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Abstract

The identification and understanding of gene-environment interactions can provide insights

into the pathways and mechanisms underlying complex diseases. However, testing for

gene-environment interaction remains a challenge since a.) statistical power is often limited

and b.) modeling of environmental effects is nontrivial and such model misspecifications can

lead to false positive interaction findings. To address the lack of statistical power, recent

methods aim to identify interactions on an aggregated level using, for example, polygenic

risk scores. While this strategy can increase the power to detect interactions, identifying

contributing genes and pathways is difficult based on these relatively global results. Here,

we propose RITSS (Robust Interaction Testing using Sample Splitting), a gene-environment

interaction testing framework for quantitative traits that is based on sample splitting and

robust test statistics. RITSS can incorporate sets of genetic variants and/or multiple environ-

mental factors. Based on the user’s choice of statistical/machine learning approaches, a

screening step selects and combines potential interactions into scores with improved

interpretability. In the testing step, the application of robust statistics minimizes the suscepti-

bility to main effect misspecifications. Using extensive simulation studies, we demonstrate
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that RITSS controls the type 1 error rate in a wide range of scenarios, and we show how the

screening strategy influences statistical power. In an application to lung function phenotypes

and human height in the UK Biobank, RITSS identified highly significant interactions based

on subcomponents of genetic risk scores. While the contributing single variant interaction

signals are weak, our results indicate interaction patterns that result in strong aggregated

effects, providing potential insights into underlying gene-environment interaction

mechanisms.

Author summary

The understanding of gene-environment interactions provides potential insights into the

pathways and mechanisms underlying complex diseases, but they are hard to detect since

effect sizes are expected to be small. To facilitate the detection of such interactions in

quantitative traits, we propose a robust and flexible approach called RITSS that can incor-

porate sets of genetic variants and multiple environmental factors. RITSS can utilize any

suitable machine/statistical learning approach to screen for interactions and rigorously

tests these aggregated signals using sample splitting and robust test statistics. We demon-

strate the validity and power of our approach in extensive simulation studies. Further-

more, in an application to lung function and height data in the UK Biobank, RITSS

discovers highly significant interactions based on subcomponents of genetic risk scores.

Introduction

Genome-wide association studies (GWAS) have identified thousands of genetic variants asso-

ciated with complex diseases and traits [1]. However, the effect of a genetic variant on a com-

plex phenotype or disease can be modified by environmental exposures [2,3]. The knowledge

about interactions between environmental exposures (e.g., tobacco smoke or occupational

exposure) and genetic variants can provide insights into the underlying pathways and biologi-

cal disease mechanisms [4].

Many of the methodological approaches for gene-environment interaction testing have

focused on scenarios in which a single genetic variant and a single environmental variable are

tested for potential interaction. Methods have been developed for case-control data, case-only

data, and quantitative trait studies, summarized in detail by Gauderman et al. [5].

Since most gene-environment interaction effect sizes are expected to be small and statistical

power is consequently limited [6], power-increasing approaches were proposed. This includes

so-called screening statistics that prioritize genetic variants to reduce the multiple testing bur-

den [6–14]. Also, researchers proposed to aggregate genetic information in a genomic region

in set-based tests [15–23]. Recent approaches utilize mixed models, reaction norm models, or

incorporate multiple environmental variables to derive a combination of environmental fac-

tors that potentially modifies the genetic effect [24–28].

Current data analyses observed that genetic risk scores, (weighted) sums of genetic risk var-

iants, interact with smoking exposure in Coronary heart disease [29] and lung function

[30,31]. While detecting significant interactions on this aggregated level is encouraging, identi-

fying individual genes and pathways underlying these effects is challenging based on such

results.
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Besides the power limitation, another caveat of gene-environment interaction testing is that

the misspecification of the marginal main effect models can lead to false positive findings in

interaction testing [32,33]. This is especially problematic for continuous environmental factors

where the implicit linearity assumption that is commonly used in the model might not be cor-

rect. One example is pack-years of smoking, where it is not straightforward to assume that

every additional pack-year has the same, constant effect on the outcome.

In this communication, we propose RITSS, a robust and flexible framework for gene-envi-

ronment interaction testing in quantitative traits. The general idea is to derive an interaction

score comprised of the (weighted) sum of individual genetic variant/environmental factor

product pairs, such that the combination of these signals increases the power while maintain-

ing biological interpretability. Our approach utilizes a sample splitting strategy and test statis-

tics that are robust against misspecifications of the main effects. The general form of RITSS

allows the incorporation of user-specified screening/learning approaches in constructing can-

didate interaction scores while providing valid statistical inference without restrictive assump-

tions. In extensive simulation studies, we demonstrate the robustness and power of RITSS in

various scenarios. We also applied RITSS to lung function phenotypes and human height in

the UK Biobank, incorporating sex information and smoking exposure.

Description of the method

Ethics statement

This research was conducted by using the UK Biobank resource under application number

20915. All participants provided written informed consent, and study protocols were approved

by the North West Multi-centre Research Ethics Committee and ethical procedures were con-

trolled by the UK Biobank Ethics Advisory Committee.

RITSS

In this section, we describe the RITSS framework and the corresponding algorithm.

Set up

For sample i, we denote the quantitative trait by Yi, the m-dimensional genotype information

by Xi, and the d-dimensional environmental information by Ei. Also, we define an additional

p-dimensional covariate vector by Zi that includes, for example, age, study indicators, and

genetic ancestry principal components [34]. The genotype information Xi represents a pre-

selected set of m genetic variants. We assume the following model

Yi ¼ mðEi;ZiÞ þ
Xm

j¼1

pjðEi;ZiÞXij þ εi

where E[εi|Xi, Zi, Ei] = 0. The unknown function μ describes the main effect of the environ-

mental factors Ei and other covariates Zi. The genetic contribution of variant j is modeled by

πj(Ei, Zi)Xij, where πj is an unknown function. The null hypothesis of no gene-environment

interaction is described by E½YijEi;Zi;Xi� ¼ mðEi;ZiÞ þ
Pm

j¼1
p0jðZiÞXij, where π0j is an

unknown function depending on Zi only. Therefore, we implicitly assume the absence of gene-

gene-interactions but, in general, allow for interactions between the genetic variants and the

covariates Zi under the null hypothesis.

The rationale of RITSS is to incorporate sets of genetic variants and/or multiple environ-

mental factors to increase power and detect interactions based on aggregated signals. This step

is motivated by the observation that single variant approaches are often underpowered. There
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are two critical aspects that RITSS aims to address: 1.) testing of aggregated interaction signals

can increase power, but the results are more difficult to interpret since individual factor contri-

butions are unobserved, and 2.) recent results demonstrated that the misspecification of main

effects in interaction analyses can lead to false positive interaction findings [32,33].

Using sample splitting to screen for interaction signals

Given the input set of genetic and environmental factors, RITSS derives interaction scores of

the form Ui = ∑j∑lπjlXijEil that combine signals adaptively while maintaining biological

interpretability by keeping the number of involved factors of moderate size. RITSS uses sample

splitting since screening and testing, in general, cannot be performed using the same data.

Testing of interaction scores using a robust approach

Standard interaction tests are based on a product between the candidate interaction score and

the phenotype adjusted for main effects Ŷ resid
i ¼ Yi � m̂ðEi;ZiÞ �

Pm
j¼1
p̂0jðZiÞXij. Zhang et al.

showed that, for a quantitative trait (identical link function), main effects misspecifications

can lead to invalid interaction tests, especially if genetic variants and environmental factors are

not independent [33]. To avoid main effect misspecifications, they proposed to apply general-

ized additive models (GAMs) to model the main effects flexibly. RITSS follows this idea and

incorporates rich models for the main effects, including GAM-based solutions. However,

while Zhang et al. considered scenarios of single variant and single environmental factors, the

dimensions of Xi, Ei, and Zi, that is m, d, and p, in our setting are of substantial size. The poten-

tial high dimensionality of the models leads to slower convergence rates so that standard

results might not apply here. Furthermore, considering RITSS as a general framework, we aim

to derive an algorithm that can incorporate any other suitable future approach. Therefore, we

utilize a concept based on recent theoretical results in causal inference [35]. Specifically,

instead of considering the standard test statistic
P

iUiŶ resid
i , RITSS is based on

P
iÛ
0
iŶ

resid
i ,

where Û 0i is an estimate of a transformation of Ui that is orthogonal to (i.e., has covariance zero

with) the environmental and genetic main effects. This orthogonality improves the robustness

against main effect model misspecifications since it reduces the impact of residual main effects

in Ŷ resid
i on the product test statistic. Furthermore, we extend the sample splitting and estimate

the main effect models as well as the transformation in non-overlapping subsamples of the

data that also do not overlap with the subsamples used for the screening step and the subsam-

ples used for evaluating the test statistic. This enables to apply any suitable approach for the

screening step and the estimation of the main effect models/transformations, without the need

to characterize the asymptotic behavior. It reduces the necessary assumptions to suitable con-

vergence rates [36].

Algorithm

We here describe the algorithm underlying RITSS. The algorithm is also visualized in Fig 1.

Input: data Xi, Ei, Zi, Yi, screening function Screen(S) including the parameter S (number of

candidate scores), parameter K for the number of splits, splitting fractions c = (c1, c2, c3).

Algorithm:

• Split the data (Yi, Xi, Ei, Zi) randomly into K non-overlapping subsamples Ik, k = 1,. . .,K, of

approximately equal size.

• For each subsample Ik:
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a. Denote all samples not in Ik by Ick and split Ick randomly into 3 non-overlapping parts

Ic1k ; I
c2
k ; and Ic3k , according to the splitting fractions c.

b. Perform interaction signal screening based on Ic1k using the screening function Screen(S)

to obtain S candidate interaction scores Uis ¼
P

js

P
ls
ps
jsls
Xijs

Eils
, s = 1,. . .,S.

c. In Ic2k , fit the interaction scores Uis, s = 1,. . .,S, as predictors in a linear model while incor-

porating flexible models for the main effects m̂ðEi;ZiÞ and
Pm

j¼1
p̂0jðZiÞXij. Select all or a

subset of scores based on user-specified criteria and combine these scores into a single

interaction score Ui.

Fig 1. Visualization of the RITSS algorithm.

https://doi.org/10.1371/journal.pgen.1010464.g001
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d. Using the alternating conditional expectation (ACE) algorithm [37], estimate/derive the

orthogonalized transformation U 0i of Ui in Ic3k (S1 Appendix), denoted by Û 0i.

e. Based on the predictions of the trained models, compute Tk ¼
P

i�Ik
Û 0iŶ

resid
i and ŝ2

k ¼
P

i�Ik
½Û 0iŶ

resid
i �

2
in Ik.

• Compute the overall statistic T ¼
P

kTk; ŝ
2
T ¼

P
kŝ

2
k, and the z-score z ¼ Tffiffiffiffi

ŝ2
T

p .

Properties and discussion

Under the null hypothesis of no gene-environment interaction, the overall z-score z is

asymptotically normal, that is z!N(0,1) [35,38] and an overall RITSS interaction p-value

can be computed. This theoretical result applies if, besides standard regularity conditions,

the main effects m̂ðEi;ZiÞ+
Pm

j¼1
p̂0jðZiÞXij and the transformations Û 0i are estimated with suf-

ficiently fast convergence rates (as a function of sample size). These assumptions are closely

related to the corresponding dimensions of genetic information, environmental factors, and

covariates (m, d, and p, respectively), since the increasing dimensions increase the complex-

ity of estimating these models sufficiently precise. This is where the advantage of the robust

approach is apparent over, for example, solely application of generalized additive models

(GAMs). The robust approach reduces the required assumptions to the statement that the

specific products of convergence rates (main effects and transformation) are fast enough

instead of requiring fast convergence rates for the main effects directly. As a remark, if we

assume the absence of interactions between genetic variants and the covariates Zi and an

additive genetic model, that is π0j(Zi) = π0j, the genetic main effect model becomes less com-

plex, and faster convergence rates can be achieved. Nevertheless, since general models

become complex with growing dimensions rapidly, we consider sets of m genetic variants

with m in the magnitude of 102−103 and d�10 and p�10 as suitable input dimensions for

RITSS.

We emphasize that it is therefore only required to estimate the transformation U 0i of a given

interaction score Ui accurately, but the interaction score Ui itself can be constructed using any

suitable method in the screening step, including machine learning or other advanced statistical

learning procedures. Under the null hypothesis, the test is ensured to be valid.

On the other hand, the power of RITSS depends on the ability of the screening strategy

to detect signals and capture them in the interaction score Ui. Therefore, although the

screening step can be implemented flexibly, it is crucial for statistical power. We discuss

and investigate two different screening strategies in the next section. It is important to note

that the K different interaction scores Ui, in general, will include different interaction fac-

tors since the corresponding screening was performed in different parts of the data. Investi-

gating the overlap between the interaction scores provides further fine mapping of the

results.

Specific implementation

The screening strategy influences the statistical power of RITSS. There is no uniformly optimal

strategy since the optimal screening depends on the interaction signal architecture. Specific

implementations of RITSS differ in the realization of steps b.) and c.); steps a.), d.), and e.) are

fixed throughout different implementations. Here, we describe two different implementations;

we will refer to them as RITSS1 and RITSS2. These two implementations will be investigated

in the simulation studies in the next section.
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Screening strategy 1: interaction between single environmental factor and

subcomponent of genetic risk score

The first screening strategy aims to identify subcomponents of genetic risk scores that interact

with a single environmental factor Eit, where t is the index of the selected factor. In step b.), we

first fit the model Yi ¼ m0 þ ET
i m1 þ ZT

i m2 þ XT
i p0 þ εi in Ic1k to obtain estimated genetic main

effects p̂0j. Then, we perform approximate best subset selection [39] to identify sets Js, s = 1,2,

that capture interaction scores of the form Uis ¼
P

j2Js
p̂0jXijEit, describing subcomponents of

genetic risk scores multiplied with the environmental factor Eit. The best subset selection is

performed using a 2-sample split of Ic1k and a step size of 5 between 10 and the maximum num-

ber of variants available after additional filtering. J1 contains all variants that intersect between

the best subsets, J2 contains all variants that were included exactly once. More details are

described in S1 Appendix.

In step c.), we construct the overall interaction score Ui = Ui1+c2Ui2, where c2 is set to 1, if

the corresponding regression coefficient p-value is below 0.05, otherwise c2 = 0. We denote the

set of genetic variants in the interaction score Ui that is tested in Ik by m(Ik).

Screening strategy 2: aggregated single environmental factor interactions

based on single variant testing

In step b.), we fit the models Yi ¼ m0 þ ET
i m1 þ ZT

i m2 þ Xijp0j þ EitXijpjt þ εi and select variants

together with the estimated p̂ jt into the at most two interaction scores based on False Discovery

Rate (FDR) q-values to correct for multiple testing. Step c.) is implemented as in screening

strategy 1. We refer to S1 Appendix for more details. As for the screening strategy 1, we denote

the set of genetic variants in the interaction score Ui that is tested in Ik by m(Ik).

Verification and comparison

In this section, we describe the simulation studies and the application of RITSS to lung func-

tion and human height data in the UK Biobank.

Simulation studies

We performed extensive type 1 error and power simulations in which we investigated the per-

formance of RITSS and compared our approach with alternative approaches. We emphasize

that the power of RITSS depends on the combination of the underlying interaction signal

architecture and the implemented screening strategy. Various screening strategies can be used,

and different screening approaches are suitable for different signal architectures. In all simula-

tion studies, we used the two specific implementations RITSS1 and RITSS2 described above.

Both strategies considered the single environmental factor Eit with t = 1 for interaction scores.

Moreover, we applied RITSS1 and RITSS2 with K = 3, 4 and the splitting fractions c = (0.5,

0.25, 0.25) as well as c = (1/3, 1/3, 1/3), to investigate the impact of these choices. Also, the

implemented main effect models assume no gene-covariate interactions and an additive

genetic model under the null hypothesis.

Alternative approaches

We included two alternative gene-environment interaction testing approaches in our simula-

tion studies. The rationale is to demonstrate the differences and highlight the advantages of

RITSS compared to existing and established methods.
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1. We included GESAT, a variance component based test [17]. For GESAT, we considered Eit
with t = 1 as the potential interaction factor, and Zi as well as Eij, j = 2,. . .,d as covariates.

We note that GESAT tests all m genetic variants jointly for interaction with Ei1; GESAT

does not perform sample splitting and does not aim to identify the subset of variants that is

involved in the interaction.

2. We implemented a single variant-based approach in which the environmental main effects

are modelled using GAMs. Specifically, for each genetic variant, a GAM is fitted with the

genetic variant and the interaction term as standard covariates, together with the flexible

spline-based part for the environmental main effect (see S1 Appendix for more details). The

m interaction p-values are summarized by the minimum p-value after Bonferroni correc-

tion for m tests. This approach will be denoted by GAMsv.

Furthermore, besides GESAT and GAMsv, we also included a modified version of RITSS1

and RITSS2 in which the test statistic utilizes the interaction scores Ui directly, instead of the

robust version based on the transformed U 0i . The rationale is to demonstrate the necessity of

this step in the high-dimensional setting; this approach will be denoted by D1 and D2,

respectively.

Simulation settings: type 1 error

In all scenarios, we simulated a sample size of n = 30,000, m = 100 SNPs, d = 5 environmental

factors Ei, and p = 2 covariates Zi. The phenotype Yi was simulated based on Yi ¼ mðEi;ZiÞ þ

XT
i p0 þ εiðEi;ZiÞ with E[εi(Ei, Zi)|Xi, Zi, Ei] = 0.

Under the null hypothesis of no gene-environment interaction, the overall RITSS z-score is

asymptotical normal with z!N(0,1). The type 1 error simulations aim to demonstrate the

accuracy of this asymptotic approximation in realistic scenarios.

As described in the methods section, the screening strategies of RITSS1 and RITSS2 assume

linear environmental main effects. We included scenarios in which the true environmental

main effect is non-linear and gene-environment correlation is present. In these scenarios, the

screening strategies, therefore, construct interaction scores that are reflecting false positive

interaction findings [32,33]. Besides, we included scenarios with non-normal and/or hetero-

scedastic random errors in the phenotype model. In total, we simulated five different scenarios:

(1): no misspecifications, normal homoscedastic errors, (2): mis specified environmental main

effects in the screening strategies, (3): mis specified environmental main effects in the screen-

ing strategies in combination with non-normal heteroscedastic errors, (4): scenario 2 includ-

ing gene-environment correlations, and (5): scenario 3 including gene-environment

correlations.

In addition, we investigated if the type 1 error rate is inflated in the case where the genetic

variants for the analysis were selected based on GWAS results in the same dataset, i.e., based

on their marginal association p-values (scenario notated as SELECT:yes/no). This is of particu-

lar interest since many reported genetic associations were identified based on the large-scale

datasets that are suitable for gene-environment interaction testing. In total, this resulted in 10

different type 1 error scenarios (scenarios 1–5, SELECT:yes/no).

The specific details of the implementations of these scenarios are described in S1 Appendix.

The type 1 error simulations are based on 10,000 replicates.

Simulation settings: power

In addition to the type I error simulations, we also included a set of power simulations. In the

power simulations, we considered scenario 1 with SELECT:no from the type 1 error

PLOS GENETICS RITSS: Robust interaction testing using sample splitting

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010464 November 16, 2022 8 / 19

https://doi.org/10.1371/journal.pgen.1010464


simulations but incorporated a gene-environment interaction component. The interaction

contribution is controlled by the mean μXE and standard deviation σXE of interaction effects, as

well as the density pXE of these interaction effects. The interaction model incorporates the first

component Ei1 only. The detailed implementation is described in S1 Appendix. The power

simulations are based on 1,000 replicates.

Results: the choice of K and the splitting fractions c
RITSS can be applied using different choices for K and the splitting fractions c. While the

asymptotic theory, that is the asymptotic standard normality of the RITSS z-score under the

null hypothesis, applies for any fixed choice, the finite sample performance in practice as well

as the power can be influenced by these choices. Choosing these parameters faces specific tra-

deoffs. For a fixed K, splitting fractions c that allocate more sample size to the screening strat-

egy are expected to have higher power, while the decreased sample size for the main effect and

transformation estimation might lead to less accurate model fits and therefore inflated type 1

error rates. Since every sample contributes exactly once to the test statistic for each fixed K,

increasing K (moderately) is expected to increase power since a bigger fraction of the overall

sample is used for screening. At the same time, a larger K can lead to increased computational

burden, depending on how the screening and main effect model estimation tasks scale with

sample size. We considered the four combinations of K = 3, 4 and the splitting fractions c =

(0.5, 0.25, 0.25) and c = (1/3, 1/3, 1/3). In Table B in S1 Appendix, we report initial type 1 error

results for scenarios 1–5 with SELECT:no for all four combinations based on 1,000 replicates.

Table C in S1 Appendix summarizes power results for selected scenarios based on 1,000

replicates.

The results in Table B in S1 Appendix show that, although all four combinations provide

approximately uniformly distributed p-values under these null hypothesis scenarios, the split-

ting fraction c = (1/3, 1/3, 1/3) leads to the most stable results; this is in line with the intuition

described above. Furthermore, D1 and D2 do not control the type 1 error rates, demonstrating

that the robust test statistics are needed to provide valid results. The power results in Table C

in S1 Appendix demonstrate that K = 4 has slightly more power than K = 3, as intuitively

described above, but the overall power differences between the four combinations are small.

For the full type 1 error and power simulations, we considered the combination of K = 4 and

c = (1/3, 1/3, 1/3).

Results: type 1 error

We report the quantile-quantile-plots (qq-plots) for scenarios 1–5 with SELECT:no in Fig 2, as

well as the qq-plots for scenarios 1–5 with SELECT:yes in Fig 3.

Overall, the simulations demonstrate that the results for SELECT:no and SELECT:yes are

similar. RITSS1 and RITSS2 provide controlled type 1 error rates across all five scenarios.

GESAT demonstrates valid results for scenario 1 but is highly inflated in the scenarios 2–5. We

note that we cut off the GESAT p-values at 10−10 in the plots for better visualization. The

inflated results are expected since GESAT does not account for heteroscedastic errors (scenar-

ios 3 and 5) and the linear main effect model implies a mis specification in scenarios 2–5.

GAMsv, which models the environmental main effects similar to RITSS, shows valid type 1

error rates for scenarios 1, 2, 4, and 5. In scenario 3, the heteroscedastic errors lead to inflation.

In summary, our type 1 error simulations demonstrate the necessity of flexible main effect

models to ensure robustness and that RITSS provides valid type 1 error rates in all investigated

scenarios.
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Results: power

The results of the power simulations are reported in Figs 4 and 5, where the power is displayed

as a curve over increasing signal density pXE, for different effect size distributions. The signifi-

cance level was set to α = 0.005.

Fig 2. Type 1 error: Quantile-quantile-plots for RITSS1, RITSS2, GESAT, and GAMsv for scenarios 1–5 with SELECT:no. All results based on 10,000

replicates. P-values with p<10−10 were set to p = 10−10. SELECT:no refers to the scenario where all simulated genetic variants are included in the analysis.

https://doi.org/10.1371/journal.pgen.1010464.g002

Fig 3. Type 1 error: Quantile-quantile-plots for RITSS1, RITSS2, GESAT, and GAMsv for scenarios 1–5 with SELECT:yes. All results based on 10,000

replicates. P-values with p<10−10 were set to p = 10−10. SELECT:yes refers to the scenario where the simulated genetic variants are selected into the analysis

based on marginal association p-values.

https://doi.org/10.1371/journal.pgen.1010464.g003

PLOS GENETICS RITSS: Robust interaction testing using sample splitting

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010464 November 16, 2022 10 / 19

https://doi.org/10.1371/journal.pgen.1010464.g002
https://doi.org/10.1371/journal.pgen.1010464.g003
https://doi.org/10.1371/journal.pgen.1010464


We consider the results for μXE = 0.05 in Fig 4 first. We observe that RITSS1 is more power-

ful than RITSS2 with increasing signal density. This is expected since the simulated signal

architecture represents interactions with subcomponents of risk scores, and the screening

strategy of RITSS1 aims to detect exactly these signals.

RITSS1 outperforms GESAT and GAMsv in most scenarios, especially for σXE = 0.01 and

increasing pXE. The power difference is smaller for σXE = 0.1. With larger effect sizes and sparse

signals, GAMsv shows advantages since the single variant tests are powerful enough to circum-

vent the multiple testing burden in this case.

The results in Fig 5 for μXE = 0.1 are similar, but the power advantages of RITSS1 are

smaller or vanish (σXE = 0.1). Overall, the power simulations demonstrate the interplay

between the screening strategy implemented in RITSS and the resulting power. Especially for

dense signals with small effect sizes, RITSS1 shows substantial power advantages. We hypothe-

size that these signal architectures approximate the signals observed in recent interaction stud-

ies based on polygenic risk scores.

Applications

We applied RITSS to UK Biobank data to analyze gene-environment interactions in lung func-

tion (measured by forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC),

Fig 4. Power curves for RITSS1, RITSS2, GESAT, and GAMsv over increasing signal density pXE. Significance level α = 0.005, μXE = 0.05, and results based

on 1,000 replicates. Power was simulated for pXE = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5.

https://doi.org/10.1371/journal.pgen.1010464.g004

Fig 5. Power curves for RITSS1, RITSS2, GESAT, and GAMsv over increasing signal density pXE. Significance level α = 0.005, μXE = 0.1, and results based

on 1,000 replicates. Power was simulated for pXE = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5.

https://doi.org/10.1371/journal.pgen.1010464.g005
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and the ratio FEV1/FVC) and height. Here, for our analyses, we restricted the input to previ-

ously reported GWAS associations for the respective trait. This step reduces the dimensionality

of Xi, denoted by m, to a range between 383 and 3368. We note that this choice can be too

restrictive since interaction effects do not need to be accompanied by main effects. Details

about the study population as well as the extraction of genetic, environmental, and phenotypic

data are described in S1 Appendix.

Analysis setup

Table 1 contains the configurations of Yi, Xi, Ei, and Zi for the four different phenotype analy-

ses. Age and pack-years of smoking (P-Y-S) were mean-centered before computing the

squared variable. Sex was coded as male = 1 and female = 0 in this analysis. For the lung func-

tion traits, we also included height in Ei as a potentially interacting variable. We note that,

given the coding of sex in this analysis, height and sex are (strongly) positively correlated. The

lung function measurements were analyzed on the original scale and not transformed, as

robustness of the approach against non-normal errors was demonstrated in the type 1 error

simulations. After quality control, we split the resulting 254,033 samples (European ancestry)

in two parts: 180,000 randomly selected samples for the main analysis using RITSS and 74,033

samples that serve as an independent dataset to validate the analysis results of RITSS. We

applied RITSS using the same two different implementations described in the simulation stud-

ies (RITSS1 and RITSS2). For both RITSS1 and RITSS2, we chose K = 4 and c ¼ 1

3
; 1

3
; 1

3

� �
. Each

of the factors in Ei was tested for interaction separately, resulting in a total of 32 tests. In S1

Fig, we plotted the estimated densities of the standardized residuals for each phenotype after

adjusting for Xi, Ei, and Zi using standard linear regression. The density plots are based on the

180,000 samples in the main analysis.

Results

Table 2 contains the results of our UK Biobank main analysis using 180,000 samples based on

RITSS1 and RITSS2. For each of the four traits, we observed a highly significant interaction

between sex and subcomponents of the genetic risk score using RITSS1. For the lung function

traits, we also observed similar interaction findings with height. We investigated this in more

detail in the validation analysis below.

Furthermore, in line with previous results in the literature, we observed a significant inter-

action with pack-years of smoking in FEV1/FVC [30,31] that maintains significant after Bon-

ferroni correction for n = 32 tests at a significance level of α = 0.05.

Based on the K = 4 different interaction scores, we investigated the overlap between the

genetic variants included in the sets m(Ik), k = 1,. . .,4. We denote all genetic variants that were

Table 1. Analysis configurations and number of genetic variants incorporated.

Yi Xi Ei Zi

FEV1 383 SNPs sex, height, P-Y-S, E-S, P-Y-S2 age, age2, PCs 1–10, genotyping-array

FVC 638 SNPs sex, height, P-Y-S, E-S, P-Y-S2 age, age2, PCs 1–10, genotyping-array

FEV1/FVC 885 SNPs sex, height, P-Y-S, E-S, P-Y-S2 age, age2, PCs 1–10, genotyping-array

height 3368 SNPs sex age, age2, PCs 1–10, genotyping-array

P-Y-S: pack-years of smoking, E-S: ever-smoking, PCs: genetic ancestry principal components. FEV1: forced

expiratory volume in 1 second, FVC: forced vital capacity (FVC). Pack-years of smoking and age were centered

before computing the respective squared variable.

https://doi.org/10.1371/journal.pgen.1010464.t001
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in all four scores by m4 and all genetic variants included in exactly three scores by m3. For the

validation analysis, we considered all Yi/Eit pairs that had a Bonferroni corrected significant

interaction p-value at a significance level of α = 0.05 and non-empty m4 or m3 sets; this

included RITSS1 results only.

The validation analysis was based on the remaining and independent 74,033 samples and a

standard regression interaction test while fitting Xi, Ei, and Zi. We tested two interaction

scores, the first based on the variants in the corresponding m4 set and the second based on var-

iants in m3. Here, the genetic main effects for the genetic risk scores were estimated based on

the 180,000 samples in the main analysis. The regression interaction p-values were evaluated

based on model-based standard errors as well as standard errors obtained from a robust sand-

wich estimator.

The results of our validation analysis are described in Table 3. The results show that all find-

ings replicate. We also note that the directions of effects were consistent between the main

analysis and validation analysis.

Table 2. Results of the interaction testing using the two approaches RITSS1 and RITSS2 in the UK Biobank. The environmental factor tested for interaction is

denoted by Eit. |m| is the number of total SNPs in the analysis, |m4| and |m3| are the number of SNPs that are shared by all four and exactly three interaction scores, respec-

tively. P-Y-S: pack-years of smoking, E-S: ever-smoking.

Yi Eit m RITSS1 p-value |m4| |m3| RITSS2 p-value |m4| |m3|

FEV1 sex 383 2.86E-25 44 54 7.68E-01 0 0

FEV1 height 383 1.75E-13 56 52 4.81E-01 0 0

FEV1 P-Y-S 383 8.81E-02 1 3 6.37E-01 0 0

FEV1 E-S 383 6.08E-01 0 12 4.16E-01 0 0

FEV1 P-Y-S2 383 5.41E-02 0 2 8.77E-01 0 0

FVC sex 638 1.27E-22 46 94 1.76E-01 0 0

FVC height 638 1.07E-21 54 101 5.10E-01 0 0

FVC P-Y-S 638 6.08E-01 1 1 4.51E-01 0 0

FVC E-S 638 1.19E-01 1 4 4.02E-01 0 0

FVC P-Y-S2 638 6.77E-01 0 0 9.77E-01 0 0

FEV1/FVC sex 885 7.33E-22 83 106 3.91E-03 0 0

FEV1/FVC height 885 8.41E-16 74 119 9.13E-01 0 0

FEV1/FVC P-Y-S 885 2.01E-04 78 100 2.61E-01 0 0

FEV1/FVC E-S 885 6.35E-03 74 106 5.56E-04 0 0

FEV1/FVC P-Y-S2 885 1.07E-01 0 1 2.35E-01 0 3

height sex 3368 1.51E-20 210 341 2.78E-01 0 0

https://doi.org/10.1371/journal.pgen.1010464.t002

Table 3. Results of the validation analysis in the 74,033 remaining samples in the UK Biobank. The two sets m4 and m3 were identified in the corresponding main

analysis (Table 2) and correspond to the results of the RITSS1 analysis. The interactions between the scores (corresponding to m4 and m3 respectively) and the environ-

mental factor Eit were tested using a linear regression, adjusting for all Xi, Ei and Zi. The robust p-values are based on standard errors obtained by a robust sandwich vari-

ance estimator. P-Y-S: pack-years of smoking.

Yi Eit p-value m3 robust p-value m3 |m3| p-value m4 robust p-value m4 |m4|

FEV1 sex 9.11E-06 2.68E-05 54 3.41E-10 1.65E-09 44

FEV1 height 8.26E-07 2.30E-06 52 2.19E-09 1.81E-08 56

FVC sex 1.48E-07 5.61E-07 94 5.29E-07 1.68E-06 46

FVC height 1.96E-07 9.79E-07 101 5.04E-10 6.96E-09 54

FEV1/FVC sex 7.23E-04 8.08E-04 106 4.88E-07 6.80E-07 83

FEV1/FVC height 4.95E-05 6.63E-05 119 1.36E-06 1.82E-06 74

FEV1/FVC P-Y-S 1.21E-04 2.91E-03 100 2.22E-07 6.31E-05 78

height sex 1.46E-02 1.56E-02 341 2.07E-02 2.19E-02 210

https://doi.org/10.1371/journal.pgen.1010464.t003
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To disentangle these findings in more detail, we examined the single variant interaction p-

values for the genetic variants in the combined set m4/m3 with the respective environmental

factor in the validation dataset. This analysis was based on a linear regression that fits Xi, Ei,
and Zi, and the respective interaction term. Table 4 lists the number of genome-wide signifi-

cant single variant interactions, i.e., p<5×10−8, as well as the number of significant single vari-

ant interactions using a Bonferroni correction adjusting for the number of variants in the

corresponding combined set m4/m3 at a significance level of α = 0.05. Both numbers are either

0 or very small, for all trait/environmental factor combinations. This suggests that the interac-

tion effects at the single variant level are weak. However, we made an interesting observation

by investigating the empirical distribution of directions of effect across the single variant inter-

action tests. Table 4 provides these empirical distributions of directions of effect for a.) the

unweighted interaction terms Xij×Eit and b.) the weighted terms p̂0j � Xij � Eit, where p̂0j is the

estimated genetic effect based on the main analysis dataset. In addition, we compared the

interaction p-value distributions according to the directions of effect of the weighted interac-

tion terms. As we can see by the enrichment of positive effects, the weighting by the genetic

main effect, as it is applied in the computation of the genetic risk score, “aligns” the interaction

effect directions across the genetic variants. Furthermore, the p-values for weighted interaction

terms with positive effect show substantially higher inflation. This indicates that RITSS1 iden-

tified genetic variants whose interaction signals are weak at the single variant level but when

summed up in the genetic risk score, they lead to a significant interaction. Since we used a cod-

ing of sex of male = 1 and female = 0, this suggests that the genetic effects in males and females

across these variants have the same direction, but the magnitudes of effect in males are slightly

larger. Related, we note that the genetic variants in m4/m3 between the sex and height interac-

tions in lung function highly overlap, which is in line with the observation that height and sex

are strongly positively correlated. However, if we test the height interaction separately in males

and females in the validation dataset, the signal vanished or was strongly diminished. There-

fore, we hypothesize that the observed interactions are a result of sex-differential effects, but

further analyses are required to disentangle the exact mechanisms. For example, investigating

the impact of sitting or thoracic height, instead of standing height [40]. In this context, we note

that, related to recent results regarding so-called participation biases and their impact on sex-

related analyses [41], the genetic variants in m4/m3 across the three lung function phenotypes

Table 4. Results of the validation analysis in the 74,033 remaining samples in the UK Biobank II. The two sets m4 and m3 were identified in the corresponding main

analysis based on the RITSS1 approach (Table 2). All variants in m4/m3 were tested for interaction with the respective environmental factor Eit. In this context, gws. interac-

tion refers to a single variant interaction p-value p<5×10−8. Similar, bfs. interaction corresponds to p<0.05/(|m4|+|m3|) (Bonferroni correction). The last columns report

the empirical distribution of effect directions in these tests and the corresponding 5% quantile of p-values (weighted analysis). In the weighted analysis, the genotype/env.

factor product term was multiplied by the estimated genetic main effect (obtained from the independent main dataset). P-Y-S: pack-years of smoking.

Yi Eit |m3|+|m4| No. gws

interactions

No. bfs.

interactions

Distribution effect directions

unweighted -/+ (in %)

Distribution effect directions

weighted -/+ (in %)

5% quantile interaction p-

values in weighted -/+

FEV1 sex 98 0 1 53/47 23/77 1.636e-01/8.190e-03

FEV1 height 108 0 1 51/49 29/71 7.963e-02/7.341e-03

FVC sex 140 0 0 46/54 26/74 3.493e-02/1.107e-02

FVC height 155 0 0 43/57 31/69 4.220e-02/1.103e-02

FEV1/

FVC

sex 189 0 0 51/49 37/63 1.730e-01/1.962e-02

FEV1/

FVC

height 193 0 0 48/52 39/61 1.478e-01/2.565e-02

FEV1/

FVC

P-Y-S 178 0 0 46/54 36/64 6.412e-02/1.051e-02

height sex 551 0 0 49/51 45/55 5.655e-02/3.849e-02

https://doi.org/10.1371/journal.pgen.1010464.t004

PLOS GENETICS RITSS: Robust interaction testing using sample splitting

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010464 November 16, 2022 14 / 19

https://doi.org/10.1371/journal.pgen.1010464.t004
https://doi.org/10.1371/journal.pgen.1010464


and height were not significantly associated with sex, but replication of the interaction signal

in an independent cohort is preferable. Detailed information about the selected variants in the

gene-by-sex interactions for lung function and height can be found in S2 Appendix.

We also applied GESAT in the validation analysis. For each of the four traits, we applied

GESAT to test for interaction with sex (using the remaining Ei and Zi as covariates) based on

1.) all genetic variants in the analysis and 2.) all genetic variants in the corresponding com-

bined m4/m3 set. For all traits, these tests were at least nominal significant (p<0.05), and we

obtained similar p-values in the two analyses 1.)/2.) (except for FVC): FEV1: p = 1.81×10−11/

p = 8.92×10−7, FVC: p = 2.71×10−14/p = 2.29×10−4, FEV1/FVC: p = 2.61×10−2/p = 2.29×10−2,

height: p = 1.08×10−3/p = 6.19×10−3. These results add further evidence that RITSS1 identified

a fine mapped set of interacting genetic variants.

Discussion

We propose RITSS, a robust and flexible interaction testing framework for quantitative traits.

Our framework aims to identify aggregated interaction signals and tests these signals using

sample splitting and robust test statistics. Since interactions at the single genetic variant level

are hard to detect due to small effect sizes, we hypothesize that strategies that aggregate suitable

signals across a limited number of factors/loci have higher statistical detection power while, at

the same time, they still permit an interpretation and can reveal potential biological

mechanisms.

In extensive simulations, we investigated the performance of RITSS based on two distinct

implementations and demonstrated that our framework controls the type 1 error rates across

different scenarios. In contrast, alternative approaches showed inflated type 1 error rates in

these scenarios. Additionally, we demonstrated the interplay between the screening strategy

and RITSS’s power based on selected power simulations. We applied our approach to UK Bio-

bank data and observed potential interactions between subcomponents of risk scores and sex

in lung function and height. Since interactions for complex traits at the single genetic variant

level were rarely detected, even in recent large-scale analyses, we hypothesize that our

approach will be an important tool for the identification of genetic interactions and the under-

lying mechanisms.

Fawcett et al. performed a genome-wide genotype-by-sex interaction analysis of lung func-

tion in the UK Biobank, using more than 300,000 samples [40]. Although they found a small

number of five genome-wide significant interactions, only one interaction signal was repli-

cated in an independent study. In a different study, Bernabeu et al. utilized the UK Biobank to

analyze genotype by sex interactions for 530 complex traits. This analysis revealed several

genome-wide significant interaction findings, but heritability and genetic correlation analyses

suggest that substantial proportions of the sex-differential genetic architecture are yet to be dis-

covered and identified [42]. Our results are in line with these findings since our interaction sig-

nals are not driven by strong effects at the single variant level but aggregations across sets of

variants. Furthermore, recent work by Zhu et al. hypothesizes and demonstrates that so-called

amplification is a common mode of genotype-by-sex interactions [43]. Amplification describes

the setting of shared genetic variants, with the same direction of effect, but different magni-

tudes. This is exactly what we observed in our UK Biobank sex interaction analysis of lung

function and human height. However, we note that analyses based on independent datasets

are required to further replicate, validate, and disentangle these potential gene-by-sex

interactions.

Our approach has the following limitations. A significant interaction p-value of the aggre-

gated score does not imply that all included pairs of genetic variants/environmental factors
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necessarily truly contribute to the interaction signal. Another limitation is that the set of

genetic variants needs to be pre-selected and, as described in the Methods section, the size m is

assumed to be of moderate magnitude in the range of 102−103 (assuming typical GWAS sam-

ple sizes). This restriction is related to the required assumption that the main effects and trans-

formations can be estimated accurate enough given the sample size. The computational

burden, depending on the specific implementation of the screening strategy, also increases

with m. Therefore, an important question is how to pre-select the set of genetic variants for

RITSS testing. It is possible to integrate an external screening approach. For a quantitative

trait, one can screen for potential interaction signals based on marginal effects or variance-

effects [10,14]. Based on the results of such a screening, one can choose sets of genetic variants

for RITSS testing and introduce weighted hypotheses reflecting the results of this external

screening approach. It is important to note that this screening should not be confused with the

screening and testing steps within the RITSS framework. In the UK Biobank application, we

restricted the input to previously reported GWAS findings for the respective trait, which can

be interpreted as a special case of this prior external screening. However, interaction effects do

not need to be accompanied by marginal effects and therefore our analysis provides only a lim-

ited insight.

In general, the interpretation of significant RITSS p-values requires careful consideration.

RITSS aims to identify deviations from the null hypothesis model

E½YijXi;Zi;Ei� ¼ mðEi;ZiÞ þ
Pm

j¼1
p0jðZiÞXij, represented as significant interaction scores Ui =

∑j∑lπjlXijEil. However, a significant contribution by Ui does not imply interaction between Ei
and Xi without assumptions regarding no unmeasured confounding/omitted variables and the

sampling design [44,45]. Moreover, measurement of environmental factors is often subject to

noise or even bias. This can result in false positive interaction findings since RITSS assumes

that environmental factors are measured without error. Furthermore, due to the computa-

tional burden, our type 1 error simulations are based on 10,000 replicates only and, therefore,

the validity at small significance levels cannot be empirically investigated. Nevertheless, we

emphasize that the RITSS approach is supported by theoretical results describing the asymp-

totic normality of the test statistic. The simulation results demonstrated the concordance with

these theoretical approximations. Finally, due to the application of sample splitting and several

independent estimation steps, RITSS requires datasets with sample sizes that are in the order

of recent GWAS publications (30,000 samples or more).

Future directions include more detailed follow-up analyses of the observed gene-by-sex

interactions, the incorporation of other screening techniques, such as, for example, LASSO

[46] or RaSE [47], and the improvement of the computational efficiency. We plan to extend

RITSS to incorporate dichotomous traits and implement these extensions in the R package

RITSS. We note that RITSS can also be used to analyze gene-gene-interactions and interaction

models can be based on more general, non-linear approaches. In addition, RITSS can be

applied to other omics data layers, such as DNA methylation, transcriptomics, or metabolo-

mics. The R package RITSS as well as the code for the simulation studies is available at https://

github.com/julianhecker/RITSS.

Supporting information

S1 Appendix. ACE algorithm and RITSS main effects, Screening strategies, Implementa-

tion of GAMsv, Simulation details, Additional simulation study results, and UK Biobank

data. This appendix contains additional information regarding the ACE algorithm and RITSS

main effects, the screening strategies, the implementation of GAMsv, simulation details,

PLOS GENETICS RITSS: Robust interaction testing using sample splitting

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010464 November 16, 2022 16 / 19

https://github.com/julianhecker/RITSS
https://github.com/julianhecker/RITSS
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010464.s001
https://doi.org/10.1371/journal.pgen.1010464


additional simulation study results, and the UK Biobank data.

(PDF)

S2 Appendix. Additional information regarding genetic variants tested in the UK Biobank

analysis. These tables contain all genetic variants as well as the m4/m3 information for the sex-

interaction analysis in the UK Biobank.

(XLSX)

S1 Fig. Density plots for standardized residuals for all four traits in the analysis. FEV1:

forced expiratory volume in 1 second, FVC: forced vital capacity.

(TIF)
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15. Jiao S, Hsu L, Bézieau S, Brenner H, Chan AT, Chang-Claude J, et al. SBERIA: Set-Based Gene-Envi-

ronment Interaction Test for Rare and Common Variants in Complex Diseases. Genet Epidemiol. 2013;

37: 452–464. https://doi.org/10.1002/gepi.21735 PMID: 23720162

16. Liu Q, Chen LS, Nicolae DL, Pierce BL. A unified set-based test with adaptive filtering for gene–environ-

ment interaction analyses. Biometrics. 2016; 72: 629–638. https://doi.org/10.1111/biom.12428 PMID:

26496228

17. Lin X, Lee S, Christiani DC, Lin X. Test for interactions between a genetic marker set and environment

in generalized linear models. Biostat Oxf Engl. 2013; 14: 667–681. https://doi.org/10.1093/biostatistics/

kxt006 PMID: 23462021

18. Tzeng J-Y, Zhang D, Pongpanich M, Smith C, McCarthy MI, Sale MM, et al. Studying gene and gene-

environment effects of uncommon and common variants on continuous traits: a marker-set approach

using gene-trait similarity regression. Am J Hum Genet. 2011; 89: 277–288. https://doi.org/10.1016/j.

ajhg.2011.07.007 PMID: 21835306

19. Zhao G, Marceau R, Zhang D, Tzeng J-Y. Assessing gene-environment interactions for common and

rare variants with binary traits using gene-trait similarity regression. Genetics. 2015; 199: 695–710.

https://doi.org/10.1534/genetics.114.171686 PMID: 25585620

20. Lin X, Lee S, Wu MC, Wang C, Chen H, Li Z, et al. Test for rare variants by environment interactions in

sequencing association studies. Biometrics. 2016; 72: 156–164. https://doi.org/10.1111/biom.12368

PMID: 26229047

21. Su Y-R, Di C-Z, Hsu L, Genetics and Epidemiology of Colorectal Cancer Consortium. A unified powerful

set-based test for sequencing data analysis of GxE interactions. Biostat Oxf Engl. 2017; 18: 119–131.

https://doi.org/10.1093/biostatistics/kxw034
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