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Abstract

Bartter syndrome is a group of rare genetic disorders that compromise kidney function by

impairing electrolyte reabsorption. Left untreated, the resulting hyponatremia, hypokalemia,

and dehydration can be fatal, and there is currently no cure. Bartter syndrome type II specifi-

cally arises from mutations in KCNJ1, which encodes the renal outer medullary potassium

channel, ROMK. Over 40 Bartter syndrome-associated mutations in KCNJ1 have been

identified, yet their molecular defects are mostly uncharacterized. Nevertheless, a subset of

disease-linked mutations compromise ROMK folding in the endoplasmic reticulum (ER),

which in turn results in premature degradation via the ER associated degradation (ERAD)

pathway. To identify uncharacterized human variants that might similarly lead to premature

degradation and thus disease, we mined three genomic databases. First, phenotypic data in

the UK Biobank were analyzed using a recently developed computational platform to identify

individuals carrying KCNJ1 variants with clinical features consistent with Bartter syndrome

type II. In parallel, we examined genomic data in both the NIH TOPMed and ClinVar data-

bases with the aid of Rhapsody, a verified computational algorithm that predicts mutation

pathogenicity and disease severity. Subsequent phenotypic studies using a yeast screen to

assess ROMK function—and analyses of ROMK biogenesis in yeast and human cells—

identified four previously uncharacterized mutations. Among these, one mutation uncovered

from the two parallel approaches (G228E) destabilized ROMK and targeted it for ERAD,

resulting in reduced cell surface expression. Another mutation (T300R) was ERAD-resis-

tant, but defects in channel activity were apparent based on two-electrode voltage clamp

measurements in X. laevis oocytes. Together, our results outline a new computational and

experimental pipeline that can be applied to identify disease-associated alleles linked to a

range of other potassium channels, and further our understanding of the ROMK structure-

function relationship that may aid future therapeutic strategies to advance precision

medicine.
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Author summary

Bartter syndrome is a rare genetic disorder characterized by defective renal electrolyte

handing, leading to debilitating symptoms and, in some patients, death in infancy. Cur-

rently, there is no cure for this disease. Bartter syndrome is divided into five types based

on the causative gene. Among these subtypes, Bartter syndrome type II results from

genetic variants in the gene encoding the ROMK protein, which is expressed in the kidney

and assists in regulating sodium, potassium, and water homeostasis. Prior work estab-

lished that some disease-associated ROMK mutants misfold and are destroyed soon after

their synthesis in the endoplasmic reticulum (ER). Because a growing number of drugs

have been identified that correct defective protein folding and/or potentiate ion transport,

we wished to identify an expanded cohort of putative disease-associated ROMK mutants.

To this end, we developed a pipeline that employs computational analyses of human

genome databases along with genetic and biochemical assays. Next, we confirmed the

identity of known variants and uncovered previously uncharacterized ROMK variants

that are potentially associated with Bartter syndrome type II. Further analyses indicated

that select mutants are targeted for ER-associated degradation, while another mutant

compromises ROMK function. This work sets-the-stage for continued mining of loss-of-

function alleles in ROMK as well as other potassium channels, and may position select

Bartter syndrome mutations for correction using emerging pharmaceuticals.

Introduction

First identified in 1962, Bartter syndrome is group of rare, life-threatening disorders caused by

defects in or impaired function of electrolyte channels within the kidney, compromising renal

sodium and potassium handling and resulting in excessive electrolyte and water excretion [1].

To date, therapies for Bartter syndrome include electrolyte supplements and non-steroidal

anti-inflammatory drugs, which are limited to only mitigating the symptoms. Although disease

severity, presentation, and age of onset vary, Bartter syndrome can lead to a failure to thrive,

sudden cardiac arrest, and even death [2,3].

One among several causes of Bartter syndrome arises from defects in a potassium channel

residing on the apical surface of two segments of the nephron: the thick ascending limb and

the cortical collecting duct [4]. The channel, ROMK (also known as Kir1.1), is encoded by

KCNJ1 and was the first inwardly rectifying potassium (Kir) channel identified [5–7]. Like

other Kir channels, ROMK functions as a tetramer [8] and exhibits a larger inward current

than outward current; all family members also share a common structure that contains two

transmembrane domains (TMD) and cytoplasmic N- and C-terminal domains [9]. In the kid-

ney, ROMK plays a central role in mediating potassium efflux, which in turn provides a crucial

source of potassium to facilitate sodium reabsorption through the NKCC2 transporter in the

thick ascending limb. Furthermore, ROMK-dependent potassium secretion generates a lumen

positive transepithelial potential that drives paracellular sodium absorption [10]. Mutations in

ROMK give rise to Bartter syndrome type II, also called antenatal Bartter syndrome, since

patients often present prenatally (e.g., with excessive amniotic fluid). Among these individuals,

observed features include a failure to thrive, renal salt wasting and volume depletion, early

post-natal hyperkalemia, hypercalcuria, nephrocalcinosis, and arrhythmias, which together

contribute to a high infant mortality rate [11].
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In theory, defects in ROMK might arise from a lack of expression, altered protein folding

and/or tetramerization, accelerated degradation of poorly folded/assembled subunits, ineffi-

cient transport to the cell surface, and/or poor channel (i.e., potassium transport) activity.

Indeed, early studies in X. laevis oocytes and COS-7 cells demonstrated that some Bartter syn-

drome type II-associated mutants were absent from the cell surface and others were defective

for potassium transport [12–14]. Later work by our group showed that four disease-causing

ROMK mutations that cluster in a cytosolic, β sheet-rich immunoglobulin-like domain cause

the protein to misfold in the endoplasmic reticulum (ER) [15], an outcome that targets ROMK

for ER associated degradation (ERAD).

The ERAD pathway represents a first-line defense in the secretory pathway to recognize

and deliver misfolded proteins to the ubiquitin-proteasome system (UPS) in the cytosol. Dur-

ing ERAD, molecular chaperones, such as heat shock protein 70 (Hsp70), recognize and target

misfolded proteins for extraction (or “retrotranslocation”) from the ER lumen and ER mem-

brane into the cytosol and then for ubiquitination, which serves as a prelude to proteasome-

dependent degradation [16–21]. Retrotranslocation requires a AAA+-ATPase, known as

Cdc48 in yeast, or p97 (also known as Valosin Containing Protein; VCP) in higher cells

[22,23]. In a study utilizing a yeast expression system and human cell lines, we showed that

Hsp70 and Cdc48 were required for the degradation of Bartter syndrome-linked mutant

ROMK species, whereas wild-type ROMK was relatively stable (15). In addition, the expression

of ROMK in a yeast strain lacking two endogenous potassium channels (trk1Δtrk2Δ) restored

yeast growth on low potassium media [24,25]. As a result, ROMK folding, trafficking to the

plasma membrane (where it functions), and potassium transport can be assayed in yeast.

Together, these data indicate that the yeast system effectively monitors the efficacy of ROMK

biogenesis and provides a facile growth assay, allowing one to screen for defective ROMK

mutants in a quantitative and high-throughput manner.

The rapid growth of human genome sequence data and improved curation of existing data-

bases have facilitated the identification of disease-linked genes as well as uncharacterized dis-

ease-causing mutations. To date, ROMK mutations associated with Bartter syndrome type II

were primarily identified via clinical studies [4,12,26,27], but numerous uncharacterized dis-

ease-linked ROMK mutations likely remain unearthed in human databases. We now report on

the use of two computational approaches to uncover additional ROMK variants that are poten-

tially associated with Bartter syndrome type II. First, we examined ROMK missense mutations

in two NIH-supported databases, the Trans-Omics for Precision Medicine (TOPMed) study

[28] and the ClinVar database [29], using an algorithm that predicts mutation severity and

pathogenecity. This algorithm, known as Rhapsody [30], utilizes evolutionary conservation

along with structural and dynamic features. We previously validated Rhapsody’s predictive

power to probe the potential impact of both known disease-associated and randomly selected

ROMK variants [31]. Second, we performed in silico association analyses to identify links

between ROMK variants in the UK Biobank and disease-associated phenotypes [32–34] using

the REVEAL: Biobank computational platform [35–38]. As a result of these complementary

approaches, we report here on the identification and characterization of a cohort of ROMK

variants using yeast, X. laevis oocytes, and tissue culture cells. Ultimately, we discovered new

variants that 1) are unstable and targeted for ERAD, 2) are poorly expressed at the cell surface,

and 3) exhibit defective channel function. The identification of a common allele from the two

computational approaches validates the complementary nature of these methods and outlines

a new pipeline to assess other identified disease-associated mutations in ROMK, an effort that

may aid in the development of precision medicines to treat those with Bartter syndrome

type II.

PLOS GENETICS A pipeline to identify uncharacterized alleles linked to Bartter syndrome

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011051 November 13, 2023 3 / 40

https://doi.org/10.1371/journal.pgen.1011051


Results

A computationally-guided analysis reveals uncharacterized ROMK

mutations

To isolate previously uncharacterized ROMK mutations associated with Bartter syndrome

type II, we first analyzed genomic data collected from the TOPMed program. TOPMed is an

NIH-sponsored whole genome sequencing program with a cohort of more than 180,000 par-

ticipants who have lung, heart, sleep, and blood disorders [28,39]. Moreover, genomic data

from the cohort are continuously deposited into the publicly available Bravo browser [39]. At

the time of our analysis, a total of 758 ROMK variants were observed in 128,568 individuals,

124 of which are missense mutations (see S1 Table). To assess the potential disease severity of

each amino acid substitution, we used Rhapsody, a computational algorithm that was first

developed to analyze amino acid variants based on sequence conservation, structure, dynam-

ics, and coevolutionary features [30]. The Rhapsody scores, i.e., the predicted pathogenicity, of

all 124 missense mutations are also reported in S1 Table, and as initially defined, a Rhapsody

score > 0.5 suggests a mutation is pathogenic, whereas a benign mutation is assigned a

score < 0.5. The accuracy of this method was previously corroborated in silico on a dataset of

~20,000 labelled human variants, and when compared with alternative approaches using mul-

tiple accuracy metrics, Rhapsody’s performance at that time consistently ranked among the

highest [30,40]. We further experimentally verified the predictive power of Rhapsody using a

yeast growth assay that reports on ROMK plasma membrane residence and channel function

(see Introduction) [31]. Using the experimental data from the yeast screen, we also previously

computed receiver operating characteristic (ROC) curves and found that Rhapsody had the

highest accuracy compared to Polyphen-2 [41] and EVmutation [42] (Computed AUROC was

0.86 for Rhapsody, as opposed to 0.81 and 0.77 for Polyphen-2 and EVmutation). Importantly,

Rhapsody predicted the severity of known disease-linked ROMK mutations with >90% accu-

racy [31].

In parallel, we examined potential disease association amongst the 124 TOPMed mutations

by cross-examining the NIH ClinVar database, a public archive of human genomic variants

and their evidence-based clinical interpretations [29]. Ultimately, we focused on mutations

located in regions required for protein folding and function, e.g., the immunoglobulin-like

fold and the PIP2-binding domain [43], as well as those designated as having “uncertain clini-

cal significance” for Bartter syndrome in ClinVar [29] (Fig 1A).

Based on these analyses, representative mutations were chosen for further assessment

(Fig 1 and S2 Table). Most of the mutations (12 out of 17) reside in the ROMK cytoplasmic

domain (Fig 1B), which contains key regions that play important roles in protein folding and

channel function. These regions include the cytoplasmic pore, the G-loop, and the PIP2-bind-

ing pocket. For example, T300I is located on a β sheet proximal to the G-loop region, which is

solvent-accessible at the top of the cytoplasmic pore and regulates channel gating and inward

rectification in ROMK and other Kir channels [44–46]. Given the potential contribution of the

T300 site to channel function, we also added T300R, a residue identified in ClinVar, for further

analysis.

Ultimately, amongst the 17 variants, 14 were predicted to be deleterious, i.e., assigned a

Rhapsody score of� 0.5, with G228E having the highest Rhapsody score (0.930; with the maxi-

mum score being 1 [31]; Fig 1C and S2 Table). Interestingly, G228E resides in the β sheet-rich

immunoglobulin domain, in which—as noted above—mutations compromise ROMK folding

and stability [15]. It is also noteworthy that the mutation with the highest frequency in the

population (0.68%), M357T, is predicted to be neutral. ClinVar predicts that seven mutations

are linked to Bartter syndrome, though they are classified as having uncertain clinical
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significance (Fig 1C, mutations marked with a *). In contrast, seven other mutations were pre-

viously associated with Bartter syndrome and have clear clinical consequences (S2 Table,

denoted by “Bartter” in the “Background information” column). For example, T86A is listed

on ClinVar as likely being benign, consistent with its neutral Rhapsody score, while another

mutation with a deleterious Rhapsody score, P185S, is in the putative PIP2-interacting domain

and disrupts channel conductance, likely by altering PIP2 binding [47]. A comprehensive list

of the 17 chosen mutations, along with their Rhapsody predictions, is found in S2 Table.

We next assayed the 17 mutants in the yeast growth assay that assesses potassium channel

folding, residence at the cell surface, and function. As noted in the Introduction, the basis of

this assay is that yeast lacking two endogenous potassium channels, Trk1 and Trk2, require the

Fig 1. Computer-guided analysis of TOPMed and ClinVar databases to identify previously uncharacterized ROMK missense mutations that are

potentially associated with Bartter syndrome type II. (A) A flowchart describing how 17 mutations were selected for further examination. All missense

ROMK mutations available in the Bravo database [39], in which data from the TOPMed study are continuously deposited, were analyzed. At the time of this

study, the Bravo database was in its “freeze 5” version and a total of 124 missense ROMK mutations were available. We then analyzed all 124 mutations using

Rhapsody (see text for details) to predict mutation pathogenicity, and picked 16 mutations based on Rhapsody score, disease (Bartter syndrome) association,

and location in the ROMK structure. One additional mutation from the ClinVar database (T300R) was also selected. (B) Location of the 17 mutations based on

a ROMK homology model. While ROMK tetramerizes to form a functional channel, only one monomer is shown. Seventeen residues of interest are shown as

light blue sticks. The homology model was built based on the crystal structure of Kir2.2 (PDB ID: 3SPG), which is 47.42% identical to ROMK1. Images were

rendered using PyMOL (ver. 2.6.0). (C) List of 17 mutations and their Rhapsody predictions. “Del” = deleterious, “Neu” = neutral, or predicted to have no

effects on channel architecture/function. A designation of “Prob. Del” indicates that the Rhapsody score is close to the 0.5 cutoff. For example, the Rhapsody

score of P185S = 0.549 and is thus listed as “Prob. Del”. * denotes an uncharacterized Bartter mutation, which is defined as a disease-associated mutation in

ClinVar, but is listed as having uncertain clinical significance, ¶ denotes the mutation obtained solely from ClinVar. A comprehensive table of Rhapsody scores

and prediction for the 17 mutations of interest, as well as all 124 TOPMed mutations, can be found in S1 and S2 Tables, respectively.

https://doi.org/10.1371/journal.pgen.1011051.g001
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presence of a functional exogenous potassium channel at the plasma membrane to support

growth on low potassium [24,48,49] (Fig 2A). We and others previously used the corresponding

trk1Δtrk2Δ yeast strain to characterize mutant alleles and the channel properties of ROMK and

other Kir channels, along with members of distinct potassium channel classes [15,25,50–53].

We expressed the wild-type and each of the 17 mutant ROMK proteins in the trk1Δtrk2Δ
yeast strain and measured yeast growth in liquid medium in a 96-well plate assay (Fig 2B).

Yeast containing an empty vector or expressing Y314C, a Bartter mutation previously shown

to compromise ROMK folding and function [14,15,54], were used as negative controls, while

yeast expressing a related Kir channel (Kir2.1) that traffics more efficiently to the cell surface

than ROMK [51,52], along with a known hyperactive ROMK mutant allele (K80M) [55], were

used as positive controls. We first noted that G228E, the mutation in the immunoglobulin fold

with the most deleterious Rhapsody score, exhibited an expected severe growth defect, i.e.,

growth was similar to that of yeast containing a vector control (Fig 2B). These data are consis-

tent with G228 residing in the β sheet-rich immunoglobulin-like domain (see above and [54]);

other disease-associated mutations in this region, including our negative control, Y314C, are

rapidly targeted for ERAD, likely due to severe folding defects [15]. In turn, a mutation located

at the base of this domain, L320P, similarly prevented yeast growth, though to a lesser extent.

These data may reflect the fact that this mutation has a marginal pathogenicity score using

Rhapsody (0.588). Based on their growth phenotypes in low potassium, which are reflected by

the optical density measured at 600 nm at the end of the yeast growth assay (thus termed “end-

point OD600”), we classified the 17 mutants into four groups: severe defect (e.g., G228E), mod-

erate defect (e.g., L320P), slight defect, and no defect. S3 Table (“Growth defect

categorization” column) summarizes the growth phenotype of each mutation according to this

classification, and criteria for these distinctions is also provided in the legend to the Table. In

brief, the endpoint OD600 values (relative to WT ROMK) used for each category gave rise to

distinct growth profiles (Fig 2), and the mutant growth levels were easily distinguishable

between the break-points in each category. These break-points are as follows: No defect,

OD� 1 (or 100% WT); Slight defect, 0.9�OD< 1 (90–100% WT); Moderate defect:

0.8�OD< 0.9 (80–90% WT); Severe defect: OD < 0.8 (80% WT).

Importantly, other mutations also exhibited growth phenotypes in accordance with their

Rhapsody scores and with previous work. One example is the L220F Bartter mutation, which

grew more slowly when expressed in yeast. These data are consistent with a highly deleterious

Rhapsody score (0.759), a “pathogenic” classification in ClinVar (S1 Table), and previous

studies demonstrating reduced channel currents in X. laevis oocytes [14,26]. The defect in

channel function caused by this mutation likely stems from its localization adjacent to S219, a

protein kinase A phosphorylation site [56] that maintains the open state of the channel [57]. In

addition, yeast expressing the likely benign and predicted neutral M357T variant grew

robustly, as anticipated. Besides M357T, yeast expressing the two other predicted neutral

mutations similarly showed minimal or no growth defects (T86A and T119A, see S3 Table).

Yet, the concordance between Rhapsody predictions and growth phenotypes was not absolute.

For example, a Bartter mutation with a “probably deleterious” designation and reported to

likely affect PIP2 binding [P185S; [47]] was without consequence in yeast. However, this muta-

tion reduced single channel conductance only when PIP2 was depleted, and had no apparent

effect on channel currents or surface expression in X. laevis oocytes [47], which might explain

the lack of a yeast growth defect.

Although the data outlined above support the predictive power of Rhapsody to report on

ROMK residence and activity, we next asked if the dynamic range of the signal-to-noise in

these studies might be increased. Therefore, the growth assays with select mutations were

repeated using yeast that also expressed the K80M activating mutation (see above). K80 resides
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Fig 2. ROMK mutations from TOPMed and ClinVar show varying growth defects in yeast in low potassium medium. (A) Schematic of a yeast-based assay

to assess the activity of a human potassium channel. A yeast strain lacking endogenous potassium transporters, Trk1 and Trk2, is viable, yet unable to grow on

medium containing low potassium, unless a human potassium channel (e.g., Kir2.1 or ROMK) is expressed. Because of impaired ROMK activity at low pH [84]

and exaggerated steady-state residence in the ER [51], ROMK exhibits only a weak growth phenotype on low potassium in contrast to Kir2.1. The table shows

the expected growth phenotype of yeast containing an empty vector, or expressing a related Kir channel, Kir2.1, or ROMK, and the predicted growth

phenotype of yeast expressing a ROMK mutation from Fig 1. (B) Viability assays of yeast expressing 17 TOPMed/ClinVar mutations in medium containing

low potassium (25 mM) grouped by growth defects. Yeast were transformed with an empty expression vector as a negative control, or with a plasmid

expressing Kir2.1, ROMK, or the indicated ROMK mutation. An unstable Bartter mutant (Y314C) [15,54] was used as a negative control. In brief, yeast were

grown overnight to saturation and diluted the next day to an OD600 of 0.20 with medium supplemented with 25 mM KCl. OD600 readings were recorded every

30 min for 48 hrs and normalized to wells containing medium. Graphs were made using GraphPad Prism (ver. 9.5.0), and data represent results from two

replicates, ± S.E. (error bars). The growth defect categorization, e.g., “Severe defect”, was determined based on the normalized endpoint OD600 values at t = 44

hrs and are also described in details in S3 Table. Briefly, we determined the break-points for each categorization as follows: No defect, OD� 1 (or 100% WT);

Slight defect, 0.9�OD< 1 (90–100% WT); Moderate defect: 0.8�OD< 0.9 (80–90% WT); Severe defect: OD< 0.8 (80% WT).

https://doi.org/10.1371/journal.pgen.1011051.g002
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in the putative pH sensor in ROMK and is thought to regulate channel gating [58,59], and pre-

vious work in our lab utilized this activating mutation [55] to optimize the signal-to-noise

[15,51]. As shown in S3 Table (highlighted in red text, and see S1 Fig), the dynamic range of

the growth assays was improved in yeast expressing select ROMK mutants in the context of

the K80M allele. For instance, two mutations (F93V and V122E) predicted to be deleterious by

Rhapsody—yet exhibited minor growth defects—now exhibited more measurable growth

defects with the improved signal-to-noise in this assay. Furthermore, growth defects for muta-

tions with a “moderate” designation, such as L320P and R311Q, were also now clearly measur-

able. Nonetheless, most of the remaining mutations exhibited growth defects in accordance

with growth assays in the absence of K80M co-expression. These results indicate that more

refined data can be obtained when select mutants are examined in the presence and absence of

the hyperactive channel, and future efforts will incorporate this paradigm into the experimen-

tal plan.

Ultimately, we selected four alleles to characterize at the molecular level. G228E and L320P

were chosen for their respective strong (G228E) and more moderate (L320P) growth defects in

yeast viability assays and for their status of having clinically uncertain significance in ClinVar.

We also selected T86A as a representative neutral mutation that exhibited no growth defect,

and T300R due to its moderate growth defect and the importance of the G-loop in supporting

ROMK function/stability, as described above.

Phenotype-guided association analyses of the UK Biobank identified

additional disease-associated ROMK variants

In parallel to the data mining protocol above, we pursued an alternate strategy to identify pre-

viously ill-characterized and novel disease-linked mutations. More specifically, we wished to

identify individuals who exhibit features characteristic of Bartter syndrome type II but are

undiagnosed or harbor previously unidentified mutations in KCNJ1. Therefore, we utilized the

UK Biobank, a genomic and metabolomic resource for multi-omics data retrieved from an

ongoing participant study initiated in 2006 [32]. In particular, we performed three genome-

wide association studies (GWAS) between phenotypic data and ROMK mutations using

REVEAL: Biobank, an analytical platform built upon SciDb [60] that supports elastic scaling

for efficient and cost-effective genomic analyses [35–38] (Figs 3A and S2). We utilized whole

exome sequencing data, which at the time of this study, had been made available for ~200,000

UK Biobank participants [61,62]. Whole exome sequencing measures the coding regions of

the genome and helps identify disease-causing and/or rare genetic variants. Combined with

the large sample size of the UK Biobank cohort and rich phenotypic datasets, whole exome

sequencing data can also help elucidate gene function, which is otherwise challenging with

imputed genomic data [63–66] and may require the application of additional statistical meth-

ods to compensate for missing data [67]. Within the whole exome sequencing dataset, there

were 511 KCNJ1 variants (S4 Table), and after applying a minor allele frequency (maf) filter

(maf> 1e-05), we selected 142 variants for GWAS.

The first association study employed 25 disease phenotypes for their relevance to ROMK

function, to Bartter syndrome type II, and to hypertension [9,68], and included phenotypes

such as systolic and diastolic blood pressure, serum urea, creatinine, calcium, and phosphate,

as well as urine potassium and sodium. For the second analysis, we selected 15 unique pheno-

typic codes, or “phecodes”, associated with Bartter syndrome type II. The use of phecodes has

recently emerged as an effective route to classify clinical phenotypes and is thus suited to phe-

nome-wide association studies compared to traditional billing ICD10 codes [34]. For example,

the 15 phecodes we selected represent 25 traditional ICD10 codes. The phecodes chosen
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Fig 3. Mining the UK Biobank to identify ROMK mutations associated with disease-related phenotypes and showing growth defects in yeast. (A) A

flowchart describing how the UK Biobank was mined to search for potential disease-causing mutations. From a sub-population of the UK Biobank (see text for

details) that contains genomic and phenotypic data of ~200k participants, we performed in silico analysis to find significant associations between ROMK

variants and disease-related phenotypes using the computational platform REVEAL: Biobank. (B) Table summarizing the list of potential disease-related

ROMK mutations and their associated phenotypes. For a more comprehensive results of the phenotypic association analysis, see Tables 1–3 and S6. (C) Graph

shows yeast viability assays in liquid medium supplemented with low potassium (25 mM), as described. OD600 readings were recorded over 44 hrs and

normalized to the first time point. Graphs were made using GraphPad Prism (ver. 9.5.0), and data represent results from ten replicates, ± S.E. (error bars).

https://doi.org/10.1371/journal.pgen.1011051.g003

Table 1. Top significant associations between relevant binary disease phenotypes and ROMK variants in the UK Biobank.

SAIGE

Phenotype (phecode #) Chromosome

position

Nucleotide

change

P-value Observation

#

Mutation Beta

value

Problems associated with amniotic cavity and membranes

(653.00)

11:

128839618

C > T 6.07E-

04

122586 Missense

(G228E)

22.6

Hypertensive Heart Disease (401.21) 11:

128839736

C > T 7.26E-

04

107442 Missense

(G228E)

222.96

REGENIE

Phenotype (phecode #) Chromosome

position

Nucleotide

change

P-value Observation

#

Mutation Beta

value

Hypopotassemia (276.14) 11:

128839710

G > A 7.84E-

04

121659 Synonymous

(N197N)

5

Electrolyte imbalance (276.10) 11:

128839710

G > A 9.26E-

04

121692 Synonymous

(N197N)

4.8

Table shows significant associations obtained from GWAS performed with two algorithms, SAIGE [69] and REGENIE [70]. Relevant disease phenotypes were selected

from a list of phecodes, i.e., refined groups of International Classification of Diseases (ICD) codes that are both clinically meaningful and facilitate more efficient

genome analysis [34,151]. We defined a binary phenotype as one that is either present or absent in an individual. For example, one either has or does not have

“electrolyte imbalance”.

https://doi.org/10.1371/journal.pgen.1011051.t001
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include clinical Bartter syndrome phenotypes related to fatigue and weakness (e.g., malaise

and fatigue), volume loss and thirst (e.g., polyuria), hyperaldosteronism, electrolyte imbalance,

and neonatal diagnoses. Notably, the analysis excluded phecodes linked to hypothyroidism

and diabetes. We reasoned that these phenotypes might increase the number of false negatives

since they are not directly related to ROMK. Finally, we used available metabolomics data

from the Biobank for the third association study (Fig 3A). A list of all phenotypes examined

from the three GWAS is presented in S5 Table.

SAIGE [69] and REGENIE [70] were the two algorithms utilized to perform the GWAS.

Both algorithms are standards in bioinformatics workflows and identify significant associa-

tions, i.e., the computed p-value of a regression test between a mutation and a phenotype in

the tested population (see Materials and Methods). Results obtained from both algorithms

were similar, albeit with minor differences observed in the strength of the association as mea-

sured by the p-value(s). The top significant associations identified between KCNJ1 variants

and Bartter-syndrome relevant phenotypes are presented in Table 1 (for binary phecodes) and

Table 2 (for the quantitative phenotypes and the 168 metabolomic phenotypes). For each asso-

ciation, the name of the phenotype/phecode, the chromosomal position, the base pair change,

the computed p-value, the number of participants (“observation #” column), the consequence

of the mutation, and the beta value (i.e., effect size) are listed. In addition, the data in Table 3

represent the mean, median, and standard deviation (S.D.) of the phenotype in individuals car-

rying a mutation (homozygous or heterozygous) versus wild-type individuals, as obtained

from Table 2.

Table 2. Top significant associations between relevant disease phenotypes and ROMK variants in the UK Biobank.

SAIGE

Phenotype Chromosome position Nucleotide change P-value Observation

#

Mutation Beta value

Urea 11:128839052 T > A 3.86E-05 131212 3’ UTR

(-)

0.02

Phosphate 11:128839052 T > A 5.11E-04 120657 3’ UTR

(-)

-0.87

Creatinine 11:128839856 C > A 5.95E-05 32083 Missense

(V149L)

2.48

Urea 11:128839370 G > A 2.93E-04 131212 Missense

(R311W)

0.88

Sodium in urine 11:128839736 C > T 6.10E-03 133640 Missense

(A189T)

1.31

Creatinine (enzymatic) in urine 11:128839618 C > T 9.79E-03 133921 Missense

(G228E)

0.5

Systolic blood pressure (automated) 11:128839170 G > T 6.48E-02 130002 Missense

(N377K)

-0.33

Systolic blood pressure (manual) 11:128839170 G > T 9.18E-03 7804 Missense

(N377K)

1.21

REGENIE

Phenotype Chromosome position Nucleotide change P-value Observation # Mutation Beta value

Creatinine 11:

128839856

C > A 9.41E-04 131211 Missense

(V149L)

0.9

Table shows significant associations obtained from GWAS with two algorithms: SAIGE [69] for the initial analysis, and REGENIE [70] for result confirmation. 25

relevant disease phenotypes and 168 metabolomic markers were chosen for this analysis (see Materials and Methods for details). We termed these phenotypes

“quantitative”, since they can be measured and compared to wild-type individuals (e.g., serum urea levels).

https://doi.org/10.1371/journal.pgen.1011051.t002
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Interestingly, some of the most significant associations (urea and phosphate, Table 2) were

linked to a variant in the 3’ UTR. We also uncovered a synonymous mutation (N197N) linked

to hypopotassemia (hypokalemia) and electrolyte imbalance (Tables 2–3). While the pheno-

typic consequences of these variants was not examined here, future efforts to assay message

expression, stability, and/or translation may be meaningful. This is especially important as

silent mutations are not always without consequences [71]. For example, a synonymous muta-

tion in the MDR1 gene alters the folding and function of the resulting protein due to altered

codon usage bias [72].

Here, we instead focused on phenotypes with significant associations linked to missense

mutations residing in one of the five KCNJ1 exons, as summarized in Fig 3B. Intriguingly,

G228E (Fig 3B and Table 1, and also see above) once again emerged as an uncharacterized,

but likely Bartter-associated, mutation, since individuals carrying this mutation exhibited

increased serum creatinine and perturbations in amniotic cavity and membrane, both of

which are typical manifestations in those with Bartter syndrome type II [73]. This result sup-

ports the power of using complementary computational methods and the predictive power of

each protocol.

Other mutations from this analysis were also associated with typical Bartter syndrome phe-

notypes, such as V149L (increased serum urea and creatinine), A189T (increased urine

sodium), and R311W (increased serum urea) (Fig 3B and Table 2; for details on the means of

all metabolite phenotypes associated with each mutation, refer to Table 3). Another variant at

position R311, R311Q, is a known Bartter mutation and was one of the TOPMed mutations

that exhibited growth defects (S3 Table), which may explain why R311W might similarly lead

to impaired ROMK function and disease [14]. Mutations at this residue disrupt inter-subunit

salt bridges and pH-dependent gating [59,74]. Finally, we found that heterozygous carriers of

N377K had elevated manual systolic blood pressure (Fig 3B and Table 2), a phenotype atypical

of Bartter syndrome since urinary sodium loss usually leads to low blood pressure [75]. This

might be attributed to the fact that blood pressure is a complex and multi-genotypic trait [76],

or possibly due to errors in the manual measurement of blood pressure in these individuals,

which is not uncommon [77,78]. However, hypertension has been observed in a clinical case

study in which a newborn presenting with classical antenatal Bartter syndrome phenotypes

(i.e., renal salt wasting and hyperkalemia) also had transient high blood pressure [79]. Subse-

quent genetic testing revealed that the infant carried two mutations in the KCNJ1 gene, E151K

Table 3. Comparison of metabolite levels between wild-type versus individuals carrying ROMK variants.

Phenotype Chromosome position Units Mutation Individuals with mutation Wildtype individuals

# Mean Median S.D. # Mean Median S.D.

Urea 11:128839052 mmol/L 3’ UTR 36744 5.45 5.32 1.38 93583 5.42 5.28 1.38

Phosphate 11:128839052 mmol/L 3’ UTR 33846 1.16 1.16 0.16 85997 1.17 1.17 0.16

Creatinine 11:128839856 mmol/L V149L 2 0.1 0.1 0.004 32081 0.07 0.06 0.01

Urea 11:128839856 mmol/L V149L 12 6.49 6.78 1.15 131199 5.43 5.29 1.38

Urea 11:128839370 mmol/L R311W 15 6.62 6.78 1.04 131197 5.43 5.29 1.38

Creatinine (enzymatic) in urine 11:128839618 umol/L G228E 23 11863.52 12760 6323.81 133898 8724.24 7410 5680.85

Sodium in urine 11:128839736 mmol/L A189T 4 129.6 131.75 35.63 133636 75.22 66.4 42.96

Systolic blood pressure (manual) 11:128839170 mmHg N377K 4 173 168.5 23.85 7800 140.67 139 19.89

Systolic blood pressure (automated) 11:128839170 mmHg N377K 27 132.74 135 16.46 129973 140.07 139 19.55

Disease phenotypes with significant associations with mutations in KCNJ1 from Table 2 are listed in the first column. “#” denotes the number of individuals with the

mutation or the wild-type allele, and data shown are the means, medians, and standard deviations (“S.D.”) of each phenotype.

https://doi.org/10.1371/journal.pgen.1011051.t003
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and a deletion of amino acids 116–119, which again strongly supports a diagnosis of antenatal

Bartter syndrome. Moreover, the N377K mutation was also identified in the TOPMed pro-

gram (S1 Table) and was therefore chosen for further analysis. Finally, it is worth noting that

all individuals with these five mutations (V149L, A189T, G228E, R311W, and N377K) are het-

erozygous carriers (S6 Table), which could contribute to minimal or undiagnosed disease. In

addition, the mutations are rare, with each occurring fewer than 27 times in the 200,000-per-

son cohort (S6 Table).

To assay for any potential functional defects caused by these five mutant alleles, we mea-

sured the growth of yeast expressing each variant in liquid medium (Fig 3C). G228E again

showed a growth defect in trk1Δtrk2Δ yeast on low potassium, consistent with its highly delete-

rious Rhapsody score. Another predicted-deleterious mutation at the base of the transmem-

brane domains, A189T (Rhapsody score 0.644), similarly slowed yeast growth, albeit to a

somewhat lesser extent. Meanwhile, V149L, a mutation in the extracellular domain that orga-

nizes the potassium selectivity filter, grew as well as the wild-type control, perhaps reflecting its

low Rhapsody score (0.193). In contrast, robust growth of yeast expressing the remaining two

mutations (R311W and N377K) was observed in low potassium-containing media. The Rhap-

sody scores for these two mutations are 0.781 and 0.287, respectively. (Note that the structure

at N377 is absent from the homology model, so an independent Rhapsody analysis of this

mutation was performed using a predicted ROMK monomeric model obtained from Alpha-

Fold [80]; also see Discussion). In contrast, the lack of a growth defect in yeast expressing

R311W was surprising since previous studies in X. laevis oocytes showed that this mutation

reduced channel currents [14,81]. Perhaps the discrepancy can be attributed to the difference

in intracellular pH in the two systems, which is pH 4–5 in yeast [82] and pH ~7.5 in X. laevis
oocytes [83]; ROMK is known to be pH sensitive, exhibiting maximal channel opening at pH

7.8, and the majority of the channels are closed upon a shift to pH ~6.6 [84,85]. However, the

actual role of R311 in channel function remains disputed. pH gating was initially thought to be

mediated by the formation of an RXR triad (R41, K80, R311) [81], but subsequent structural

studies cast doubt on the formation of the triad, and instead favored a model in which R311

formed intermolecular salt bridges with E302 from an adjacent monomer [74]. Finally, even

though N377K appeared to exhibit wild-type-like growth, the yeast ODs vary greatly across the

replicates (Fig 3C, error bar of dark purple line), which is consistent with stochastic toxic

effects of this mutation (see Discussion). Ultimately, given their strong associations with Bart-

ter syndrome phenotypes, we selected all five mutations to characterize further.

A subset of the newly uncovered, putative disease-associated ROMK

mutations destabilize the protein

Prior work established that potassium channel variants can lead to disease by interfering with

channel conductance, open probability, or abundance at the cell surface [86]. The last of these

possibilities is regulated by cellular protein quality control pathways, which monitor the fold-

ing state of a protein both in the ER—which may lead to ERAD—or in later steps of the secre-

tory pathway, which may lead to lysosome targeting [87–89]. Since some of the identified

mutations reside in the cytoplasmic domain (namely, G228E, T300R, R311W, L320P, and

N377K), which includes the critical immunoglobulin-like region [see above and [15,54]], we

surmised that these mutations would decrease protein stability. To test this hypothesis, we

measured protein stability via a cycloheximide chase analysis in trk1Δtrk2Δ yeast expressing

each variant [90].

As shown in Fig 4A, the G228E protein was highly unstable compared to wild-type ROMK,

with almost no protein remaining after 60 minutes. These results were expected given: 1) the
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severe growth defect observed in these cells after incubation in low potassium (Fig 2B and

S3 Table), 2) the change from glycine to a bulky charged amino acid (glutamic acid), which

given the residue’s location in the β-sheet rich region might have drastic consequences on pro-

tein structure, and 3) the highly deleterious Rhapsody score (0.930). Another mutation from

Fig 4. Select disease-linked mutations in the gene encoding ROMK destabilize the protein. Stability assays were performed in trk1Δtrk2Δ yeast expressing

different ROMK variants retrieved from (A) TOPMed/ ClinVar and (B) the UK Biobank databases. In brief, yeast cultures were grown to mid-log phase,

diluted, and incubated at 37˚C for 30 min before cycloheximide was added. Cultures were then collected at the indicated time points and processed for

immunoblot analysis. A rabbit antiserum was used to detect ROMK [160], and a rabbit monoclonal antibody against G6PD was used as a loading control (see

Materials and Methods). Representative immunoblots are shown, and graphs show the percentage of the protein remaining over time, compared to the 0 min

(m) time point, as quantified using ImageJ (ver. 1.53c). * indicates a non-specific protein band recognized by the ROMK antiserum, so only the bottom bands

in the ROMK immunoblots were used for the quantification. Graphs were made using GraphPad Prism (ver. 9.5.0), and data represent the means of at least

three independent experiments, ± S.E. (error bars). For each experiment, a representative immunoblot is shown.

https://doi.org/10.1371/journal.pgen.1011051.g004
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TOPMed, L320P, which as indicated above resides in a β sheet at the base of this domain, also

significantly destabilized the protein, almost to the same extent as G228E (Fig 4A). These

results are consistent with its severe-to-moderate growth defects in yeast, the conversion of

large hydrophobic residue to a proline, and a Rhapsody score that predicts a deleterious out-

come (Fig 2B and S3 Table). It is also intriguing that the analogous residue (L321) in Kir2.1

resides in an amino acid patch (SYLANEILW) that binds AP-1 and promotes Golgi export

[91,92], but this Golgi export consensus sequence is absent in ROMK, suggesting that the

structural change instead triggers premature degradation. In contrast, neither T86A nor

T300R destabilized ROMK. In fact, the T86A and T300R substitutions appeared to modestly

stabilize ROMK (Fig 4A). For T86A, these results are consistent with its assignment as being

neutral in Rhapsody (score: 0.063), and with robust growth observed in the yeast assay. On the

other hand, it was somewhat surprising that the T300R protein was stable, despite a Rhapsody

score of 0.722 and the moderate growth defect in yeast (Fig 2B and S3 Table). We hypothe-

sized that the mutation might instead alter a key architectural feature associated with ROMK

function rather than overall stability (see below).

Among the UK Biobank mutations, only N377K—besides G228E—appeared to compro-

mise protein folding (Fig 4B), despite its lack of effect on yeast growth. Even though N377K

did not result in a marked defect in yeast growth, there was a significant difference in growth

phenotypes across replicates (Fig 3C), suggesting the acquisition of spontaneous suppressors

[93] (also see Discussion). In any event, the net growth phenotype of N377K is consistent with

its designation of a neutral mutation by Rhapsody (0.287).

Together, 12 out of the total 16 predicted deleterious mutations exhibited some degree of

growth defects in yeast, especially when growth assays in the presence and absence of the

K80M allele are taken into consideration (see above). Similarly, all five predicted neutral muta-

tions (N377K included) were without or with only minimal defects. Second, the accuracy of

Rhapsody is enhanced for mutations with high Rhapsody scores, as evidenced by the fact that

9 out of 10 mutations with Rhapsody scores >0.7 impaired yeast growth. On the other hand,

the correlation between Rhapsody scores and protein stability is weaker, consistent with Rhap-

sody simply predicting overall pathogenicity. Third, our results indicate that data mining

efforts identify previously uncharacterized ROMK mutations that destabilize the protein, an

outcome that may contribute to disease presentation and positions these mutations—and cer-

tainly other newly uncovered mutations—as targets of therapies that may one day restore

ROMK folding, as seen for other protein conformational diseases [94,95].

Select ROMK mutants are targeted for ERAD and limit ROMK levels at the

cell surface

Some ROMK variants that significantly alter structure (e.g., Y314C; Fig 2) are targeted for

ERAD, as shown previously [15]. Therefore, we next asked if the ERAD pathway is also

responsible for the accelerated degradation rates observed in Fig 4 for the G228E, L320P, and

N377K alleles. To this end, we again performed stability assays in yeast, as described above,

but in this case protein turnover was measured in the presence or absence of MG-132, a drug

that inhibits the chymotrypsin-like activity of the proteasome [96]. To augment the effects of

MG-132, these experiments were performed in the pdr5Δ yeast strain that lacks a multidrug

efflux pump [97], as extensively employed in previous studies [see e.g., [15,53,98]]. Consistent

with ERAD targeting, protein stability assays revealed that all three mutant proteins were sub-

jected to proteasome-dependent degradation (Fig 5, compare DMSO and MG-132 results). As

shown previously [15], the wild-type channel was also targeted for proteasome-dependent deg-

radation, but to a lesser extent (compare relative stabilities of wild-type versus the mutants in
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the DMSO control). This is likely due to the inefficient and inherently error-prone process of

protein folding and channel assembly in the ER, and has been seen frequently for other ion

channels, such as ENaC [99], CFTR [100], hERG [101], and Kir2.1 [53].

To confirm that the three disease-associated mutants that underwent proteasome-depen-

dent degradation are selected for ERAD, we next conducted stability assays in a temperature

Fig 5. Three disease-associated ROMK mutants are degraded by the proteasome in yeast. Stability assays were performed in

pdr5Δ yeast expressing wild-type ROMK, or ROMK carrying the G228E, L320P, or N377K mutation. Yeast cultures were

grown to mid-log phase, diluted, and incubated at 37˚C for 30 min with either the proteasome inhibitor MG-132 or an equal

volume of the vehicle (DMSO) before cycloheximide was added. Cells were collected at the indicated times, processed, and

immunoblot analysis was performed as described in the Materials and Methods. Representative immunoblots are shown, and

graphs show the percentage of the protein remaining over time, compared to the 0 min (m) time point, as quantified by ImageJ

(ver. 1.53c). Similar to Fig 4, only the bottom bands in the ROMK immunoblots were used for the quantification. Graphs were

made using GraphPad Prism (ver. 9.5.0), and data represent the means of at least three independent experiments, ± S.E. (error

bars). For each experiment, a representative immunoblot is shown.

https://doi.org/10.1371/journal.pgen.1011051.g005
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sensitive yeast strain, cdc48-2 [102], which encodes a defective temperature-sensitive allele of

CDC48, the gene encoding the AAA+-ATPase that mediates protein retrotranslocation in yeast

[103,104]. At a non-permissive temperature, each of the ROMK mutant proteins was again sig-

nificantly stabilized (S3 Fig), providing further evidence that these mutations send the protein

for premature degradation via the ERAD pathway.

To confirm these data in a more physiologically relevant cell system, we conducted stability

assays in HEK293 cells transfected with each ROMK variant and again used MG-132 to inhibit

the proteasome. G228E, L320P, and N377K were degraded to variable extents when compared

to wild-type ROMK (Fig 6A). Specifically, G228E and N377K exhibited somewhat higher

Fig 6. The ERAD pathway also contributes to ROMK mutant turnover in HEK293 cells. (A) Stability assays of HEK293 cells expressing wild-type ROMK,

or ROMK carrying the G228E, L320P, or N377K mutation. HEK293 cells transfected with the indicated expression vector were treated with MG-132 or the

equivalent volume of DMSO for 30 min, at which point cycloheximide was added. Cells were next processed as described in the Materials and Methods.

Representative immunoblots are shown, and graphs show the percentage of the protein remaining over time, compared to the 0 hr (h) time point. A rabbit

antiserum was used to detect ROMK [160], and a mouse monoclonal antibody against actin was used as a loading control. All bands present in the ROMK

immunoblots are specific for the protein and were used for the quantification. (B) Steady-state protein levels before and after p97 inhibition with CB-5083 for 4

hrs. Graphs were made using GraphPad Prism (ver. 9.5.0), and data represent the means of at least three independent experiments, ± S.E. (error bars). For each

experiment, a representative immunoblot is shown, and the quantification was performed using ImageJ (ver. 1.53c). Since the top-most band in the ROMK

immunoblots represents a non-specific protein species recognized by the ROMK antiserum, the bands in the center of the blots were used for the

quantification. p-values in were calculated with two-tailed Student’s t-test for independent samples. ns, p� 0.05; *, p< 0.05.

https://doi.org/10.1371/journal.pgen.1011051.g006
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degradation rates, with 55% and 37% of the protein remaining, respectively, by the end of the 4-hr

experiment (compared to 59% for the wild-type protein). In contrast, L320P was only mildly

unstable (again compare the relative curves in the presence of the DMSO control). In fact, the deg-

radation rate of L320P (63% remaining) was nearly identical, if not slightly improved, compared

to that observed for wild-type ROMK (see Discussion). However, the degradation of each protein

was slowed in the presence of MG-132, again consistent with ERAD targeting.

We subsequently assessed ERAD in the presence or absence of an inhibitor of p97, which is

the mammalian homolog of Cdc48 [105–107]. The compound, CB-5083 [108], is somewhat

toxic and has been used in clinical trials for various cancers [109]. Thus, we performed steady-

state measurements of ROMK after treatment with CB-5083 or the DMSO control, as

employed previously [15]. As shown in Fig 6B, a statistically significant increase in the G228E,

L320P, and N377K mutant proteins was evident, whereas the levels of the wild-type protein in

the presence or absence of CB-5083 were less dramatically affected.

Although the N377K protein was unstable (Fig 6A), we routinely observed significantly less

protein at steady-state and in the degradation assays at the 0 min time point (compare matched

and long exposures of N377K and the other mutants, as well as the wild-type protein, in

Fig 6B). Based on these results, we surmise that the N377K mutation either triggers abortive

translation, or the protein product is rapidly degraded co-translationally, leaving a sub-pool

that then turns over more slowly by ERAD. Each of these scenarios has been observed as a

source of the molecular etiology underlying other diseases [110–112]. While a full definition of

this phenomenon awaits further analysis, this outcome might in principle result in Bartter syn-

drome type II. We also cannot rule out the possibility that this minimal pool of N377K chan-

nels at the plasma membrane might still provide sufficient potassium transport, which could

account for the lack of a growth defect in the yeast assays in Fig 3. By comparison, the level of

measurable Kir2.1 channels at the yeast surface required to support the growth of trk1Δtrk2Δ
cells in low potassium represents <20% of the total protein pool [52].

It is important to highlight that the overall muted level of protein destabilization observed in

HEK293 versus yeast cells is consistent with the fact that the ERAD pathway in yeast is hyperac-

tive. Similar results with misfolded mutant alleles in ROMK and Kir2.1 have been observed pre-

viously [15,53]. It is also worth noting that the mutation with the most modest Rhapsody score

(0.588), L320P, exhibited the most wild-type-like degradation phenotype in HEK293 cells.

The enhanced dependence on p97 to maintain the steady-state levels of the G228E, L320P,

and N377K mutants in HEK293 cells suggests that lower levels of these proteins should reside

at the cell surface. To test this hypothesis, we expressed the wild-type protein and the ROMK

variants in HEK293 cells and performed cell-surface biotinylation assays to measure the

plasma membrane protein pool [51,113]. As anticipated, markedly lower levels of biotinylated

G228E and L320P channels were observed at the plasma membrane relative to the wild-type

protein (Fig 7). In addition, and as noted above, the levels of N377K were significantly lower

in HEK293 cells, so the biotinylated protein pool at the cell surface was also drastically reduced

(S4 Fig, note lanes 4 and 8 in the immunoblot). As controls for labeling specificity, the Na+/

K+-ATPase—a plasma membrane resident—was identified after avidin pull-down of the bioti-

nylated material, whereas Hsp90, an abundant cytosolic protein, was absent. Taken together,

these data indicate that disease-associated mutations identified from the complementary geno-

mic databases deplete ROMK at the cell surface, which likely contributes to disease.

T300R abolishes channel activity

In contrast to changes in protein stability, protein deficiency, and/or altered abundance at the

cell surface, disease-associated mutations in ion channels might traffic normally but are unable
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to support ion conductance, as observed for class III mutations in CFTR [114]. Characterizing

this phenotype is vital as—in contrast to the ERAD-targeted F508del CFTR protein repaired

by chemical chaperones—the class III mutant defects can be treated with approved potentia-

tors [115,116]. For ROMK, the mechanisms of gating are under active investigations [9,44],

but the general consensus is that channel gating capitalizes on the helix-bundle crossing

region, PIP2 binding, and a narrow opening at the top of the cytoplasmic pore, known as the

G-loop, as described above [9,43]. Therefore, we focused on one of the mutations identified

from the ClinVar database, T300R, which is located on the G-loop. As shown above, this

mutant compromised the growth of the trk1Δtrk2Δ yeast strain in low potassium (Fig 2B and

S3 Table), suggesting defective potassium transport, yet the protein was stable (Fig 4). Similar

observations were made in a previous study in which two ROMK mutations, P185S and

R188C, moderately increased protein surface expression, yet negatively affected channel gating

and conductance in a PIP2-dependent manner [47]. In addition, a homologous mutation in

the closely related Kir2.1 channel, M301R, prevented channel function [45]. Therefore, we pre-

dicted that T300R would also reduce channel currents.

To measure channel activity, two-electrode voltage clamp assays were performed in X. lae-
vis oocytes expressing wild-type and select ROMK variants. As hypothesized, the T300R muta-

tion completely abolished ROMK current (Fig 8A and 8B), reducing ROMK-specific, i.e.,

barium sensitive, currents to the same level as the negative controls (i.e., oocytes injected with

water or expressing the Y314C mutant [see above and [14,15,54]]). Consistent with these data,

Fig 7. Cell surface levels of putative disease-associated ROMK mutants are reduced in HEK293 cells. (A) A cell-surface biotinylation assay is shown to

indicate the relative surface expression levels of the indicated ROMK variants. HEK293 cells expressing wild-type ROMK or the G228E or L320P mutant were

treated with biotin, processed, and incubated with streptavidin beads before an immunoblot analysis was performed. 1% input was collected prior to the

overnight incubation, while the “Biotinylated” material represents precipitated cell surface protein. A representative immunoblot is shown, with a rabbit

antiserum to detect ROMK [160], a mouse monoclonal antibody against the Na+/K+-ATPase, a mouse monoclonal antibody for Hsp90, and a mouse

monoclonal antibody against actin. (B) Graph shows the quantification for biotinylated protein, as measured by ImageJ (ver. 1.53c). All bands in the ROMK

immunoblots were used for the quantification, and the N377K variant was omitted, as its protein levels were significantly lower. Error bars represent the means

of six independent experiments, ± S.E. p-values were calculated with two-tailed Student’s t-test for independent samples. ns, p� 0.05; *, p< 0.05; **, p< 0.01;

***, p< 0.001.

https://doi.org/10.1371/journal.pgen.1011051.g007
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structural modeling of T300R suggests that the change from a small hydroxyl into a large basic

side chain likely occludes the cytoplasmic pore and prevents potassium passage (S5 Fig).

Because another mutation at the same site, T300I, was one of the 17 alleles identified from

the TOPMed and ClinVar databases (Fig 1), we also examined currents corresponding to this

variant. In contrast to the effect of the T300R allele, the current was identical to wild-type

ROMK when oocytes were injected with a cRNA for T300I ROMK. The wild-type-like current

Fig 8. The T300R mutation in ROMK abolishes channel currents. (A) Top panel: Currents recorded by two-

electrode voltage clamps (TEVC) in X. laevis oocytes. Oocytes from female Xenopus laevis were injected with 1 ng of

the indicated cRNAs, or the equivalent volume of water. 20–30 hr following cRNA injection, TEVC recordings were

measured at different voltages (-160 mV to 100 mV, in 20 mV increments) in a bath solution containing 50 mM KCl

(for more details, see Materials and Methods). Currents were recorded in the presence or absence of 1 mM BaCl2 and

I-V plots are shown (bottom). In addition to a water-injected control, the results with a known unstable disease-

causing mutant (Y314C) are shown [15,54]. (B) Graph shows the Ba2+-sensitive ROMK current in oocytes injected

with the indicated conditions, as recorded by TEVC. (C) Normalized currents, which are defined as Ba2+-sensitive

currents divided by the means of the wild-type currents. Error bars in the graphs in (B) and (C) show the means of 22

replicates, ±S.D. p-values (shown above the data) were computed using Kruskal-Wallis and Dunn’s multiple

comparisons tests. The data shown are a representative result from three independent experiments using three batches

of oocytes.

https://doi.org/10.1371/journal.pgen.1011051.g008
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is perhaps expected given the lack of a growth defect in T300I-expressing yeast (Fig 2B and

S3 Table) as well as the less consequential substitution from one beta-branched amino acid to

another. Thus, in contrast to the unstable mutants that are absent at the cell surface (e.g.,

G228E and L320P), these results shed light on a functional defect associated with a stable puta-

tive Bartter syndrome-associated ROMK mutant. More generally, these data highlight the

power of uniting a computational analysis and the yeast system as an initial read-out to screen

ill-characterized and previously undefined alleles in a potassium channel-encoding gene.

Discussion

In the kidney, efficient plasma filtration and electrolyte reabsorption are achieved through a

system of transporters and ion channels [117], among which ROMK plays a crucial role. Potas-

sium efflux through ROMK in the thick ascending limb and the cortical collecting duct of the

kidney nephron helps maintain potassium and sodium homeostasis [9,118]. Over 40 missense

mutations in the gene encoding ROMK, KCNJ1, have been identified and linked to Bartter

syndrome type II [4], a rare autosomal recessive disease presenting with fluid loss and electro-

lyte imbalance, i.e., renal salt wasting, polyuria, early post-natal hyperkalemia and subse-

quently hypokalemia [119]. Previous investigations of the cellular mechanisms of Bartter-

associated ROMK mutations have primarily focused on variants that affect whole-cell currents

[12,120], and each study commonly analyzed a handful of mutations. Thus, for both this dis-

ease and most other protein conformational diseases, there exists a need to systematically iden-

tify potential disease-causing variants in the genome, especially with the increasing availability

of human genomic and phenotypic data from large-scale worldwide studies [121]. To this end,

recent efforts dedicated to the systematic assessment of missense variants have incorporated

massively parallel sequencing (VAMP-seq) [122,123] and deep mutational scanning [124].

In this study, we utilized two computationally-guided approaches to mine three human

genomic databases (TOPMed, ClinVar, and the UK Biobank) with the ultimate goal of identi-

fying novel and previously uncharacterized mutations that are potentially associated with Bart-

ter syndrome type II. From the initial analyses, 21 mutations were selected for expression and

functional screening in the established trk1Δtrk2Δ yeast system [24,25], among which one

mutation (G228E) was identified from both approaches. Based on results from yeast viability

assays, we again validated the ability of the Rhapsody algorithm to develop predictions of

mutation severity. Specifically, we found that 17 out of 21 mutations exhibited growth pheno-

types in accordance with their Rhapsody scores, i.e., 12/16 that were scored as deleterious

exhibited strong growth defects in the yeast system and 5/5 scoring as neutral were largely

without effect. In addition, as highlighted in the Results, Rhapsody was more effective for

scores>0.7, with an accuracy of 90%, compared to 81% when all predicted deleterious muta-

tions were considered. To further assess how well Rhapsody can distinguish deleterious from

non-deleterious mutations, we calculated a receiver operating characteristic (ROC) curve

based on results from yeast growth assays for the TOPMed/ ClinVar mutations. Consistent

with previously published ROC data [31], we found that the area under this curve (AUROC) is

0.7625 (S6 Fig), again indicating that Rhapsody can effectively identify deleterious mutations.

It bears mention that while Rhapsody demonstrates a high accuracy in predicting mutation

pathogenicity [30,40], this method relies on the availability of a protein structure/homology

model, which has become more attainable thanks to recent advancements in AI-assisted pro-

tein structure prediction exemplified by AlphaFold [80]. Regardless, the reliability of a pre-

dicted structure must be evaluated before using the structure for calculations with Rhapsody.

Yet, for low-confidence structures, the analysis can be complemented by comparing pathoge-

nicity scores from other methods, such as Polyphen-2 [41] or EVE [125]. Moreover, our
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analysis of human variants using Rhapsody yielded mutant alleles that destabilize the ROMK

protein, but it is important to reemphasize that Rhapsody was not specifically designed to pre-

dict changes to protein stability. The development of computational methods to assess protein

stability has significantly progressed, and notably a recent method was optimized for mem-

brane proteins [126]. However, there is still a considerable level of inaccuracy and/or limited

accessibility with these methods [127]. Given that protein destabilization is a prevalent cause

of inherited diseases [128], the need for an accurate yet accessible and comprehensive compu-

tational method to detect destabilizing mutations is paramount. In any case, we believe that a

well-rounded in silico assessment of mutation pathogenicity, coupled with follow-up func-

tional assays, remains a powerful approach to identify and characterize new variants. To this

end, we further validated the accuracy of Rhapsody predictions by cross-referencing other

computational tools (namely, Polyphen-2 [41], EVmutation [42], and EVE [125]). These

results are summarized in S7 Table.

Because most prior functional analyses of ROMK variants focused on those that impair

channel function [12,120], we specifically sought mutations that compromise protein folding

and trafficking. To this end, we conducted functional assays in yeast, X. laevis oocytes and

HEK293 cells, thereby revealing distinct cellular mechanisms underlying potential disease eti-

ology. One newly identified and previously uncharacterized Bartter mutation (T300R) had no

effect on protein stability but blocked channel conductance. In contrast, three mutants

(G228E, L320P, and N377K) were unstable in yeast (which exhibit a hyperactive ERAD path-

way), with more varying degrees of stability in mammalian cells, as reported for studies on

other ERAD substrates [15,53].

G228E, which was uncovered from both screening strategies, likely affected protein folding

due to the substitution of a small, aliphatic amino acid with a larger charged residue. This

effect is also consistent with the mutation’s localization in the β sheet-rich cytoplasmic domain.

Despite decreased differences in protein degradation rates between the wild-type protein and

the G228E mutant in mammalian cells, reduced cell surface expression was observed. In line

with these findings, whole-cell currents in X. laevis oocytes expressing this mutant were indis-

tinguishable from those in the water injected control (S8 Fig). Perhaps unsurprisingly, these

results are consistent with our finding that two individuals heterozygous for G228E from the

UK Biobank exhibited issues with their amniotic cavity and membrane, a typical manifestation

of antenatal Bartter syndrome [75,119].

Another Bartter mutation of uncertain clinical significance, L320P, also destabilized the

protein in yeast, yet there was little effect on stability in HEK293 cells. Since L320P is also

located in the immunoglobulin domain, where thus far seven ROMK mutations compromise

protein stability [15,54], we reasoned that the folding of this domain in the ER is a rate-limiting

step, at least in yeast. Despite the lack of an effect on protein stability in mammalian cells, we

still observed significantly reduced protein at the cell surface. This fact, coupled with its wild-

type-like protein level at steady-state, suggest that the L320P mutation affects ROMK traffick-

ing at later steps in the secretory pathway, a process that may then be rate-limiting in higher

cells [129].

While the third mutation, N377K, initially appeared to lack a growth defect in yeast, there

were significant stochastic effects between experiments (note the larger error of these measure-

ments in Fig 3 compared to the other strains). When whole-cell currents of oocytes expressing

this mutant were measured, the absence of a significant defect was upheld, but there appeared

to be a small reduction in the measured current (S8 Fig, compare the means of the currents

between N377K and wild-type). Nonetheless, the N377K mutant protein was rapidly degraded

in yeast through the ERAD pathway, and to a lesser extent in mammalian cells. Curiously,

Rhapsody designated a neutral score for this mutation (0.287), perhaps reflecting the limitation
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of this program in analyzing mutations that rely on structural predictions (i.e., AlphaFold)

instead of homology models. (Please note that the use of AlphaFold was imperative since N377

lies beyond the sequence that was resolved in structural studies). It is also possible that the

amino acid substitution alters a critical post-translational modification or allostery, which

Rhapsody is unable to capture. This possibility is supported by the discovery of a nearby resi-

due, N375, that resides within a non-canonical endocytic signal (YxNPxFV) that binds to the

ARH adaptor and recruits ROMK to clathrin-coated pits [130]. This model is also consistent

with our proposal, above, that later steps in the trafficking pathway are altered.

Although with some faults, the trk1Δtrk2Δ yeast model provides a rapid, inexpensive, and

quantitative route to screen mutations that affect potassium channel folding, trafficking to the

cell surface, and function. Because this system is also amenable for drug discovery [25], future

work will attempt to rescue variants whose defects were confirmed in higher cells (e.g.,

G228E). Yet, discrepancies between defects in yeast growth, protein stability, and/or con-

founding results in higher cells—as seen for N377K—hint at variables that must be taken into

account in future screens. Based on the growth of transformants on plates that displayed a

range of colony sizes, as well as the larger errors seen in growth assays, the N377K mutation

may cause toxic effects on yeast growth, which results in the accumulation of spontaneous sup-

pressors [93] and the formation of “petite” colonies (see for example [131,132]). Indeed, spon-

taneous suppressors arising from mutations in hexose or amino acid transporters are observed

as common causes for phenotypic reversion in trk1Δtrk2Δ yeast [133–135]. To test the latter

possibility, we propagated cells from colonies of yeast expressing the N377K mutant on

medium containing a nonfermentable carbon source (i.e., glycerol) instead of glucose. We

found that the smaller colonies failed to grow on plates containing glycerol (S7 Fig), a pheno-

type typical of the so-called “petite” yeast [136] that arises due to spontaneous mutations in, or

the loss of, its mitochondrial DNA [137,138].

To mine the UK Biobank data, we utilized REVEAL: Biobank, a high-performance, cost-

effective computational platform to explore, query, and analyze multi-omic biobank-scale

datasets [35–38]. REVEAL: Biobank’s ability to rapidly filter a large search space to create

cohorts of interest, execute complicated bioinformatics workflows at scale in a user-friendly

manner, and allow custom algorithms (e.g., phecode generation) for ease of application posi-

tions REVEAL: Biobank as an optimal solution for high-throughput ad hoc analysis. Moreover,

multiple algorithms, such as SAIGE [69] and REGENIE [70], can be incorporated into the

workflow with simple parameter changes. This allows results to be validated, which is vital

given discrepancies frequently observed in bioinformatics tools.

In addition to the correlative associations obtained from GWAS, the beta value, i.e., effect

size, provides a powerful measure of the degree and direction of impact that a mutation has on

the phenotype. While more work is needed to verify the degree of the impact observed, the

direction of the beta values (+/-) in Table 1 follows the direction of the difference seen in the

mean values of the phenotypes between the wild-type and mutant genotype cohorts in

Table 3.

Results obtained from the UK Biobank GWAS analyses largely corroborated the findings

from the yeast screen and Rhapsody predictions, but it is interesting to note that the p-value of

the associations were lower than those deemed significant in typical GWAS (1e-08). A proba-

ble explanation for the low p-values could be the high imbalance observed in the ratios of cases

(i.e., individuals with a phenotype) and controls, and of wild-type and mutant genotypes (see

Tables 3 and S6). This highlights the need to employ multiple approaches of hypothesis testing

and validation as well as the potential limitations of in silico models. Thus, future efforts might

also utilize metrics other than the p-value to determine significance [139]. Finally, it is worth

noting that individuals harboring these mutations are almost certainly heterozygous carriers.
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Consequently, deciphering phenotypic presentation and obtaining meaningful p-values from

GWAS are even more challenging.

In preliminary studies, we expanded our efforts to investigate the heterozygosity of disease-

associated mutations in experiments using TEVC in X. laevis oocytes (S8 Fig). Interestingly,

we observed an intermediate effect in oocytes expressing both the wild-type and the mutant

alleles, i.e., the currents were approximately half of wild-type (51% for WT/G228E and 46% for

WT/T300R). Not only do these data support the notion that heterozygosity leads to phenotypic

differences, but they also provide a possible explanation for why we found significant associa-

tions between disease phenotypes and individuals carrying the G228E allele even though they

are likely heterozygotes.

The pipeline using REVEAL: Biobank described in this paper can also be expanded into

two directions to further dissect the cellular and biochemical mechanism underlying ROMK

function and to elucidate the relationship between ROMK and other diseases. In the first

direction, we can use other known phenotypes associated with ROMK, such as hypertension,

to uncover additional mutations that exert a functional effect on ROMK trafficking or func-

tion. This approach can also be extended to include linkage disequilibrium calculations cou-

pled with burden tests to identify co-occurring mutations in proteins known or thought to

interact with ROMK, essentially identifying synthetic interactions, but not necessarily syn-

thetic lethal interactions [140,141]. We previously obtained these outcomes with the cytoskele-

tal scaffold protein encoded by SLC9A3R2 [142]. The entire set of mutations could then be fed

into an artificial intelligence (AI)-based application, such as the AlphaFold Protein Structure

Database [80], to provide insights into the structural implications of the mutations. The second

direction is a bootstrapping approach to uncover potential new disease connections by leverag-

ing both genetic and health record data to explore longitudinal prescription and general practi-

tioner information (i.e., READ codes) for patients with identified mutations in key genes

[143–145]. Consequently, there is ample opportunity to further explore ROMK/KCNJ1, and

other putative disease-linked genes, by leveraging large human datasets in the UK Biobank.

While definitive links between the variants we identified and disease presentation await further

study, computational predictions of disease linkage will undoubtedly improve as these datasets

expand.

In sum, our work highlights a pipeline for computational-guided mining of human data-

bases to search for mutations in any potassium channel that can be assayed in yeast. We identi-

fied and then uncovered the cellular mechanisms underlying potential disease phenotypes in a

subset of ROMK mutations with uncertain clinical significances, among which three destabi-

lize the protein and one is channel-defective. This is especially important for the development

of therapeutic strategies, i.e., the use pharmacological chaperones for misfolded mutants versus

potentiators for channel-defective alleles [146,147]. It is worth noting, however, that numerous

uncharacterized uncharacterized ROMK mutants remain, and new disease-associated variants

will continue to arise. Future work should thus focus on improving the output and signal-to-

noise of the yeast assay so that more mutations can be simultaneously screened, which com-

bined with studies in higher cells may ultimately contribute to the development of precision

medicine to treat those with Bartter syndrome type II.

Materials and methods

Computational analysis and selection of mutation from the TOPMed &

ClinVar databases

At the time of this study, data from the Trans-Omics for Precision Medicine (TOPMed) pro-

gram [28] were publicly available in its “freeze 5” version on the Bravo server [39]. This version
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of the dataset consists of 463 million variants from 62,784 individuals and specifically contains

758 genomic variants and 124 predicted missense mutations in KCNJ1. To analyze the poten-

tial severity of the mutations, we ran a saturation mutagenesis analysis of ROMK with Rhap-

sody [30,31] available on a web interface (http://rhapsody.csb.pitt.edu/). We used a homology

model of human ROMK (Uniprot #: P48048) obtained from Swiss-Model [148], which was

built based on the crystal structure of Kir2.2 (PDB ID: 3SPG) [149]. Thus, Rhapsody was able

to compute the pathogenicity probability, i.e., “score”, only for amino acid residues 38–364

that are available in the homology model. A comprehensive list of all scores computed by

Rhapsody for ROMK was deposited at https://github.com/mgm68/2023_ROMK_LoF/tree/

main under the file name “Rhapsody_all_predictions_ROMK.”. Because N377 is absent from

the homology model, a Rhapsody score for the N377K mutation was instead obtained using a

monomeric structure predicted by AlphaFold [80].

For further analysis, we prioritized mutations with a high Rhapsody score, i.e., more delete-

rious, as well as mutations located in regions previously found to be important for protein

folding and channel function (see text for additional details). We also focused on mutations

associated with Bartter syndrome that were classified clinically as being “of uncertain signifi-

cance” in the ClinVar database [29]. Thus, T300R from ClinVar was added based on this clas-

sification, and also due to its position at residue T300 (since T300I had been selected from

TOPMed).

GWAS analysis on data from the UK Biobank

As noted in the Results, whole exome sequencing (WES) data from the UK Biobank [32] was

used to perform three genome-wide association studies (GWAS). At the time of this analysis,

the WES data had been released for ~200,000 individuals out of the ~500,000 total UKBB par-

ticipants [61,62], among which there are 511 KCNJ1 variants (S4 Table). After applying a

minor allele frequency (maf) cutoff of>1e-5, the number of mutations used for the GWAS

was 142. Phenotypic data were selected from the pool of the ~200,000 participants and

included: (1) 25 disease phenotypes for relevance to ROMK function, Bartter syndrome type

II, and hypertension [9,68] (e.g., systolic and diastolic blood pressure, serum urea, creatinine,

calcium, and phosphate, and urine potassium and sodium), (2) 15 phenotypic codes, or “phe-

codes” [34], associated with Bartter syndrome type II, and (3) 168 continuous/quantitative

metabolomics biomarkers. The quantitative phenotypes were normalized using inverse rank

transformation to address non-normality of the underlying distribution [150].

The phecodes that were chosen represented 25 unique ICD10 codes relevant to Bartter syn-

drome, but individuals with phecodes related to diabetes and hypothyroidism were excluded

from the analysis (see Results). Phecodes can be described as a mapping of grouping Interna-

tional Classification of Diseases (ICD) codes into clinically relevant groups [34,151]. Phecodes

improve the power for association studies and enhance the accuracy of relevant phenotypes, in

contrast to ICD codes. Specifically, we developed a custom algorithm to generate phecodes rel-

evant to Bartter Syndrome based on an unsupervised multimodal automated phenotyping

method [152]. The metabolomics biomarkers from the UK Biobank (data field category 220)

were measured in plasma samples using a high-throughput NMR-based metabolic biomarker

profiling platform developed by Nightingale Health Ltd.

The GWAS analyses were done using REVEAL: Biobank, a computational platform

designed to explore, query, and perform large computations on biobank-scale datasets [35–

38]. REVEAL: Biobank comprises R and Python application programming interfaces (API) for

programmatic access to data and graphical user interfaces (GUI’s) for selection of cohorts

using phenotype and genotype filters, and then analyzes GWAS and Phenome Wide
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Association Studies (PheWAS) results from a browser window. REVEAL: Biobank is built

upon SciDB [51], a database solution ideal for storing and querying multi-omics data, utilizes

elastic scaling through an application called BurstMode for efficient and cost-effective analyses

and flexFS, a networked POSIX compliant filesystem for working with big data. REVEAL

allows rapid and FAIR (a group of guiding principles for scientific data management [153])

access to the UK Biobank data, and multiple users can load, read, and write data in a secure,

transactionally safe manner as data operations are guaranteed to be atomic and consistent

(ACID compliant).

We used two algorithms, SAIGE (v0.44.6.5) [69] and REGENIE (v2.0.2) [70], to carry out

the association analyses. Both algorithms are standards in GWAS bioinformatics workflows

and are used to perform a regression test between a mutation of interest and a phenotype. Uti-

lizing two algorithms also helped validate results. There were 12 covariates used in the GWAS:

age, sex, and 10 genetic principal components provided by the UK Biobank (data field 22009).

The selection of alleles for further characterization is described in the Results.

Plasmid construction

Rat ROMK1 was amplified from the pSPORT1-ROMK1 vector [154] and inserted into the

yeast expression vector pRS415 with SmaI and XhoI and was flanked by the TEF1 promoter

and CYC1 terminator [155], as described [15,31]. Point mutations in KCNJ1 were introduced

into the resulting pRS415TEF1-ROMK1 vector using either two-step overlap extension muta-

genesis [156] or site-directed mutagenesis with the QuikChange kit (Agilent Technologies,

CA, USA, catalog # 200523). To express ROMK variants in HEK293 cells, the DNA inserts

were digested with BamHI and XhoI from the yeast vector and subcloned into pcDNA3.1(+).

The DNA sequences of all variants in the ROMK inserts were confirmed by Sanger sequencing

(GENEWIZ, S Plainfield, NJ, USA). All primers used in this study are listed in S8 Table.

Yeast strains and growth conditions

A Saccharomyces cerevisiae strain lacking the Trk1 and Trk2 potassium transporters,

trk1Δtrk2Δ, was employed to assess mutation severity by measuring the ability of each muta-

tion to restore growth on low potassium medium, as described previously [15,31,51,53].

Briefly, plasmids were transformed into yeast via the standard lithium-acetate method [157],

and yeast were grown at 30˚C in liquid or solid synthetic complete (SC) medium lacking leu-

cine, which contained monosodium glutamate as the main nitrogen source and buffered to

pH 4.5 with MES. Media was supplemented with either 100 mM or 25 mM KCl. Due to the

presence of residual potassium in the agar and nitrogen source, each plate contained an addi-

tional 7–10 mM KCl [49,158].

To perform protein stability assays in yeast (see below), we utilized the indicated yeast

strains (i.e., trk1Δtrk2Δ and pdr5Δ; see S8 Table). Cells were grown at 30˚C and switched to

37˚C at the beginning of the chase. Assays using CDC48 and the isogenic cdc48-2 strains were

propagated at 26˚C and then shifted to 39˚C (S8 Table).

Yeast viability assays

Yeast viability assays were conducted as described [31]. For serial-dilution growth assays on

solid medium, saturated overnight cultures were diluted to an A600 of 0.20, then further diluted

5-fold four times in a standard 96-well plate, followed by inoculation into SC-Leu medium

supplemented with 100 mM or 25 mM KCl using a 48-pin replica plater (Sigma-Aldrich,

St. Louis, MO, USA). Plates were incubated at 30˚C and imaged after two days with the Bio-

Rad ChemiDoc XRS+ imager. For assays in liquid medium, saturated overnight cultures were
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diluted to an A600 of 0.20 with SC-Leu medium containing 25 mM KCl in a 96-well plate. The

plates were then covered with a Breathe-Easy gas permeable membrane (Diversified Biotech,

Dedham, MA, USA), and cell density readings were recorded using the Cytation 5 plate reader

(BioTek, Winooski, VT, USA) every 30 min for the indicated time with constant shaking at

30˚C.

Yeast stability assays

Stability assays in yeast were carried out based on established protocols [15,53], with minor

modifications. In brief, yeast cultures transformed with the ROMK expression vector (see

above) were grown in selective media to mid-log phase (A600 = 0.7–1.5), diluted to the same

density (typically A600 = 1.0), and transferred to a water bath with constant shaking at 200

rpm. The cells were then incubated for 30 min at 30˚C (trk1Δtrk2Δ) or for 2 hr at 39˚C (the

CDC48 and cdc48-2 strains). A similar protocol was followed for when the pdr5Δ strain was

employed, except the initial 30 min incubation was performed in the presence of 50 μM MG-

132 or an equal volume of the vehicle (DMSO). Next, cycloheximide was added to a final con-

centration of 150 μg/ml, at which point a 1 ml aliquot was collected. Subsequent 1 ml aliquots

were collected at the indicated time points, flash frozen in liquid N2, and either kept at -20˚C

or were subject to immediate processing and lysis.

The levels of ROMK at each time point were assayed as previously outlined [15,51]. After

lysis in 300 mM NaOH, 1% β-mercaptoethanol, 1 mM PMSF, 1 μg/ml leupeptin, and 0.5 μg/

ml pepstatin A, total protein was precipitated with 5% trichloroacetic acid on ice. The mixture

was the centrifuged at 14,000 rpm for 10 min at 4˚C in a microfuge and subject to SDS-PAGE

and immunoblot analysis. See S8 Table for more information on the antibodies and dilutions

used.

HEK293 cell culture, transfection, and stability assays

HEK293 cells (Thermo Fisher, Waltham, MA, USA) were cultured at 37˚C in Dulbecco’s

Modified Eagle’s Medium containing high levels of glucose (Sigma-Aldrich, St. Louis, MO,

USA) and supplemented with 10% Fetal Bovine Serum and a mixture of penicillin/streptomy-

cin (final concentration: 500 units/ml). Cells in 6-well dishes (passage 2–3, 60–90% con-

fluency) were transfected with 2 μg of plasmids carrying the indicated ROMK mutants using

Lipofectamine 2000 (Invitrogen, Waltham, MA, USA), and the media was replaced after 4 hr.

Protein stability was measured based on an established protocol, with slight modifications

[15]. In short, fresh media containing 50 μM MG-132 or the equivalent volume of DMSO was

added 18–20 hr post transfection. After a 30 min incubation, a final concentration of 50 μg/ml

cycloheximide was introduced, and cells were collected at the indicated time points. For steady

state measurements after treatment with CB-5083, a slightly modified protocol was followed.

In brief, HEK293 cells were cultured in 12-well dishes and transfected with 0.6 μg of the indi-

cated ROMK expression vector, and 20 hr post transfection, the media was replaced with

media containing 50 μg/ml cycloheximide in the presence or absence of a final concentration

of 20 μM CB-5083. Cells were collected after a 4 hr incubation at 37˚C. In both assays, cell pel-

lets were collected and retained at -20˚C.

Cells were lysed in TNT buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 1% Triton X-100) sup-

plemented with a protease inhibitor cocktail (Roche, Basel, Switzerland) on ice for 20 min with

occasional agitation. The mixture was then centrifuged at 13,000 rpm for 10 min at 4˚C in a

microfuge to remove the nuclear fraction, and the supernatant was transferred into new tubes

and SDS sample buffer containing 150 mM DTT was then added to facilitate protein analysis

by SDS-PAGE and immunoblots, as described [15,51].
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Cell-surface biotinylation assays

Cell-surface biotinylation assays were performed as published [51], with minor modifications.

In short, 20–22 hr post transfection, HEK293 cells expressing the indicated ROMK construct

were treated with a final concentration of 125 μg/ml cycloheximide for 2 hr at 37˚C. The plates

were then transferred onto ice, washed three times, and treated with 0.3 mg/ml EZ-Link Sulfo-

NHS Biotin (Thermo Fisher, Waltham, MA, USA) for 1 hr. Excess biotin was quenched by

washing the cells with 100 mM glycine two times, and then the cells were lysed in 20 mM

HEPES, pH 7.6, 1 mM EDTA, 1 mM EGTA, 25 mM NaCl, 1% Triton-X, 10% glycerol contain-

ing a protease inhibitor cocktail (Roche, Basel, Switzerland) for 1 hr before the mixture was

centrifuged cold at 14000 rpm for 15 min to remove any insoluble material. The concentration

of the liberated soluble protein was assessed with the Pierce BCA protein assay kit (Thermo

Fisher, Waltham, MA, USA), and equal amounts of protein (180–250 μg) were brought to a

total volume of 1 ml in the same buffer as above. After an aliquot corresponding to 1% of the

total was collected, the remaining protein was added to 30 μl of Pierce NeutrAvidin-agarose

beads (Thermo Fisher, Waltham, MA, USA) and incubated overnight at 4˚C. The next day,

the beads were washed three times and subject to SDS-PAGE and immunoblot analysis (see

S8 Table).

Two-electrode voltage clamp measurements

pRS415-ROMK expression plasmids (see above) were linearized and used as templates for

cRNA synthesis by in vitro transcription using T3 RNA Polymerase (Ambion, Inc., Life Tech-

nologies, Carlsbad, CA, USA). The resulting cRNAs were then purified with an RNA purifica-

tion kit (Qiagen, Hilden, Germany), quantified, and the cRNA quality was assessed by

denaturing agarose gel analysis.

Oocytes from Xenopus laevis were harvested with a protocol approved by the University of

Pittsburgh’s Institutional Animal Care and Use Committee. Briefly, stage V and VI oocytes

were treated with collagenase type II and trypsin inhibitor to remove the follicle cell layer.

Oocytes were then injected with 1 ng of the indicated cRNA and incubated at 18˚C in a slightly

modified Barth’s solution (15 mM HEPES, pH 7.4, 88 mM NaCl, 10 mM KCl, 2.4 mM

NaHCO3, 0.3 mM Ca(NO3)2, 0.41 mM CaCl2, 0.82 mM MgSO4, 10 μg/ml streptomycin sul-

fate, 100 μg/ml gentamycin sulfate) for 20–30 hr. Next, two electrode voltage clamp experi-

ments were performed at room temperature (20–24˚C) with the TEV200A Voltage Clamp

Amplifier (Dagan Corporation, Minneapolis, MN, USA) and the DigiData 1440A and Clam-

pex 10.4 software (Molecular Devices, San Jose, CA, USA). Oocytes were placed in a recording

chamber and perfused with a bath solution (10 mM HEPES, pH 7.8, 50 mM KCl, 48 mM

NaCl, 2 mM CaCl2, 1mM MgCl2) at a constant flow rate of 5–10 ml/min. Whole-cell currents

were recorded at a series of voltages (-160 and 100 mV in 20 mV increments), in the absence

and presence of 1mM BaCl2 in the bath solution. Data were analyzed using Clampfit in the

pClamp 10.4 package. Ba2+-sensitive currents, which represent ROMK channel activity in

oocytes [159], were defined as the difference in currents measured in the absence and presence

of BaCl2. Ba-sensitive currents were quantified, and graphs were made using GraphPad Prism

(ver. 9.5.0).

Receiver operating characteristic (ROC) curve

To assess how well Rhapsody distinguishes between deleterious and neutral mutations, we cal-

culated a receiver operating characteristic (ROC) curve for the 17 mutations we selected from

TOPMed and ClinVar (Fig 1), along with the previously published Y314C mutation [15]. We

first ordered all candidate mutations from best to worst by their Rhapsody scores. We then
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considered all possible partitions (cutoffs) of this ordered list. For each cutoff, mutations rank-

ing above the cutoff were tentatively classified as deleterious, and those below were classified

as neutral. We compared these provisional classifications to the corresponding experimental

assessments to calculate false positive and true positive rates for each cutoff and constructed a

ROC curve by plotting each false-positive-rate/true-positive-rate data point. Specifically, we

assigned a “true positive” to the ROMK mutants that had been experimentally verified as

severe or moderate (see S3 Table), i.e., mutations that resulted in a relative endpoint OD

of< 0.9. In contrast, mutants above the cutoff with endpoint ODs of� 0.9 are designated

“false-positive”. After computing the ROC curve, we then calculated the area under the ROC

curve (AUROC or AUC) using the composite trapezoidal rule. For the ROC curve of Rhap-

sody with incorporated data from yeast growth assays using the ROMK-K80M construct, the

designations for two mutations (F93V and V122E) were changed to deleterious based on the

growth defects (S1 Fig). Similar analyses were performed to compute ROC curves and

AUROC values for Polyphen-2, EVmutation, and EVE. For EVmutation, no score was

obtained for the M357T mutant, and thus this allele was omitted from the analysis. A detailed

table of the pathogenicity scores and true/ false-positive assessment for each method is under

the name “Simplified ROC analysis” in this depository: https://github.com/mgm68/2023_

ROMK_LoF/tree/main.

Statistical methods

For the stability assays, CB-5083 treatments and cell-surface biotinylation in HEK293 cells, p-

values were calculated with a two-tailed Student’s t-test for independent samples. In the two-

electrode voltage clamp experiments, statistical analysis was conducted using Kruskal-Wallis

and Dunn’s multiple comparisons tests, and normality was examined with Shapiro-Wilk tests.

Supporting information

S1 Fig. Growth assays of yeast expressing select TOPMed mutations in the context of the

K80M allele. The growth of yeast containing a vector control, wild-type ROMK, or the indi-

cated mutation in the context of an activating mutation, K80M, was measured in liquid

medium containing 10mM KCl. Note that the growth phenotype of a mutant should be com-

pared to the “ROMK-K80M” curve at the top. OD600 readings were recorded every 30 min for

23.5 hrs. Data represent the means of 8 replicates, ± S.E (error bars). A summary of these data

is shown in S3 Table. The top graph contains the growth curves for all variants, but since

many overlap at OD ~0.1 (red scale bar), this section of the graph was magnified for clarity

(see graph at the bottom).

(DOCX)

S2 Fig. REVEAL: Biobank platform. REVEAL: Biobank is a platform built upon SciDB, a

computational database ideal for large scale linear algebra operations, and is comprised of an

R-programmed API and Graphic User Interfaces (GUIs) for cohort selection and PheWas

visualization. This platform has multiple features: elastic scaling (Burst Mode) for efficient and

cost-effective analyses; Bridge, a cloud-optimized array format; and flexFS, a networked

POSIX compliant filesystem for working with big data in the UK Biobank. See Materials and

Methods for details.

(DOCX)

S3 Fig. The degradation of select ROMK mutants is Cdc48-dependent in yeast. Stability

assays performed in yeast expressing the wildtype ROMK, or ROMK carrying the mutation

G228E, L320P, or N377K. To assess the effect of the yeast AAA+-ATPase Cdc48 on protein
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degradation, a temperature sensitive yeast strain (cdc48-2) was used. Yeast cultures were grown to

mid-log phase (OD600 0.7–1.5) at a permissive temperature, diluted, and incubated at a non-per-

missive temperature of 39˚C for 2 hours before adding cycloheximide. Cells were then processed,

and immunoblot analysis was performed (see Materials and Methods). Representative immuno-

blots are shown, and graphs show the percentage of the protein remaining over time, compared

to the 0 min (m) time point, as quantified by ImageJ (ver. 1.53c). Graphs were made using Graph-

Pad Prism (ver. 9.5.0), and data represent the means of at least three independent experiments, ±
S.E. (error bars). For each experiment, a representative immunoblot is shown.

(DOCX)

S4 Fig. Select mutants reduce ROMK protein levels at the cell surface. Representative cell-

surface biotinylation assay showing the surface expression levels of the indicated ROMK vari-

ants expressed in HEK293 cells. The experimental set-up is identical to the experiment shown

in Fig 7, except data for N377K are included.

(DOCX)

S5 Fig. Structural modeling suggests the T300R mutation occludes the cytoplasmic pore.

Homology model shows the pore of the tetrameric ROMK channel, as viewed from the cyto-

plasmic side. Potassium ions (spheres in the center of the pore) are shown in salmon and out-

lined with dotted black lines. Spheres depicting the positions of T300 (A), T300I (B), and

T300R (C) are in green, cyan, and magenta, respectively. Only residues 184–364 of each chain

are shown for clarity. The homology model was built based on the crystal structure of Kir2.2

(PDB ID: 3SPG), which is 47.42% identical to ROMK1. Images were rendered using PyMOL

(ver. 2.6.0).

(DOCX)

S6 Fig. ROC curves of TOPMed and ClinVar mutations in relation to their pathogenicity

scores and yeast growth phenotypes. ROC curves (in blue solid lines) were computed for the

17 selected mutations from TOPMed and ClinVar, along with a previously published Y314C

mutation [15]. True positive and false positive designations were determined based on yeast

growth data from Fig 2 and S3 Table. Mutations were considered deleterious if they resulted

in a relative endpoint of OD600 <0.9. Otherwise they were considered neutral. The area under

the ROC curve (AUROC or AUC) were then calculated using the composite trapezoidal rule.

Five ROC curves with their corresponding AUROC were computed: (A) Rhapsody using yeast

growth data from Fig 2; (B) Rhapsody, with both the original yeast growth dataset and the

new data using the ROMK-K80M construct incorporated. In particular, the newly observed

growth defects changed the designations of two mutations (F93V and V122E) to deleterious;

(C) Polyphen-2; (D) EVmutation; (E) EVE. For reference, a line of no-discrimination (dotted

black line) is shown, which corresponds to a purely random classifier.

(DOCX)

S7 Fig. Slow growth trk1Δtrk2Δ yeast colonies fail to propagate on a nonfermentable car-

bon source. Large and small colonies of trk1Δtrk2Δ yeast carrying an empty vector, the ROMK

protein, or the N377K mutant were propagated on synthetic complete medium lacking leucine

and containing 3% glycerol. Plates show two independent replicates, and images were taken with

the Bio-Rad ChemiDoc XRS+ imager after a 7-day incubation (4 days at 30˚C, 3 days at 22˚C).

(DOCX)

S8 Fig. Heterozygous ROMK mutants exhibit an intermediate phenotype in whole-cell cur-

rents in X. laevis oocytes. Currents recorded by two-electrode voltage clamps (TEVC) in X.

laevis oocytes as described in Fig 8 and Materials and Methods. To recapitulate
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heterozygosity, oocytes were co-injected with 0.5 ng each of wild-type (WT) ROMK and the

indicated mutant. (A) Graph shows the Ba2+-sensitive/ROMK current in oocytes injected with

the indicated cRNAs, as recorded by TEVC. (B) Normalized currents, which are defined as Ba2

+-sensitive currents divided by the means of the wild-type currents. Error bars in the graphs

show the means of all replicates (in parentheses), ±S.D. p-values (shown above the data) were

computed using Kruskal-Wallis and Dunn’s multiple comparisons tests.

(DOCX)

S1 Table. Comprehensive list of ROMK missense mutations in the TOPMed database.

Table shows the Rhapsody scores and predictions of 124 ROMK missense mutations from the

TOPMed program that were analyzed in this study. The analysis was performed using a

ROMK homology model that contains amino acids 38–364 (see Fig 1), so any residue outside

of this range lacks a Rhapsody score and is designated “-“. “Del” indicates a substitution is pre-

dicted to be deleterious, whereas “Neu” (neutral) is predicted to have no effects on channel

function. A designation of “Prob. Del” or “Prob. Neu” indicates that the Rhapsody score is

close to the 0.5 cutoff for being deleterious. For example, the Rhapsody scores of I85N and

F94S are 0.512 and 0.470, and thus, these mutations are categorized as “Prob. Del” and “Prob.

Neu”, respectively. The mutations listed in bold were selected for growth analysis in yeast.

(DOCX)

S2 Table. Targeted list of 17 mutations showing Rhapsody scores, predicted phenotypes,

and background information. Rhapsody was used to predict ROMK mutation severity based

on structural, evolutionary, and dynamic features. The analysis was performed with a tetra-

meric ROMK homology model (Uniprot number: P48048), which was built in Swiss-Model

[148] based on the crystal structure of Kir2.2 (PDB ID: 3SPG). A Rhapsody pathogenicity

probability (or “Rhapsody score”) was computed for each mutation, and a “Del” (deleterious)

denotation was assigned if the probability is� 0.5, whereas a “Neu” (neutral) indicates a prob-

ability of< 0.5. “Prob. Del” denotes that the Rhapsody probability is close to the 0.5 deleterious

cutoff (i.e., P185S probability score is 0.549). * denotes an uncharacterized Bartter mutation,

which was defined as a disease-associated mutation in ClinVar, but is listed as having uncer-

tain clinical significance. ¶ denotes the mutation obtained from ClinVar.

(DOCX)

S3 Table. Growth phenotype summary of yeast expressing TOPMed and ClinVar muta-

tions. The Rhapsody score (i.e., probability) and prediction for each of the 17 mutations, along

with their growth phenotypes in medium supplemented with low potassium. For columns 4 and 5

(“ROMK), the growth assays of yeast expressing the mutations in the context of wild-type (WT)

ROMK were conducted in 25mM KCl, and the “end-point” OD600 recordings at 48 hrs were nor-

malized to WT. Each growth phenotype assessment shown in column 5 was based on the results of

up to three independent experiments (representative graphs shown in Fig 2). The categorization of

the growth defects was determined based on the normalized endpoint OD600 (to WT ROMK), and

are defined as follows: No defect, OD� 1 (1 = 100% WT); Slight defect, 0.9�OD< 1 (90–100%

WT); Moderate defect: 0.8�OD< 0.9 (80–90% WT); Severe defect: OD< 0.8 (80% WT). The

data in columns 6 and 7 (“ROMK-K80M”) represent growth phenotypes of yeast co-expressing

the indicated allele and an activating mutation, K80M, in 10mM KCl medium (also see S1 Fig).

The end-point OD600 values at 23.5 hrs and slopes of each of the growth curves (“Max V”, as calcu-

lated by the Gen5 software, BioTek Instruments, ver. 3.12) were normalized to the ROMK-K80M

control. Data represent the means of 8 replicates. * denotes an uncharacterized Bartter mutation,

and ¶ denotes a mutation in ClinVar. Additionally, a “-”marks where data were absent.

(DOCX)
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S4 Table. ROMK variants from the UK Biobank analyzed in this study. Table shows 511

KCNJ1 variants available in the whole-exome sequencing (WES) database, which contains data

from ~200k participants from the UK Biobank [61,62]. Columns represent the chromosomal

location and the nucleotide change for each substitution, as well as their minor and alternative

allele frequencies (denoted as maf and aaf, respectively).

(XLSX)

S5 Table. Phenotypes examined in association analyses of the 511 KCNJ1 variants in the

UK Biobank. Phenotypes were selected from the pool of the ~200,000 participants in the UK

Biobank and included three groups: (1) 25 disease phenotypes for relevance to ROMK func-

tion, Bartter syndrome type II, and hypertension [9,68] (e.g., systolic and diastolic blood pres-

sure, serum urea, creatinine, calcium, and phosphate, and urine potassium and sodium), (2)

15 phenotypic codes, or “phecodes” [34], associated with Bartter syndrome type II, and (3) 168

continuous/quantitative metabolomics biomarkers. Each group of phenotypes was listed in

one tab of the Excel file.

(XLSX)

S6 Table. Genotype distribution in the UK Biobank of ROMK variants with significant

associations with disease phenotypes. The top 5 rows of the table show the population distri-

bution of binary disease phenotypes, i.e., “phecodes”, and the bottom 9 rows show the distribu-

tion of the metabolite disease phenotypes. “Hom.” denotes the number of individuals

homozygous for the indicated mutation, “Het.” means heterozygous, and “WT” stands for

wildtype, i.e., individuals without the indicated mutation. For the binary phenotypes, both the

number of controls and cases are listed.

(DOCX)

S7 Table. Pathogenicity predictions of 17 TOPMed and ClinVar mutations made by differ-

ent computational methods. Table shows the pathogenicity predictions made by the indi-

cated computational tools for the 17 TOPMed and ClinVar mutations. The second column

shows the phenotype exhibited by each mutant when expressed in yeast, as shown in S3 Table.

The growth phenotype noted with an asterisk (*) indicates that a growth defect was only

observed when the mutant was expressed in the context of the K80M allele (S1 Fig). In the

remaining columns, a mutation that is predicted to be pathogenic is marked with “Del” (dele-

terious), while a benign mutation is designated “Neu” (neutral). Whether there was an uncer-

tainty in the prediction, or a prediction is unavailable, is also indicated (“Uncertain” or “N/

A”). In the bottom row, an accuracy assessment for each method based on yeast growth phe-

notype is provided. A “slight” growth defect was counted for both deleterious and neutral. The

computational tools employed are Rhapsody [40], Polyphen-2 [41], Evmutation [42], EVE

[125], SNPs&GO [161].

(DOCX)

S8 Table. Primers, yeast strains, and antibodies used in this study.

(DOCX)
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