TEXT S1 Painting Algorithm

Li and Stephens (2003) described a likelihood based model that captures key features of the genealogical process with recombination while remaining computationally tractable for large datasets. Under the model, a chromosome is generated chunk-by-chunk by ‘copying’ from a conditional set of fixed haplotypes. In our notation, every individual consists of two haploids, each consisting of a single phased haplotype per chromosome. The \(L \) total SNPs in each haploid are listed one chromosome at a time, in order within each chromosome.

Suppose that we wish to generate a particular haploid \(h^* = \{h^*_1, ..., h^*_L\} \), with \(h_{st} \) the observed allele of \(h_s \) at site \(l \), using \(j \) pre-existing donor haploids \(h_1, ..., h_j \). Let \(\vec{\rho} = \{\rho_1, ..., \rho_{L-1}\} \) be a vector of genetic distances, with \(\rho_l \) the population-scaled genetic distance between sites \(l \) and \(l+1 \) (i.e. \(\rho_l = N_e g_l \), where \(N_e \) is analogous to the “effective population size” and \(g_l \) is the genetic distance in Morgans between sites \(l \) and \(l+1 \)). (Between chromosomes, the genetic distance between the last site of the previous chromosome and the first site of the next chromosome is \(\infty \).) Let \(\vec{f} = \{f_1, ..., f_j\} \) be a vector of copying probabilities, with \(f_k \) the probability of copying from haploid \(h_k \) at any site. Let \(\theta \) correspond to a per site mutation (or “imperfect copying”) parameter. The conditional probability \(\Pr(h^*_l \mid h_1, ..., h_j; \vec{\rho}, \vec{f}, \theta) \) is structured as a Hidden Markov model. Let \(\vec{Y} = \{Y_1, ..., Y_L\} \) represent the hidden state sequence vector, with \(Y_l \) the existing haploid from the set \(h_1, ..., h_j \) that haploid \(h^*_s \) copies from at site \(l \). Switches in the haploid being copied between \(Y_l \) and \(Y_{l+1} \) occur as a Poisson process with rate \(\rho_l \). The transition probabilities for \(Y \) between sites \(l \) and \(l+1 \) are as follows (we exclude \(h_1, ..., h_j \) and the parameters from the left side of equations (1) and (2) below for ease of reading):

\[
\Pr(Y_{l+1} = y_{l+1} \mid Y_l = y_l) =
\begin{cases}
\exp(-\rho_l) + (1 - \exp(-\rho_l)) f_{y_{l+1}} & \text{if } y_{l+1} = y_l; \\
(1 - \exp(-\rho_l)) f_{y_{l+1}} & \text{otherwise},
\end{cases}
\]

(1)

The observed state sequence component of the Hidden Markov Chain, the probability of observing a particular allele given the haploid that \(h^*_s \) is copying from at a given SNP, allows for “imperfect” copying:

\[
\Pr(h^*_l = a \mid Y_l = y) = \begin{cases}
1.0 - \theta & h_{yl} = a; \\
\theta & h_{yl} \neq a.
\end{cases}
\]

(2)

Here \(h_{kl} \) refers to the allelic type of haploid \(k \) at SNP \(l \). To calculate \(\Pr(D) \equiv \Pr(h^*_s \mid h_1, ..., h_j; \vec{\rho}, \vec{f}, \theta) \), a summation is performed over all permutations of the copying process, i.e. a summation over all possible \(y \), which can be accomplished efficiently using the forward algorithm (e.g. Rabiner 1989).
For all analyses presented here, we fix the mutation parameter θ to Watterson’s estimate (Watterson 1975), as used by Li and Stephens (2003), i.e.

$$
\theta = \frac{1}{2} \frac{\left(\sum_{i=1}^{j} 1/i\right)^{-1}}{j + \left(\sum_{i=1}^{j} 1/i\right)^{-1}}
$$

for j total haploids. We fix each g_l by taking the build 36 genetic distance estimates from the HapMap website (http://www.hapmap.org), which were calculated using Phase II genotypes and averaging values across the three HapMap populations as described by the International HapMap Consortium (2007). We also fix each f_k to be $1/j$ for $k = 1, \ldots, j$, allowing for equal a priori probability of copying from each conditional haploid.

Calculating expected number of chunks copied:

The average number of chunks copied to a haploid $*$ is a random variable denoted $\hat{x}_i = E_{l=1..L}(X_{il})$, where X_{il} is the probability that a given locus l is a new haplotypic segment copied from individual i. To calculate $\hat{x}_1, \ldots, \hat{x}_j$, the posterior expected number of chunks for which haploid h_* copies from each of h_1, \ldots, h_j, respectively, we calculate $\hat{f}_{k,l}$, the probability haploid h_* is copying from haploid h_k at site l given at least one “switch” has occurred between $l-1$ and l. Again excluding parameters for ease of reading, let $\alpha_{kl} = \Pr(h_1, \ldots, h_L, Y_l = h_k)$ and $\beta_{kl} = \Pr(h_{*(l+1)}, \ldots, h_L | Y_{l+1} = h_k)$. Then

$$
\hat{x}_k = \frac{\alpha_k \beta_k}{\Pr(D)} + \sum_{l=1}^{L-1} \left(\frac{1}{\Pr(D)} \left[\alpha_k \beta_{k(l+1)} - \alpha_{kl} \beta_{k(l+1)} \right] \Pr(h_1, \ldots, h_L, Y_{l+1} = h_k) \exp(-\rho_l) \right)
\hat{f}_{k,l}.
$$

Note that we later drop the ‘hat’ notation for convenience, and form the matrix of all haplotype recipients $*$ as x_{ij}. Each row of x_{ij} corresponds to the vector \hat{x} calculated above.

We calculate α_{kl} for $k = 1, \ldots, j$ in the following manner (Rabiner 1989):

1. $\alpha_{k1} = \Pr(h_s | Y_1 = h_k)f_k$
2. $\alpha_{kl} = \Pr(h_{*l} | Y_l = h_k) \left(\sum_{i=1}(\alpha_{il}(l-1)) f_k (1 - \exp(-\rho_l)) + \exp(-\rho_l) \alpha_{kl(l-1)} \right)$ for $l = 2, \ldots, L$.

We calculate β_{kl} for $k = 1, \ldots, j$ in the following manner (Rabiner 1989):

1. $\beta_{kL} = 1.0$
2. $\beta_{kl} = \left[\sum_{i=1}^j \beta_i(l+1) f_i \Pr(h_1, \ldots, h_L, Y_{l+1} = h_i) \right] (1 - \exp(-\rho_l)) + \exp(-\rho_l) \Pr(h_1, \ldots, h_L, Y_{l+1} = h_k) \beta_{k(l+1)}$ for $l = 1, \ldots, (L-1)$.

Calculating expected lengths of copied chunks:

To calculate $\hat{l}_1, ..., \hat{l}_j$, the posterior expected length (in Morgans) of the total genome for which haploid h_* copies from each of $h_1, ..., h_j$, respectively, we calculate the following (let $\Pr_h \equiv \Pr(h_*|Y_{l+1} = h_k)$):

$$\hat{l}_k = \frac{1}{\Pr(D)} \sum_{l=1}^{L-1} g_l \left[\alpha_{kl} \beta_{k(l+1)} \left(\exp(-\rho_l) + (1.0 - \exp(-\rho_l)) f_k \right) \Pr_h
+ (1/2) \left[\alpha_{kl} \beta_{kl} + \alpha_{k(l+1)} \beta_{k(l+1)} - 2 \alpha_{kl} \beta_{k(l+1)} \left(\exp(-\rho_l) + (1.0 - \exp(-\rho_l)) f_k \right) \Pr_h \right] \right].$$

(4)

Note that this involves the approximation that at most only one change point occurs between neighbouring sampled sites. To get the expected length of each chunk copied from donor h_k, we divide equation (4) by equation (3) (i.e. \hat{l}_k/\hat{x}_k).

Calculating expected number of mutations:

To calculate $\hat{m}_1, ..., \hat{m}_j$, the posterior expected number of SNPs for which haploid h_* copies with mutation (i.e. emission) from each of $h_1, ..., h_j$, respectively, we calculate the following (let $I_{[h_* \neq h_k]}$ be an indicator that the allelic type carried by h_* does not match the allelic type carried by h_k at SNP l):

$$\hat{m}_k = \frac{1}{\Pr(D)} \sum_{l=1}^{L-1} \alpha_{kl} \beta_{kl} I_{[h_* \neq h_k]}.$$

(5)

Using the E-M algorithm to estimate the scaling parameter N_e:

One can take a fixed N_e for calculating $\bar{\rho}$, or use the Expectation-Maximisation (E-M) algorithm to find a local maximum of N_e in the following manner. Start with an initial value of N_e (we take $N_e \approx 400,000/j$), and at each iteration of the E-M replace N_e with:

$$N_e^{*} = \frac{\sum_{l=1}^{L-1} (\sum_{k=1}^{j} f_{k,l}[|\rho_l|/|1.0 - \exp(-\rho_l)|])}{\sum_{l=1}^{L-1} g_l},$$

(6)

where ρ_l and each $f_{k,l}$ are calculated using the previous value of N_e. In analyses presented here, we used 10 iterations of E-M to get our final estimate of N_e.

Using the E-M algorithm to estimate the mutation parameter θ

One can take a fixed θ for calculating $\bar{\rho}$, or use the E-M to find a local maximum of θ in the following manner. Start with an initial value of θ (we start with Watterson’s estimate of θ), and at each iteration of the E-M replace θ with:
\[\theta^* = \frac{\sum_{i=1}^{L} \left(\sum_{i=1}^{j} \alpha_{il} \beta_{il} I_{[h_{il} \neq h_{il}]} / \Pr(D) \right)}{L}. \] (7)

Here \(I_{[h_{si} \neq h_{si}]} \) is an indicator that the allele \(h_{si} \) carried by the recipient is not equal to allele \(h_{si} \) carried by donor haploid \(i \) at SNP \(l \), and each \(\alpha_{il}, \beta_{il} \) and \(\Pr(D) \) are calculated using the previous value of \(\theta \).

References

