1 Notations

Suppose there are N sites for n diploid individuals, and each site is composed of a restriction site with alleles \{+,-\}, and a SNP with alleles \{A, a\}. SNP alleles on the same haplotype as the '+' allele are sampled by GBS, but alleles on the same haplotype as the '-' allele are not. The '-' allele (and any 'A' or 'a' allele associated with it) cannot be observed directly, but can be observed indirectly because reduced sampling causes reduced sequencing coverage. Therefore let \{A, a, -\} be the set of observable alleles, and let \{AA, Aa, aa, A-, a-, - -\} be the set of observable genotypes.

Let \(\vec{G} = (G_1, ..., G_N)^T\) be the observable genotypes with vector \(G_s = (G_{s,1}, ..., G_{s,n})\) representing the observable genotypes at site \(s\), and \(G_{s,i,1}, G_{s,i,2}, G_{s,i,3}\) representing the number of 'A', 'a', and '-' alleles for individual \(i\). For convenience, we may drop the position subscript \(s\) when we are looking at only one locus. Let \(\vec{Z} = (Z_1, ..., Z_N)^T\) be a matrix of variables indicating success (1) or failure (0) of the restriction digest, where \(Z_s = (Z_{s,1}, ..., Z_{s,n})\). If \(Z_{s,i} = 0\), then \(d_{s,i} = 0\) regardless of the genotype of the \(i\)-th sample. Let \(\delta\) be the site failure rate.

2 Estimating the site allele frequency

We aim to find \(\vec{\phi}, \lambda, \delta\) that maximize \(\Pr\{\vec{D}|\vec{\phi}, \lambda, \delta\}\). We have:

\[
\log \Pr\{\vec{D}, \vec{g}, \vec{z}|\vec{\phi}, \lambda, \delta\} = \log \prod \Pr\{D_i|g_i, d_i\} \Pr\{d_i|g_i, z_i, \lambda\} \Pr\{g_i|\vec{\phi}\} \Pr\{z_i|\delta\}
\]
We assume Hardy-Weinberg equilibrium for the observable genotypes:

Let $m_i = 2 - g_{i,3}$ be the observable ploidy for the i-th individual (i.e. the number of '+' alleles it carries), and let $\mathbf{r} = (r_1, ..., r_n)$ be a vector of read count normalization factors, where

$$r_i = \frac{\sum_{s=1}^N d_{s,i}}{1/n \sum_j \sum_{s=1}^N d_{s,j}}$$

We assume that the sample read count, d_i follows a negative binomial distribution with mean $\mu = \lambda z_i r_i m_i$ and size parameter ψ:

$$\Pr\{d_i|g_i, z_i, \lambda\} = \frac{\Gamma(d_i + \psi)}{\Gamma(d_i + 1)\Gamma(\psi)} \left(\frac{\psi}{\lambda z_i r_i m_i + \psi} \right)^\psi \left(\frac{\lambda z_i r_i m_i}{\lambda z_i r_i m_i + \psi} \right)^{d_i}$$

Let $\text{disp}(\mu) = \alpha \mu + 1$ be a function chosen to model the dispersion in the normalized read counts, $\text{disp}(\mathbf{r})$. The negative binomial variance is $\mu + \frac{\mu^2}{\psi}$. Therefore ψ is constant across all N sites and $\psi = \frac{1}{\alpha}$.

We assume Hardy-Weinberg equilibrium for the observable genotypes:

$$\Pr\{G_i = g_i|\phi\} = \binom{2}{g_{i,1}, g_{i,2}, g_{i,3}} \phi_1^{g_{i,1}} \phi_2^{g_{i,2}} \phi_3^{g_{i,3}}$$

And the probability of the digest success/failure state for the i-th individual is:

$$\Pr\{Z_i = z_i|\delta\} = (1 - \delta)^{z_i} \delta^{1-z_i}$$

Given estimates $\bar{\phi}_1, \lambda, \delta_1$ at the t-th iteration, the $Q(\bar{\phi}, \lambda, \delta|\bar{\phi}_1, \lambda_1, \delta_1)$ function of EM is:

$$Q(\bar{\phi}, \lambda, \delta|\bar{\phi}_1, \lambda_1, \delta_1) = \sum_{\bar{g}} \sum_{\bar{D}} \Pr\{\bar{g}, \bar{D}, \bar{\phi}_1, \lambda_1, \delta_1\} \log \Pr\{\bar{D}, \bar{g}, z|\bar{\phi}, \lambda, \delta\}$$

$$= C + \sum_{\bar{g}} \sum_{\bar{D}} \Pr\{\bar{g}, \bar{D}, \bar{\phi}_1, \lambda_1, \delta_1\} \sum_{j} \log \Pr\{d_j|g_j, z_j, \lambda\} \Pr\{g_j|\bar{\phi}\} \Pr\{z_j|\delta\}$$

$$= C + \sum_{i=1}^n \sum_{z_i=0}^{m_i} \Pr\{g_i, z_i|\bar{D}_i, \bar{\phi}_1, \lambda_1, \delta_1\} \log \Pr\{d_i|g_i, z_i, \lambda\} \Pr\{g_i|\bar{\phi}\} \Pr\{z_i|\delta\}$$

$$= C' + \sum_{i=1}^n \sum_{z_i=0}^{m_i} \Pr\{g_i, z_i|\bar{D}_i, \bar{\phi}_1, \lambda_1, \delta_1\} \left[d_i \log(\lambda) - (d_i + \psi) \log(\lambda z_i r_i m_i + \psi) + g_{i,1} \log(\phi_1) + g_{i,2} \log(\phi_2) + g_{i,3} \log(\phi_3) + z_i \log(1 - \delta) + (1 - z_i) \log(\delta) \right]$$

$$= \log \prod_{i=1}^n \prod_{j=1}^{d_i} \Pr\{D_{i,j}|g_i\} \Pr\{d_i|g_i, z_i, \lambda\} \Pr\{g_i|\bar{\phi}\} \Pr\{z_i|\delta\}$$

$$= C + \sum_{i=1}^n \log \Pr\{d_i|g_i, z_i, \lambda\} \Pr\{g_i|\bar{\phi}\} \Pr\{z_i|\delta\}$$
Thus

\[
\frac{\partial Q}{\partial \phi_1} = \sum_{i=1}^{n} \sum_{z_i=0}^{1} g_i \Pr\{g_i, z_i|\vec{D}_i, \vec{\phi}_t, \lambda_t, \delta_t\} \frac{g_{i,1}}{\phi_1}
\]

\[
\frac{\partial Q}{\partial \phi_2} = \sum_{i=1}^{n} \sum_{z_i=0}^{1} g_i \Pr\{g_i, z_i|\vec{D}_i, \vec{\phi}_t, \lambda_t, \delta_t\} \frac{g_{i,2}}{\phi_2}
\]

\[
\frac{\partial Q}{\partial \phi_3} = \sum_{i=1}^{n} \sum_{z_i=0}^{1} g_i \Pr\{g_i, z_i|\vec{D}_i, \vec{\phi}_t, \lambda_t, \delta_t\} \frac{g_{i,3}}{\phi_3}
\]

\[
\frac{\partial Q}{\partial \delta} = \sum_{i=1}^{n} \sum_{z_i=0}^{1} g_i \Pr\{g_i, z_i|\vec{D}_i, \vec{\phi}_t, \lambda_t, \delta_t\} \left[\frac{1 - z_i}{\delta} - \frac{z_i}{1 - \delta} \right]
\]

\[
\frac{\partial Q}{\partial \lambda} = \sum_{i=1}^{n} \sum_{z_i=0}^{1} g_i \Pr\{g_i, z_i|\vec{D}_i, \vec{\phi}_t, \lambda_t, \delta_t\} \left[\frac{d_i}{\lambda} - \frac{z_i r_i}{\lambda z_i r_i} \frac{m_n}{z_i} (d_i + \psi) \right]
\]

and using a first-order Taylor expansion about the point \(\lambda = \lambda_t \)

\[
\frac{\partial Q}{\partial \lambda} \approx \sum_{i=1}^{n} \sum_{z_i=0}^{1} g_i \Pr\{g_i, z_i|\vec{D}_i, \vec{\phi}_t, \lambda_t, \delta_t\} \left[\frac{d_i}{\lambda_t} - \frac{z_i r_i}{\lambda_t z_i r_i} \frac{m_n}{z_i} (d_i + \psi) \right]
\]

\[
+ (\lambda - \lambda_t) \sum_{i=1}^{n} \sum_{z_i=0}^{1} g_i \Pr\{g_i, z_i|\vec{D}_i, \vec{\phi}_t, \lambda_t, \delta_t\} \left[\frac{(z_i r_i m_n / z_i)^2 (d_i + \psi)}{\lambda_t z_i r_i} \frac{m_n}{z_i} (d_i + \psi) \right]
\]

To calculate the updated parameter estimates we set each partial derivative equal to 0 and solve for \(\phi_1, \phi_2, \phi_3, \lambda, \) and \(\delta. \) Because of the constraint \(\phi_1 + \phi_2 + \phi_3 = 1 \) we introduce a Lagrange multiplier:

\[
\rho = \sum_{i=1}^{n} \sum_{z_i=0}^{1} g_i \Pr\{g_i, z_i|\vec{D}_i, \vec{\phi}_t, \lambda_t, \delta_t\} (g_{i,1} + g_{i,2} + g_{i,3}) = 2n
\]

Thus

\[
\phi_{1(t+1)} = \frac{1}{2n} \sum_{i=1}^{n} \sum_{z_i=0}^{1} g_i \Pr\{g_i, z_i|\vec{D}_i, \vec{\phi}_t, \lambda_t, \delta_t\} g_{i,1}
\]

\[
\phi_{2(t+1)} = \frac{1}{2n} \sum_{i=1}^{n} \sum_{z_i=0}^{1} g_i \Pr\{g_i, z_i|\vec{D}_i, \vec{\phi}_t, \lambda_t, \delta_t\} g_{i,2}
\]

\[
\phi_{3(t+1)} = \frac{1}{2n} \sum_{i=1}^{n} \sum_{z_i=0}^{1} g_i \Pr\{g_i, z_i|\vec{D}_i, \vec{\phi}_t, \lambda_t, \delta_t\} g_{i,3}
\]
\[\delta_{t+1} = \frac{1}{n} \sum_{i=1}^{n} \sum_{i=0}^{1} \sum_{g_i} \Pr\{g_i, z_i | \vec{D}_i, \vec{\phi}_t, \lambda_t, \delta_t\} (1 - z_i) \]

\[\lambda_{t+1} = \lambda_t - \frac{\sum_{i=1}^{n} \sum_{i=0}^{1} \sum_{g_i} \left[d_i - \frac{z_i r_i m_i (d_i + \psi)}{z_i r_i m_i + \lambda_t + \psi} \right] \Pr\{g_i, z_i | \vec{D}_i, \vec{\phi}_t, \lambda_t, \delta_t\}} {\sum_{i=1}^{n} \sum_{i=0}^{1} \sum_{g_i} \left[\frac{(z_i r_i m_i)^2 (d_i + \psi)}{(z_i r_i m_i + \lambda_t + \psi)^2} - \frac{d_i}{\lambda_t^2} \right] \Pr\{g_i, z_i | \vec{D}_i, \vec{\phi}_t, \lambda_t, \delta_t\}} \]

thus

\[\phi_{1(t+1)} = \frac{1}{2n} \sum_{i=1}^{n} \sum_{i=0}^{1} \sum_{g_i} g_{i,1} \Pr\{\vec{D}_i, g_i, z_i | \vec{\phi}_t, \lambda_t, \delta_t\} \]

\[\phi_{2(t+1)} = \frac{1}{2n} \sum_{i=1}^{n} \sum_{i=0}^{1} \sum_{g_i} g_{i,2} \Pr\{\vec{D}_i, g_i, z_i | \vec{\phi}_t, \lambda_t, \delta_t\} \]

\[\phi_{3(t+1)} = \frac{1}{2n} \sum_{i=1}^{n} \sum_{i=0}^{1} \sum_{g_i} g_{i,3} \Pr\{\vec{D}_i, g_i, z_i | \vec{\phi}_t, \lambda_t, \delta_t\} \]

\[\delta_{t+1} = \frac{1}{n} \sum_{i=1}^{n} \sum_{i=0}^{1} \sum_{g_i} (1 - z_i) \Pr\{\vec{D}_i, g_i, z_i | \vec{\phi}_t, \lambda_t, \delta_t\} \]

\[\lambda_{t+1} = \lambda_t - \frac{\sum_{i=1}^{n} \sum_{i=0}^{1} \sum_{g_i} \left[d_i - \frac{z_i r_i m_i (d_i + \psi)}{z_i r_i m_i + \lambda_t + \psi} \right] \Pr\{\vec{D}_i, g_i, z_i | \vec{\phi}_t, \lambda_t, \delta_t\}} {\sum_{i=1}^{n} \sum_{i=0}^{1} \sum_{g_i} \left[\frac{(z_i r_i m_i)^2 (d_i + \psi)}{(z_i r_i m_i + \lambda_t + \psi)^2} - \frac{d_i}{\lambda_t^2} \right] \Pr\{\vec{D}_i, g_i, z_i | \vec{\phi}_t, \lambda_t, \delta_t\}} \]

where

\[\Pr\{\vec{D}_i, g_i, z_i | \vec{\phi}_t, \lambda_t, \delta_t\} = \Pr\{\vec{D}_i | g_i, d_i\} \Pr\{d_i | g_i, z_i, \lambda_t\} \Pr\{g_i | \vec{\phi}_t\} \Pr\{z_i | \delta_t\} \]

and

\[C_i = \sum_{i=0}^{1} \sum_{g_i} \Pr\{\vec{D}_i, g_i, z_i | \vec{\phi}_t, \lambda_t, \delta_t\} \]
References

[1] Li H. Mathematical notes on SAMtools algorithms. www.broadinstitute.org/gatk/media/docs/Samtools.pdf