make the outlier approach most feasible for our purposes. Using our outlier approach, we

identified 80 loci that showed the expected negative partial correlation with latitude (Fig 7).

Although the specific statistical threshold that we employed is admittedly arbitrary, given the

strength of evidence indicating widespread selection on local ancestry in this species (above),

we expected that the tail of the LA cline distribution would be enriched for the genetic targets

of selection.

Differences Among Chromosome Arms

Due to the differences in inheritance, evolutionary theory predicts that selection will operate

differently on the X chromosome relative to autosomal loci. Of specific relevance to this work,

the large-X effect [75,76] is the observation that loci on the X chromosome contribute to repro-

ductive isolation at a disproportionately high rate. Additionally, and potentially the cause of

the large-X effect, due to the hemizygosity of X-linked loci, the X chromosome is expected to

play a larger role in adaptive evolution, the so-called faster-X effect [77]. There is therefore rea-

son to believe that the X chromosome will play a significant role in genetically isolating Cos-

mopolitan and African D. melanogaster.
Consistent with a larger role for the sex chromosomes in generating reproductive isolation

or selective differentiation between D. melanogaster ancestral populations, we found that that

the X chromosome has a lower mean African ancestry proportion than the autosomes in all

populations. Furthermore, the X displays a stronger correlation between local recombination

rates and the frequency of African ancestry than the autosomes in all 14 populations samples,

potentially indicating that selection has had a disproportionately strong effect shaping pa-

tterns of local ancestry on this chromosome than on the autosomes. In addition, the X has a
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significantly higher rate of outlier LA clinal loci than the autosomes (23 LA outliers on the X,

57 on the Autosomes, p = 0.0341, one-tailed exact Poisson test). Although consistent with evo-

lutionary theory, differences between autosomal arms and the X chromosome may also be

explained in part by differences in effective recombination rates on the X chromosome than

the autosomes, differences in power to identify LA clines associated with chromosome arm

specific patterns, or by the disproportionately larger number of chromosomal inversions on

the autosomes than on the X chromosome in these populations [64,69]. Distinguishing

between this hypothesis and confounding factors will be central to determining whether key

results from speciation research are replicated in much more recently diverged populations.

Biological Properties of Outlier LA Clinal Loci

We next applied gene ontology analysis to the set of outlier genes to identify common biologi-

cal attributes that may suggest more specific organismal phenotypes underlying LA clinal out-

liers. In total, we identified seven GO terms that remained significant after applying a 5% FDR

correction (S3 Table). These GO terms reflect the presence of two primary clusters of genes.

The first, which corresponds broadly to histone acetylation, may be related to chromatin

remodeling and therefore is expected to effect gene expression levels across a large number of

loci. Previous work focused on this ancestry cline has identified chromatin remodeling genes as

a potentially important component locally adaptive variation on this ancestry cline [78]. This

may indicate that this previous efforts to identify spatially varying selection in these populations

may have been detecting selection on local ancestry components associated with ecological

adaptation in ancestral populations. The second GO cluster, eukaryotic translation initiation

factor 2 complex, also appears to implicate a central role of clinal LA outliers on the regulation

of gene expression. One plausible explanation of these observations is that gene expression, par-

ticularly high level regulation of gene expression, may be especially likely to contribute to epi-

static interactions as these proteins will inherently interact with a diverse set of loci throughout

the genome. Given that two distinct gene clusters related to gene expression are identified by

this analysis, gene expression would appear to be a plausible candidate phenotype to investigate

in future work on ecological divergence and isolating factors in admixed D. melanogaster popu-

lations. Testing this prediction empirically through expression profiling may therefore offer

fruitful grounds of understanding the earliest stages of reproductive isolation.

Regions of Decreased African Ancestry

Another subset of loci that we may wish to identify using these data are those that contribute

to reproductive isolation between African and Cosmopolitan D. melanogaster populations and

would therefore be removed by selection from most populations on this ancestry cline.

Although it is possible that Cosmopolitan alleles would be disfavored in an admixed back-

ground as well, because these populations are predominantly Cosmopolitan, we expect that

the majority of selection on negatively epistatically interacting loci would remove African

alleles from populations. To identify these loci, we first computed the mean African ancestry

across all populations, and we then identified the subset of loci that were in the lowest 5% tail.

From those loci, we selected the loci minima from adjacent genomic windows (see Methods,

Fig 8), and we obtained a total of 84 local ancestry outliers.

Fig 7. The partial correlation between LA and latitude with correction for chromosome-wide ancestry

proportions. Sites for which the probability of the observed clinal relationship was less than 0.005 were retained as

significant (red). Inversion breakpoints for inversions that are at polymorphic frequencies on this ancestry cline are shown

as dotted blue lines.

doi:10.1371/journal.pgen.1006529.g007
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As with the clinal outlier analysis above, to identify commonalities in the types of loci iden-

tified by this analysis, we performed GO analysis on the set of loci that are outliers for the

mean proportion of African ancestry. After a 5% FDR correction, there are again several gene

Fig 8. The mean African ancestry proportion across all populations on the ancestry cline for chromosome arms

2L, 2R, 3L, 3R, and X (top to bottom). Local minima outlier loci are shown in red (see Methods).

doi:10.1371/journal.pgen.1006529.g008
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clusters that are significantly enriched in this set of outlier loci (S4 Table). Of particular interest

is the GO term oogenesis, which may indicate that female reproduction is affected during

admixture between cosmopolitan and African populations of D. melanogaster. This finding is

particularly interesting in light of the fact that female fertility is strongly affected when autoso-

mal chromosomes from one end of this ancestry cline are made homozygous on a genetic back-

ground carrying the X chromosome from the other end of this ancestry cline [47]. Hence, the

effects of combining divergence ancestry types on female fertility, and specifically the genetic

basis of oogenesis, may be an appealing phenotype to characterize in detail in attempting to

clarify the genetic effects that isolate African and Cosmopolitan D. melanogaster populations.

Candidate Behavioral Reproductive Isolation Genes

Given the abundance of evidence supporting a role for pre-mating isolation barriers between

African and Cosmopolitan flies [72–74], we are interested in highlighting genes potentially

related to behavioral isolation between ancestral populations of D.melanogaster. Consistent with

this observation, one of the strongest LA cline outliers, egh, has been conclusively linked to strong

effects on male courtship behavior using a variety of genetic techniques [79]. Additionally, gene

knockouts of CG43759, another LA cline outlier locus, have strong effects on inter-male aggres-

sive behavior [80], and may also contribute to behavioral differences between admixed individu-

als. These loci are therefore appealing candidate genes for functional follow-up analyses, and

illustrate the power of this LAI approach for identifying candidate genes that are potentially asso-

ciated with well characterized phenotypic differences between ancestral populations.

Little Evidence for Seasonal LA Outliers

The Pennsylvania population included in this study has been sampled extensively, including

several paired fall and spring samples across three consecutive years. Previously, Bergland et al.

[40] identified numerous SNPs that showed recurrent and rapid seasonal frequency changes

in the Pennsylvania populations included in this study. They concluded that these sites are

experiencing recurrent selection associated with recurrent environmental seasonal changes.

To determine if LA across the D. melanogaster genome might also experience selection associ-

ated with seasonal frequency shifts, we searched for loci that showed a strong recurrent sea-

sonal shift in LA. However, we identified fewer significantly seasonal sites than we would

expect to by chance (the proportion of significant site at the alpha = 0.05 level of significance is

0.041). Furthermore, after applying a false discovery rate correction [81], there are no sites that

are significantly seasonal at the q = 0.1 level. Collectively, these results indicate that LA within

the Pennsylvania populations of D. melanogaster remains remarkably stable during seasonal

environmental cycles.

Although this observation may, to a first approximation, appear to be at odds with the

results reported in Bergland et al. [40], we believe that it is consistent with the model proposed

in that work. Specifically, the authors suggested that long term balancing selection may main-

tain these seasonally favorable polymorphisms in diverse D. melanogaster populations and

even in the ancestors of D. melanogaster and D. simulants [40]. We therefore may expect that

these polymorphisms will be maintained at similar frequencies in African and Cosmopolitan

populations. Hence, although the seasonal SNPs change rapidly in frequency between spring

and fall [40], the LA at these sites can remain stable during seasonal fluctuations.

Conclusion

A growing number of next-generation sequencing projects produce low coverage data that

cannot be used to unambiguously assign individual genotypes, but which can be analyzed
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probabilistically to account for uncertainty in individual genotypes [82–84]. However, most

existing LAI methods require genotype data derived from diploid individuals. Hence, there is

an apparent disconnect between existing LAI approaches and the majority of ongoing

sequencing efforts. In this work, we developed the first framework for applying LAI to pileup

read data, rather than genotypes, and we have generalized this model to arbitrary sample ploi-

dies. This method therefore has immediate applications to a wide variety of existing and ongo-

ing sequencing projects, and we expect that this approach and extensions thereof will be

valuable to a number of researchers. Although evaluating this application is beyond the scope

of this work, one particularly enticing potential use of this method is LAI in ancient DNA sam-

ples for which sequencing depths often preclude accurate genotype calling. Importantly, it

would be straightforward to model site-specific errors in this framework, which could be par-

ticularly important for ancient DNA applications [6].

For many applications, a parameter of central biological interest is the time since admixture

began (t). A wide variety of approaches have been developed that aim to estimate t and related

parameters in admixed populations [26,28–31,85,86]. Many of these methods are based on an

inferred distribution of tract lengths, however, inference of the ancestry tract length distribu-

tion is associated with uncertainty that is typically not incorporated in currently available

methods for estimating t. Furthermore, incorrect assumptions regarding t have the potential

to introduce biases during LAI. Hence, it is preferable to estimate demographic parameters

such as the admixture time during the LAI procedure. Nonetheless, as noted above, although

LAI using our method is robust to many deviations from the assumed model, admixture time

estimates are sensitive to a variety of potential confounding factors and examining the result-

ing ancestry tract distributions after LAI may be necessary to confirm that the assumed demo-

graphic model provides a reasonable fit to the data.

To our knowledge, this is the first method that attempts to simultaneously link LAI and

population genetic parameter estimation directly, and we can envision many extensions of this

approach that could expand the utility of this method to a broad variety of applications. For

example, it is straightforward to accommodate additional reference populations (e.g. by assum-

ing multinomial rather than binomial read sampling). Alternatively, any demographic or

selective model that can be approximated as a Markov process could be incorporated—in par-

ticular, it is feasible to accommodate two-pulse admixture models and possibly models includ-

ing ancestry tracts that are linked to positively selected sites. Such methods can be used to

construct likelihood ratio tests of evolutionary models and for providing improved parameter

estimates.

Methods

Constructing Emissions Probabilities

We model the ancestry using an HMM {Hv} with state space S = {0,1,. . .,n}, where Hv = i, i 2 S,

indicates that in the vth position i chromosomes are from population 0 and n–i chromosomes

are from population 1. In the following, to simplify the notation and without loss of generality,

we will omit the indicator for the position in the genome as the structure of the model is the

same for all positions of equivalent ploidy. We assume each variant site is biallelic, with two

alleles A and a, and the availability of reference panels from source populations 0 and 1 with

total allelic counts C0a, C1a, C0A, and C1A, where the two subscripts refer to population identity

and allele, respectively. Also, C0 = C0A + C0a and C1 = C1A + C1a. Finally, we also assume we

observe a pileup of r reads from the focal population, with rA and ra reads for alleles A and a
respectively (r = rA + ra). The emission probability of state i 2 S of the process is then defined

as ei = Pr(rA, C0A, C1A | r, C0, C1, H = i, ε), where ε is an error rate. This probability can be
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calculated by summing over all possible genotypes in the admixed sample and over all possible

population identities of the reads, as explained in the following section.

The probability of obtaining r0 (= r–r1) reads, in the admixed population, from chromo-

somes of ancestry 0, given r and the hidden state H = i, and assuming no mapping or sequenc-

ing biases, is binomial,

r0jH ¼ i; n; r � Binðr; i=nÞ ð1Þ

These probabilities are pre-computed in our implementation for all possible values of i 2 S
and r0, 0� r0� r. Similarly, for the reference populations, for j = 0,1,

CjAjCj; fj � BinðCj; fjÞ ð2Þ

where fj is the allele frequency of allele A in population j. The analogous allelic counts in the

admixed population, denoted CM0a, CM1a, CM0A, and CM1A, are unobserved (only reads are

observed for the admixed population), but are also conditionally binomially distributed, i.e.:

CM0AjH ¼ i; f0 � Binði; f0Þ and CM1AjH ¼ i; n; f1 � Binðn � i; f1Þ ð3Þ

Finally, in the absence of errors, and assuming no sequencing or mapping biases, the condi-

tional probability of obtaining r0A reads of allele A in the admixed population is

r0AjH ¼ i; r0;CM0A � Binðr0;CM0A=iÞ ð4Þ

It should be noted that because we are explicitly modeling the process of sampling alleles

from the population (Eq 3) and the process of sampling reads conditional on the sample allele

frequencies (Eq 4), that this approach corrects for the increased variance associated with two

rounds of binomial sampling in poolseq applications that has been reported previously (e.g., in

[52]).

This probability can be expanded to include errors, in particular assuming a constant and

symmetric error rate ε between major and minor allele, and assuming all reads with nucleo-

tides that are not defined as major or minor are discarded, we have

r0AjH ¼ i; ro;CM0A; ε � Binðr0; ð1 � εÞCM0A=iþ εð1 � CM0A=iÞÞ: ð5Þ

Using these expressions, and integrating over allele frequencies in the source populations,

we have

Prðr0A;C0A;jr0;C0; n;H ¼ i; εÞ ¼

Z1

0

Xi

k¼0

Prðr0AjH ¼ i; r0;CM0A ¼ k; εÞPrðCM0A ¼ kjH ¼ i; f0Þpðf0Þdf0 ¼

C0!i!
ðC0 � C0AÞ!C0A!ðC0 þ iþ 1Þ!

Xi

k¼0

Prðr0AjH ¼ i; r0;CM0A ¼ k; εÞ
ðC0 � C0A þ i � kÞ!ðC0A þ kÞ!

ði � kÞ!k!

ð6Þ

assuming a uniform [0, 1] distribution for f0. A similar expression is obtained for Pr(r1A,C1A,|

r1,C1,n,H = i,ε), assuming f1 * U[0,1], and these expressions combine multiplicatively to give

PrðrA;C1A;;C0A;jr0;C0; r1;C1; n;H ¼ i; εÞ ¼
Pminfr0 ;rAg

r0A¼maxf0;rA � r1g
Prðr0A;C0A;jr0;C0; n;H ¼ i; εÞPrðr1A ¼ rA � r0A;C1A;jr1;C1; n;H ¼ i; εÞ;

ð7Þ
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and the emission probabilities become

PrðrA;C0A;C1Ajr;C0;C1;H ¼ i; εÞ ¼
Xr

r0¼0

Prðr0jH ¼ i; n; rÞPrðrA;C1A;;C0A;jr0;C0; r1 ¼ r � r0;C1; n;H ¼ i; εÞ
ð8Þ

Alternatively, if the sample genotypes are known with high confidence, i.e. CMA = CM0A +

CM1A is observed, the emission probabilities are the defined as

PrðCMA;C0A;C1AjC0;C1; n;H ¼ iÞ ¼

C0

C0A

 ! C1

C1A

 !
Xminfn� i;CMAg

k¼maxfCMA � i;0g

Z1

0

n � i

k

 !

ðf0Þ
C0Aþkð1 � f0Þ

C0þn� i� C0A � kdf0

Z1

0

i

CMA � k

 !

ðf1Þ
CMA� kþC1Að1 � f1Þ

C1þi� C1A � CMAþkdf1

¼
Xminfn� i;CMAg

k¼maxfCMA� i;0g

C0!C1!i!ðn � iÞ!ðCMA þ C1A � kÞ!ðC0A þ kÞ!ðC1 � CMA � C1A þ iþ kÞ!ðC0 � C0A � i � kþ nÞ!
ðC0 � C0AÞ!C0A!ðC1 � C1AÞ!C1A!ðCMA � kÞ!k!ðkþ i � CMAÞ!ðn � k � iÞ!ðn � iþ C0 þ 1Þ!ðiþ C1 þ 1Þ!

ð9Þ

These emissions probabilities are sometimes substantially faster to compute than those for

short read pileups, especially when sequencing depths are high. However, the genotypes must

be estimated with high accuracy for this approach to be valid. For applications with low read

coverage, or with ploidy >2 for which many standard genotype callers are not applicable, it is

usually preferable to use the pileup-based approach described above.

Constructing Transition Probabilities

We assume an admixed population, of constant size, with N diploid individuals, in which a

proportion m of the individuals in the population where replaced with migrants t generations

before the time of sampling. Given these assumptions, and an SMC’ model of the ancestral

recombination graph [87], the rate of transition from ancestry 0 to 1, along the length of a sin-

gle chromosome, is

l0 ¼ 2Nm 1 � e� t2N
� �

ð10Þ

per Morgan [57]. Similarly, the rate of transition from ancestry 1 to 0 on a single chromosome

is

l1 ¼ 2Nð1 � mÞ 1 � e� t2N
� �

ð11Þ

per Morgan. Importantly, because these expressions are based on a coalescence model, they

account for the possibility that a recombination event occurs between two tracts of the same

ancestry type and the probability that the novel marginal genealogy will back-coalesce with the

previous genealogy [57]. Both events are expected to decrease the number of ancestry switches

along a chromosome and ignoring their contribution will cause overestimation of the rate of

change between ancestry types between adjacent markers.

The transition rates are in units per Morgan, but can be converted to rates per bp, by multi-

plying with the recombination rate in Morgans/bp, rbp within a segment. The transition proba-

bilities of the HMM for a single chromosome, P(l) = {Pij(l)},i,j 2 S, between two markers with

a distance l between each other, is then approximately

PðlÞ ¼
1 � l0rbp l0rbp

l1rbp 1 � l1rbp

" #l

ð12Þ
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using discrete distances, or

P lð Þ ¼

l1

l0 þ l1

þ
l0

l0 þ l1

e� rbplðl0þl1Þ
l0

l0 þ l1

�
l0

l0 þ l1

e� rbplðl0þl1Þ

l0

l0 þ l1

þ
l1

l0 þ l1

e� rbplðl0þl1Þ
l1

l0 þ l1

�
l1

l0 þ l1

e� rbplðl0þl1Þ

2

6
6
6
4

3

7
7
7
5

ð13Þ

using continuous distances along the chromosome. Here, we use the continuous representa-

tion for calculations. We emphasize that the assumption of a Markovian process is known to

be incorrect [57], in fact admixture tracts tend to be more spatially correlated than predicted

by a Markov model, and the degree and structure of the correlation depends on the demo-

graphic model [57]. Deviations from a Markovian process may cause biases in the estimation

of parameters such as t.
The Markov process defined above is applicable to a single chromosome. We now want to

approximate a similar process for a sample of n chromosomes from a single sequencing pool.

The true process is quite complicated, and we choose for simplicity to approximate the process

for n chromosomes sampled from one population, as the union of n independent chromo-

somal processes. We will later quantify biases arising due to this independence assumption

using simulations. Under the independence assumption, the transition probability from i to

j is simply the probability of l transitions from state 1 to state 0 in the marginal processes and

j–i + l transitions from state 0 to state 1, summed over all admissible values of l, i.e.,

PrðHvþk ¼ jjHv ¼ iÞ

¼
Xminfn� j;ig

l¼maxf0;i� jg

n � i

j � iþ l

 !

ðP01ðkÞÞ
j� iþl
ð1 � P01ðkÞÞ

n� jþi� l i

l

 !

ðP10ðkÞÞ
l
ð1 � P10ðkÞÞ

i� l
ð14Þ

Although this procedure can be computationally expensive when there are many markers,

read depths are high, and especially when n is large, in our implementation, we reduce the

compute time by pre-calculating and storing all binomial coefficients.

Estimating Time Since Admixture

A parameter of central biological interest, that is often unknown in practice, is the time since the

initial admixture event (t). We therefore use the HMM representation to provide maximum likeli-

hood estimates of t using the forward algorithm to calculate the likelihood function. As this is a

single parameter optimization problem for a likelihood function with a single mode, optimization

can be performed using a simple golden section search [88]. Default settings for this optimization

in our software, including the search range maxima defaults, tmax and tmin, are documented in the

C++ HMM source code provided at https://github.com/russcd/Ancestry_HMM.

Posterior Decoding

After either estimating or providing a fixed value of the time since admixture to the HMM, we

obtained the posterior distribution for all variable sites considered in our analysis using the

forward-backward algorithm, and we report the full posterior distribution for each marker

along the chromosome.

Simulating Ancestral Polymorphism

To validate our HMM, we generated sequence data for each of two ancestral populations using

the coalescent simulator MACS [55]. We sought to generate data that could be consistent with
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that observed in Cosmopolitan and African populations of D. melanogaster, which has been

studied previously in a wide variety of contexts [2,11,35–37]. We used the command line

“macs 400 10000000 -i 1 -h 1000 -t 0.0376 -r 0.171 -c 5 86.5 -I 2 200 200 0 -en 0 2 0.183 -en

0.0037281 2 0.000377 -en 0.00381 2 1 -ej 0.00382 2 1 -eN 0.0145 0.2” to generate genotype

data. This will produce 200 samples of ancestry 0 and 200 samples of ancestry 1 on a 10mb

chromosome—i.e. this should resemble genotype data for about half of an autosomal chromo-

some arm in D. melanogaster. Unless otherwise stated below, we then sampled the first 50

chromosomes from each ancestral population as the ancestral population reference panel,

whose genotypes are assumed to be known with low error rates. The sample size was chosen

because it is close to the size of the reference panel that we obtained in our application of this

approach to D. melanogaster (below).

To evaluate the performance of our method on data consistent with human populations, we

simulated data that could be consistent with that observed for modern European and African

human populations. Specifically, we simulated the model of [89] using the command line

“macs 200 1e8 -I 3 100 100 0 -n 1 1.682020 -n 2 3.736830 -n 3 7.292050 -eg 0 2 116.010723 -eg

1e-12 3 160.246047 -ma x 0.881098 0.561966 0.881098 x 2.797460 0.561966 2.797460 x -ej

0.028985 3 2 -en 0.028986 2 0.287184 -ema 0.028987 3 x 7.293140 x 7.293140 x x x x x -ej

0.197963 2 1 -en 0.303501 1 1 -t 0.00069372 -r 0.00069372”. Admixture between ancestral pop-

ulations was then simulated as described below.

Simulating Admixed Populations

Although it is commonly assumed that admixture tract lengths can be modeled as independent

and identically distributed exponential random variables (e.g. [26,29] and in this work, above),

this assumption is known to be incorrect as ancestry tracts are neither exponentially distrib-

uted, independent across individuals, nor identically distributed along chromosomes [57]. We

therefore aim to determine what bias violations of this assumption will have on inferences

obtained from this model. Towards this, we used SELAM [56] to simulate admixed popula-

tions under the biological model described above. Because this program simulated admixture

in forward time, it generates the full pedigree-based ancestral recombination graph, and is

therefore a conservative test of our approach relative to the coalescent which is known to pro-

duce incorrect ancestry tract distributions for short times [57]. Briefly, we initialized each

admixed population simulation with a proportion, m, of ancestry from ancestral population 1,

and a proportion 1-m ancestry from ancestral population 0. Unless otherwise stated, all simu-

lations were conducted with neutral admixture and a hermaphroditic diploid population of

size 10,000.

We then assigned the additional, non-reference chromosomes from the coalescent si-

mulations, to each ancestry tract produced in SELAM simulations according to their local

ancestry along the chromosome. In this way, each chromosome is a mosaic of the two ancestral

subpopulations. See, e.g. [2], for a related approach for simulating genotype data of admixed

chromosomes.

Pruning Ancestral Linkage Disequilibrium

Correlations induced by LD between markers within ancestral populations violates a central

assumption of the Markov model framework. Although it may be feasible to explicitly model

linkage within ancestral populations (e.g., [24,25]), when ancestral populations have relatively

little LD, such as those of D. melanogaster, another effective approach is to discard sites that

are in strong LD in the ancestral populations. Hence, to avoid this potential confounding

aspect of the data, we first computed LD between all pairs of markers within each reference

Estimating Local Ancestry and Admixture Time in Samples of Arbitrary Ploidy

PLOS Genetics | DOI:10.1371/journal.pgen.1006529 January 3, 2017 28 / 40



panel that are within 0.01 centimorgans of one another. We then discarded one of each pair of

sites where |r| in either reference panel exceeded a particular threshold, and we decreased this

threshold until we obtained an approximately unbiased estimate of the time since admixture

estimates of the HMM. This approach differs from a previous method, WinPop [34], where

LD is pruned from within admixed samples (see also below).

Simulating Sequence Data

We first identified all sites where the allele frequencies of the ancestral populations differ by at

least 20% within the reference panels. We excluded weakly differentiated sites to decrease run-

time and because these markers carry relatively little information about the LA at a given site.

Then, to generate data similar to what would be produced using Illumina sequencing plat-

forms, we simulated allele counts for each sample, by first drawing the depth at a given site

from a Poisson distribution. In most cases and unless otherwise stated, the mean of this distri-

bution is set to be equal to the sample ploidy. We did this to ensure equivalent sequencing

depth per chromosome regardless of pooling strategy, and because this depth is sufficiently

low that high quality genotypes cannot be determined. We then generated set of simulated

aligned bases via binomial sampling from the sample allele frequency and included a uniform

error rate of 1% for both alleles at each site.

Unless otherwise stated, we simulated a total of 40 admixed chromosomes. The HMM can

perform LAI on more than one sample at a time, and we therefore included all samples when

running it. Hence, we used 40 haploid, 20 diploid, 4 pools of 10 chromosomes, and 2 pools of

20 chromosomes for most comparisons of accuracy reported below, unless otherwise stated. It

is worth noting that it is possible to jointly analyze distinct samples from the same subpopula-

tion that have been sequenced at different ploidies.

Simulating Divergent Ancestral Populations

To investigate the effects of allele frequency differences between reference populations and

admixed populations, we performed coalescent simulations using the software MACS [55],

using the command line “./macs 500 10000000 -i 1 -h 1000 -t 0.0376 -r 0.171 -c 5 86.5 -I 8 100

100 50 50 50 50 50 50 0 -en 0 2 0.183 -en 0.0037281 2 0.000377 -en 0.00381 2 1 -ej 0.00382 2 1

-eN 0.0145 0.2 -ej 0.0005 3 2 -ej 0.000500001 4 1 -ej 0.001 5 2 -ej 0.001000001 6 1 -ej 0.002 7 2

-ej 0.002000001 8 1”. This might be expected to produce populations that are differentiated

similarly to how populations of D. melanogaster would be across European populations or

between populations in Central Africa. We then substituted the increasingly divergent popula-

tions for the reference panel. All allele frequency differences and LD pruning were performed

as described above on each of the substitute reference panels.

Accuracy Statistics

To evaluate the performance of the HMM, we computed four statistics. First, we compute the

proportion of sites where the true state is within the 95% posterior credible interval, where ide-

ally, this proportion would be equal to or greater than 0.95. As this HMM has discrete states,

there are many ways the 95% credible interval could be defined. In light of the fact that the

credible interval tends to be narrow (Results), we defined the interval to include all states that

are overlapped, by any amount, in the 95% confidence interval of the posterior distribution.

Second, we compute the mean posterior error, the average distance between the posterior
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distribution of hidden states and the true state

E ¼

XS

v¼0

Xn

i¼0

pðHv ¼ ijrÞji � Ivj

Sn

Here S is the total number of sites, Iv is the true state at site v, and r is all the combined read

data. Third, we also report the proportion of sites where the maximum likelihood estimate of

the hidden state is equal to the true ancestry state. Finally, as an indicator of the specificity of

our approach, we also report the average width of the 95% credible interval.

Deviations from the Assumed Neutral Demographic Model

A potential issue with this framework is that the assumptions underlying the transition

matrixes and related time of admixture estimation procedure is likely to be violated in a

number of biologically relevant circumstances. We therefore simulated populations wherein

individuals of ancestral population 1 began entering a population entirely composed of

individuals from ancestral population 0, at a time t generations before the present, at a con-

stant rate that is sustained across all subsequent generations until the time of sampling.

That is, additional unadmixed individuals of ancestry 1 migrate each generation from t
until the present.

Natural selection acting on admixed genetic regions has been inferred in a wide variety of

systems (e.g. [5,7,13,17,18]), and is expected to have pronounced effects on the distribution of

LA among individuals within admixed populations. Here again, this aspect of biologically real-

istic populations will tend to violate central underlying assumptions of the model assumed in

this work. Towards this, we simulated admixed populations with a single pulse of admixture t
generations prior to the time of sampling. We then incorporated selection at 2,5,10, and 20

loci at locations uniformly distributed along the length of the chromosome arm. All selected

loci were assumed to be fixed within each ancestral population. Selection was additive and

selective coefficients were assigned based on a uniform [0.005, 0.05] distribution to either

ancestry 0 or 1 alleles with equal probability. As above, these simulations were conducted

using SELAM [56].

For both selected and continuous migration simulations, we then performed the genotype

and read data simulation procedure, and reran our HMM as described above. We performed

10 simulations for each treatment.

Comparisons to WinPop

We next sought to compare our method to a commonly used local ancestry inference method,

WinPop [34]. Towards this, we again simulated data using MACS and SELAM as described

above. For these comparisons, the initial ancestry contribution was 0.5 and the number of gen-

erations since admixture varied between 5 and 1000. For comparison, we supplied WinPop

and our program the correct time since admixture and ancestry proportions, as these are

required parameters for WinPop. We also supplied the program with genotypes rather than

read counts, another requirement of WinPop, whereas we supplied our HMM with read data

simulated as described above. We then ran WinPop under default parameters, and we also

reran WinPop using LD pruning within the reference panels, as we do in our method, instead

of the default LD pruning implemented in WinPop.
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Analysis of Inuit Genotype Data

To demonstrate that LAI methods can be biased by the arbitrary selection of the time since

admixture, we analyzed a dataset of SNP-array genotype data from Greenlandic Inuits. These

data are described in detail elsewhere [60,61]. This population has received some admixture

from a European source population, and the authors had previously used RFMix [24] to per-

form LAI, and found some sensitivity to the assumed time since admixture (J. Crawford pers.
Comm.). We analyzed data from chromosome 10 using RFMix v1.5.4 [24] as described in

Moltke et al. [61] assuming admixture occurred either 5 or 20 generations ago. We subse-

quently analyzed chromosome 10 using our HMM including the genotype-analysis emissions

probabilities and assuming a genotype error rate of 0.2%. For our analysis we identified the LD

cutoff that is appropriate for these data as described above.

Generating D. melanogaster Reference Populations

To generate reference panels, we used a subset of the high quality D. melenaogaster assemblies

that have been described previously in Pool et al. (2012) and Lack et al. (2015). As in the local

ancestry analysis of Pool (2015), we used the French population. For our African reference

panel, we selected a subset of the Eastern and Western African populations (CO, RG, RC, NG,

UG, GA, GU) and grouped them into a single population for the purposes of our analysis. We

elected to combine populations so that we would have a larger reference panel of African pop-

ulations for this analysis, this solution may be justified because these D. melanogaster popula-

tions are only weakly genetically differentiated [2,21,90], particularly after common inversion-

bearing chromosomes are removed from analyses. Specific individuals were selected for inclu-

sion in the African reference panel if previous work found they have relatively little cosmopoli-

tan ancestry (i.e., below 0.2 genome-wide in [2]).

Because of their powerful effects on recombination, chromosomal inversions are known to

have substantial impacts on the distribution of genetic variants on chromosomes containing

chromosomal inversions in D. melanogaster [2,63]. For this reason, we removed all common

inversion-bearing chromosome arms from the reference populations [91]. Nonetheless, it is

clear that chromosomal inversions are present in the pool-seq samples [64]. Although the

inversions certainly violate key assumptions of our model—particularly the transmission prob-

abilities—given that our approach is robust to a many perturbations, we expect the LA within

inverted haplotypes can be estimated with reasonable confidence, and the overall LAI proce-

dure will still perform adequately with low frequencies of chromosomal-inversion bearing

chromosomes present within these samples.

Although these reference populations are believed to have relatively little admixture, some

admixture is likely to remain within these samples [2]. To mitigate this potential issue, we first

applied our HMM to each reference population using the genotype-based emissions probabilities

(above). Calculated across all individuals, we found that our maximum likelihood ancestry esti-

mates were identical with those of Pool et al. (2012) at 96.2% of markers considered in our analysis.

The differences between the results of these methods may reflect differences in the methodology of

LAI or differences in the reference panels. Nonetheless, the broad concordance suggests the two

methods are yielding similar overall results. We masked all sites where the posterior probability of

non-native ancestry was greater than 0.5 within each reference individual’s genome. These masked

sequences were then used as the reference panel for the analyses of pool-seq data below.

Ancestry Cline Sequence Data Analysis

We acquired pooled sequencing data from six populations from the east coast of the United

States. The generation of these samples, sequencing data, and accession numbers are described
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in detail in [21,40]. Briefly, the samples are comprised of individuals drawn from natural popu-

lations and sequenced in relatively large pools of 66–232 chromosomes. We aligned all data

using BWA v0.7.9a-r786 [92] using the ‘MEM’ function and the default program parameters.

For all alignments, we used version 5 of the D. melanogaster reference genome [93] in order to

make our analysis and coordinates compatible with the Drosophila genome nexus [91]. We

then realigned all reads using the indelrealigner tool within the GATK package [84], and we

extracted the sequence pileup using samtools mpileup v1.1 [94] using the program’s default

parameters.

We extracted sites at ancestry informative positions within the reference panels, where we

required that the reference panel have a minimum of 50% of individuals with a high quality

genotype call in both Cosmopolitan and African reference populations. As above, ancestry

informative sites were defined as those with a minimum of 20% difference in allele frequencies

between the reference panels used, and we retained only ancestry informative sites for our

analyses. We then produced global ancestry estimates for each chromosome arm separately for

each sample using the method of Bergland et al. (2016). We ran our HMM for each chromo-

some arm and each population, and we provided the program this estimate of the ancestry pro-

portion and the time since admixture, 1593 generations [17]. We elected to provide the time

since admixture because we have found that this parameter is difficult to estimate in relatively

large pools (see Results). However, the program can accurately estimate LA in high ploidy sam-

ples even when the time since admixture cannot be estimated correctly (see Results).

Correlation with Local Recombination Rates

To assess the correlation between local recombination rates and LA in the genome, we com-

puted Spearman’s rank sum correlation between the proportions African ancestry and the

local recombination rates in windows of 100 ancestry informative markers. As above, we used

the recombination rate estimates of [59]. We estimated confidence intervals using 1000 block-

bootstrap samples using window sizes of 100 SNPs.

Robustness of LAI to Genomic Heterogeneity

To determine if there are systematic biases in LAI across the genome, we computed the mean

difference in genomic windows between LA estimates for two samples form Maine and

between two samples from Florida. We assessed evidence for systematic biases through the

correlation between local recombination rates and differences in local ancestry inference using

Spearman’s rank sum correlation.

Identifying LA Cline Outliers

To detect loci that show evidence for steeper ancestry clines than the genomic average, we first

computed the Spearman’s rank correlation between mean ancestry proportions and latitude

for each chromosome arm separately. Then, for each site for which we obtained a posterior

ancestry distribution for all samples, we computed the partial Spearman’s rank correlation

between the posterior ancestry mean and latitude while correcting for the correlation between

latitude and the overall ancestry proportion. We then computed the probability of obtaining

the observed partial correlation in R, which implements the approach of [95], and we retained

those sites where the probability of the partial correlation between local ancestry and latitude

was less than 0.005 as significant in our analysis. Although this cutoff is arbitrary, given the

strong evidence for local adaptation and reproductive isolation in these populations [46,47,96],

the tail of the LA cline distribution will likely be enriched for sites experiencing selection on this

ancestry gradient. Due to linkage, adjacent sites show strong autocorrelation. We therefore
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selected the local optima for a given clinally significant LA segment (i.e. a tract where all posi-

tions are significantly correlated with latitude at our threshold) and retained these for analyses

of outlier loci. Finally, to further reduce the effect of autocorrelation, we retained only those

local optima for which no other optimum had a stronger correlation with latitude within

100,000bp on either side on the site.

Identifying Low African Ancestry Outlier Loci

To identify loci with a disproportionately low proportion of African ancestry across this ances-

try cline, we computed the mean African ancestry across all populations. We then selected

those sites in the lowest 5% tail on each chromosome arm and selected only the local minima

within 100kb windows on either side of a selected locus.

Gene Ontology Analyses

We performed Gene-ontology (GO) analyses on outlier SNPs using Gowinda [97], where the

background set of SNPs was all positions at which we obtained a posterior distribution in all

samples (i.e. the set on which we obtained estimates of the posterior probability of African

ancestry). We ran the program using default parameters, except that we included all genes

within 10000bp of a focal SNP, and we performed 1e6 total GO simulations.

Seasonality of LA in the Pennsylvania Populations

To identify recurrent seasonal changes in the local ancestry, we followed an approach similar

to [40]. Specifically, we fit a generalized linear model of the form

Mean Posterior Ancestry � Seasonþ ε

We then recorded the estimated effect size, and probability of the observed correlation for

each site in the genome at which we obtained a posterior ancestry distribution in all samples

considered. To correct for multiple testing, we applied a false discovery rate correction [81] to

the resulting p-value distribution.

Supporting Information

S1 Fig. Comparison between LAI using the full ancestral recombination graph via for-

ward-time simulations (red) with those from independent and identically distributed

draws from the SMC’ distribution (black). Simulations were conducted using an ancestry

proportion of 0.25 and population size of 10,000 hermaphroditic individuals.

(TIF)

S2 Fig. Effects of unknown admixed population sizes on LAI. All LAI was conducted assum-

ing the true population size was 10,000. Simulated population sizes were 100 (black), 1,000

(red), 10,000 (blue) and 100,000 (green). Ploidy 1 on the right, ploidy 2 on the left. From top to

bottom, rows are the estimated time of admixture, the proportion of sites where the true state

is within the 95% credible interval, the width of the 95% credible interval, the mean posterior

error, and the proportion of times that the maximum likelihood estimate is equal to the true

state. For all simulations, the ancestry proportion was equal to 0.5.

(TIF)

S3 Fig. LAI accuracy when admixture times are increasingly ancient. Here, ancestry propor-

tions are 0.5 (black), 0.25 (blue), 0.1 (violet), 0.75 (orange) and 0.9 (red). From top to bottom,

statistics plotted are estimated time, the proportion of sites where the true ancestry frequency
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is within the 95% credible interval, the mean 95% credible interval width, mean posterior

error, and the proportion of times that the maximum likelihood estimate is correct.

(TIF)

S4 Fig. The effects of reference panel size on LAI and time estimation using the HMM.

Here, we compare reference panels of size 100 (blue) with reference panels of size 10 (black).

From left to right, ancestry proportions are 0.1, 0.25, 0.5, 0.75 and 0.9. From top to bottom the

plotted statistics are estimated time, proportion in the 95% credible interval, the average width

of the 95% credible interval, the mean posterior error, and the proportion of sites where the

maximum likelihood ancestry estimate is correct.

(TIF)

S5 Fig. Accuracy of time estimation and LAI when reference populations are increasingly

divergent from the source of the admixture pulses. In columns are divergence times between

ancestral populations (in units of 4Ne) of 0, 0.0005, 0.001, 0.002. From top to bottom the plot-

ted statistics are estimated time, proportion in the 95% credible interval, the average width of

the 95% credible interval, the mean posterior error, and the proportion of sites where the max-

imum likelihood ancestry estimate is correct.

(TIF)

S6 Fig. Comparison of the proportion of sites where the maximum likelihood ancestry esti-

mate of local ancestry is correct between WinPop and our method. WinPop was run with

default parameters (black), and with LD pruned in the ancestral populations, but not in the

admixed population (red). Our method was run with default parameters (blue), but with the

time since admixture and correct ancestry proportion supplied to our program as these param-

eters are required by WinPop.

(TIF)

S7 Fig. Bias in LAI due to uncertainty in t. The posterior probability estimated using RFMix

of European ancestry at a given site in the genome assuming t = 5 (black) and assuming t = 20

(red) for a sample representative of the average difference (top left) and a more extreme exam-

ple (top right). The distribution of differences in mean Inuit ancestry for all samples (bottom

left) using RFMix. The log likelihood of each time since admixture as computed using our

method (bottom right), which shows a clear optimum at 6–7 generations since admixture. All

analyses were restricted to SNPs on chromosome 10.

(TIF)

S8 Fig. Bias in LAI and time estimation due to incorrect estimation of m. On the left, true

m is 0.1and on the right true m is 0.5. Supplied m varies across 0.05 to 0.95. From top to bot-

tom, the plotted statistics are estimated t, proportion in the 95% confidence interval, mean

95% confidence interval width, mean posterior error and the proportion of sites where the

maximum likelihood estimate is correct. All plots include ploidy one (back), ploidy two (red),

ploidy ten (blue), and ploidy twenty (green).

(TIF)

S9 Fig. Bias in LAI and time estimation due to incorrect assumptions of t. On the left, true t
is 100 and on the right true t is 1000. Supplied t varies across 100 to 2000 generations. From

top to bottom, the plotted statistics are proportion in the 95% confidence interval, mean 95%

confidence interval width, mean posterior error and the proportion of sites where the maxi-

mum likelihood estimate is correct. All plots include ploidy one (back), ploidy two (red),

ploidy ten (blue), and ploidy twenty (green).

(TIF)
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S10 Fig. Estimates of t obtained from block bootstrap replicates for populations that have

admixed for 1000 (top), and 2000 (bottom) generations. From left to right, sample ploidies

are 1, 2, 10, and 20. For both simulations, m = 0.5.

(TIF)

S1 Table. Comparison of run times for various demographic models and sample ploidies

using this method.

(XLSX)

S2 Table. LA clinality in the genomic intervals immediately surrounding breakpoints of

known polymorphic inversions.

(XLSX)

S3 Table. Results of GO analysis of 80 identified LA clinal outlier loci.

(XLSX)

S4 Table. Results of GO analysis of 84 identified low African ancestry outlier loci.

(XLSX)
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