S3 Table. GG-NER Incision Complex genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Position</th>
<th>Burden (p-value)</th>
<th>SGS</th>
<th>SNV</th>
<th>Intolerance to MS (Z)</th>
<th>Intolerance to LoF (pLI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USP45</td>
<td>6:99880182-99963565</td>
<td>0.711</td>
<td>significant</td>
<td>Y</td>
<td>-0.74</td>
<td>0.00</td>
</tr>
<tr>
<td>CHD1L</td>
<td>1:146714291-146767447</td>
<td>0.006*</td>
<td></td>
<td></td>
<td>-1.82</td>
<td>0.00</td>
</tr>
<tr>
<td>PARP1</td>
<td>1:226548392-226595801</td>
<td>0.036*</td>
<td></td>
<td></td>
<td>0.57</td>
<td>0.01</td>
</tr>
<tr>
<td>RPA2</td>
<td>1:28218049-28241236</td>
<td>0.019</td>
<td></td>
<td></td>
<td>0.41</td>
<td>0.89</td>
</tr>
<tr>
<td>ERCC3</td>
<td>2:128014866-128051752</td>
<td>0.020*</td>
<td></td>
<td></td>
<td>1.17</td>
<td>0.00</td>
</tr>
<tr>
<td>GTF2H2</td>
<td>5:70330951-70363497</td>
<td>0.005*</td>
<td></td>
<td></td>
<td>2.27</td>
<td>0.72</td>
</tr>
<tr>
<td>GTF2H5</td>
<td>6:158589379-158620376</td>
<td>0.532</td>
<td></td>
<td></td>
<td>-0.70</td>
<td>0.05</td>
</tr>
<tr>
<td>GTF2H4</td>
<td>6:30875977-30882814</td>
<td>0.930</td>
<td></td>
<td></td>
<td>0.74</td>
<td>0.26</td>
</tr>
<tr>
<td>RPA3</td>
<td>7:7676575-7758238</td>
<td>1.000</td>
<td></td>
<td></td>
<td>-0.73</td>
<td>0.00</td>
</tr>
<tr>
<td>XPA</td>
<td>9:100437191-100459691</td>
<td>0.104</td>
<td></td>
<td></td>
<td>0.52</td>
<td>0.00</td>
</tr>
<tr>
<td>GTF2H1</td>
<td>11:18343816-18388590</td>
<td>0.001†</td>
<td></td>
<td></td>
<td>0.59</td>
<td>1.00</td>
</tr>
<tr>
<td>DDB2</td>
<td>11:47236493-47260769</td>
<td>0.929</td>
<td></td>
<td></td>
<td>1.25</td>
<td>0.01</td>
</tr>
<tr>
<td>DDB1</td>
<td>11:61066919-61100684</td>
<td>0.001†</td>
<td></td>
<td></td>
<td>5.67</td>
<td>1.00</td>
</tr>
<tr>
<td>GTF2H3</td>
<td>12:124118286-124147151</td>
<td>0.957</td>
<td></td>
<td></td>
<td>0.04</td>
<td>0.00</td>
</tr>
<tr>
<td>ERCC5</td>
<td>13:103504468-103524748</td>
<td>0.462</td>
<td></td>
<td></td>
<td>-0.61</td>
<td>0.00</td>
</tr>
<tr>
<td>CUL4A</td>
<td>13:11386393-113919932</td>
<td>0.390</td>
<td></td>
<td></td>
<td>2.73</td>
<td>1.00</td>
</tr>
<tr>
<td>PARP2</td>
<td>14:20811773-20826063</td>
<td>0.190</td>
<td></td>
<td></td>
<td>-0.55</td>
<td>0.00</td>
</tr>
<tr>
<td>ERCC4</td>
<td>16:14014014-14046205</td>
<td>0.371</td>
<td></td>
<td></td>
<td>-1.06</td>
<td>0.00</td>
</tr>
<tr>
<td>RPA1</td>
<td>17:1733273-1802848</td>
<td>0.480</td>
<td></td>
<td></td>
<td>0.43</td>
<td>0.31</td>
</tr>
<tr>
<td>ERCC2</td>
<td>19:45854649-45873845</td>
<td>0.503</td>
<td>suggestive</td>
<td></td>
<td>0.44</td>
<td>0.00</td>
</tr>
<tr>
<td>ERCC1</td>
<td>19:45910591-45927177</td>
<td>0.402</td>
<td>suggestive</td>
<td></td>
<td>-0.13</td>
<td>0.00</td>
</tr>
<tr>
<td>RBX1</td>
<td>22:41347351-41369019</td>
<td>-</td>
<td></td>
<td></td>
<td>2.68</td>
<td>0.94</td>
</tr>
<tr>
<td>CUL4B</td>
<td>X:119658446-119709684</td>
<td>-</td>
<td></td>
<td></td>
<td>3.88</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Legend: Position – build HG19; Burden – p-values based on the c-alpha test of high-impact variants with AAF < 0.001 (see Methods section), "*" indicates gene not tested (no variants observed), †significant after multiple testing correction p < 0.002 (=0.05/23), ‡nominally significant p < 0.05; SGS – gene captured by a genome-wide significant or suggestive shared genomic segment, "-" indicates not tested (SGS only looks at autosomal chromosomes); SNV – "Y" indicates a single nucleotide variant with AAF < 0.001, high or moderate deleteriousness, and observed segregating in a high-risk MM pedigree or pathogenic in ClinVar; Intolerance to MS – gene’s intolerance to missense variants based on analysis of ExAC data, signed Z score based on deviation of observed counts from expected, positive Z indicates intolerance to variation; LoF – based on analysis of ExAC data, Loss of Function (LoF) variants include splice donor or acceptor or non-sense SNVs, genes with a probability of LoF Intolerance (pLI) >= 0.9 are considered extremely intolerant to LoF SNVs.