S3 Text. Genomic signatures of recent selective sweeps in Tibetans

To summarize genomic signatures of recent selective sweeps in Tibetans, we calculated the population branch statistic (PBS) [1] across the Tibetan genome. This statistic measures the extent of allele frequency divergence on the lineage leading to a test population, in this case Tibetans. We used the 344 unrelated Tibetans genotyped using the Illumina OmniExpress array. For the comparison group and outgroup, we used 1KGP phase 3 CHB and CEU (CEPH Utah residents with Northern and Western European ancestry) respectively. We calculated PBS following Weir and Cockerham’s definition of pairwise F_{ST} [2] using a custom python script for markers with maf ≥ 0.05 in either Tibetans or CHB. Only female individuals from the 1KGP data were used to calculate statistics for the X chromosome. After calculating PBS, we summarized the signal for 100 kb windows sliding by 25 kb, by calculating a pseudo-binomial p-value P defined as:

$$P = Pr(X \geq n_{top}); X \sim \text{Binomial}(n_{total}, p = 0.001)$$

where n_{top} and n_{total} represent the number of global top 0.1% SNPs and the number of total SNPs in each window. Cutoffs for the top 0.1% PBS value were calculated separately for the autosomes and the X chromosome. Consistent with previous studies, the $EPAS1$ (PBS = 1.073, rs73926264) and $EGLN1$ (PBS = 0.797, rs186996510) loci harbored the highest PBS values (S5 Table). We did not find additional genes with high PBS score and strong functional implication.

References