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Abstract

Traditional predictive models for transcriptome-wide association studies (TWAS) consider

only single nucleotide polymorphisms (SNPs) local to genes of interest and perform param-

eter shrinkage with a regularization process. These approaches ignore the effect of distal-

SNPs or other molecular effects underlying the SNP-gene association. Here, we outline

multi-omics strategies for transcriptome imputation from germline genetics to allow more

powerful testing of gene-trait associations by prioritizing distal-SNPs to the gene of interest.

In one extension, we identify mediating biomarkers (CpG sites, microRNAs, and transcrip-

tion factors) highly associated with gene expression and train predictive models for these

mediators using their local SNPs. Imputed values for mediators are then incorporated into

the final predictive model of gene expression, along with local SNPs. In the second exten-

sion, we assess distal-eQTLs (SNPs associated with genes not in a local window around it)

for their mediation effect through mediating biomarkers local to these distal-eSNPs. Distal-

eSNPs with large indirect mediation effects are then included in the transcriptomic prediction

model with the local SNPs around the gene of interest. Using simulations and real data from

ROS/MAP brain tissue and TCGA breast tumors, we show considerable gains of percent

variance explained (1–2% additive increase) of gene expression and TWAS power to detect

gene-trait associations. This integrative approach to transcriptome-wide imputation and

association studies aids in identifying the complex interactions underlying genetic regulation

within a tissue and important risk genes for various traits and disorders.

Author summary

Transcriptome-wide association studies (TWAS) are a powerful strategy to study gene-

trait associations by integrating genome-wide association studies (GWAS) with gene

expression datasets. TWAS increases study power and interpretability by mapping genetic

variants to genes. However, traditional TWAS consider only variants that are close to a

gene and thus ignores important variants far away from the gene that may be involved in

complex regulatory mechanisms. Here, we present MOSTWAS (Multi-Omic Strategies
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for TWAS), a suite of tools that extends the TWAS framework to include these distal vari-

ants. MOSTWAS leverages multi-omic data of regulatory biomarkers (transcription fac-

tors, microRNAs, epigenetics) and borrows from techniques in mediation analysis to

prioritize distal variants that are around these regulatory biomarkers. Using simulations

and real public data from brain tissue and breast tumors, we show that MOSTWAS

improves upon traditional TWAS in both predictive performance and power to detect

gene-trait associations. MOSTWAS also aids in identifying possible mechanisms for gene

regulation using a novel added-last test that assesses the added information gained from

the distal variants beyond the local association. In conclusion, our method aids in detect-

ing important risk genes for traits and disorders and the possible complex interactions

underlying genetic regulation within a tissue.

Introduction

Genomic methods that borrow information from multiple data sources, or “omic” assays, offer

advantages in interpretability, statistical efficiency, and opportunities to understand causal

molecular pathways in disease regulation [1,2]. Transcriptome-wide associations studies

(TWAS) aggregate genetic information into functionally relevant testing units that map to

genes and their expression in a trait-relevant tissue. This gene-based approach combines the

effects of many regulatory variants into a single testing unit that can increase study power and

aid in interpretability of trait-associated genomic loci [3,4]. However, traditional TWAS meth-

ods, like PrediXcan [3] and FUSION [4], focus on local genetic regulation of transcription.

These methods ignore significant portions of heritable expression that can be attributed to dis-

tal genetic variants that may indicate complex mechanisms contributing to gene regulation.

Recent work in transcriptional regulation has estimated that distal genetic traits account for

up to 70% of gene expression heritability [5,6]. These results accord with Boyle et al’s omni-

genic model, proposing that regulatory networks are so interconnected that a majority of

genetic variants in the genome, local or distal, have indirect effects on the expression level of

any particular gene [6,7]. In fact, work by Sinnott-Armstrong et al showed huge enrichment of

significant genetic signal near genes involved in the relevant pathways for biologically simple

traits, even for phenotypes largely thought to be simpler than complex diseases [8]. Together,

these observations suggest that the majority of phenotype heritability, even for traits com-

monly believed to be simpler than complex diseases like cancer, is not driven by variants in

core genes, but rather from thousands of variants spreading across most of the genome.

Many groups have leveraged the omnigenic model to identify distal expression quantitative

loci (eQTLs) by testing the effect of a distal-eSNP on a gene mediated through a set of genes

local to the distal-eSNP, where the SNP and gene are more than 1 Megabase (Mb) away. These

studies draw the conclusion that many distal-eQTLs are often eQTLs for one or more of their

local genes [9–15]. It has been shown previously that distal-eQTLs found in regulatory hot-

spots are often cell-type specific [9,13,16] and hence carry biologically relevant signal when

studying bulk tissue with heterogeneous cell-types (e.g. cancerous tumors or the brain). More

recently, the concepts of distal-eQTLs residing in or near regulatory elements have been inte-

grated with multi-omics data and biological priors to reconstruct molecular networks and

hypothesize cell-regulatory mechanisms [17].

Variant-mapping methods have also shown the utility of integrating molecular data beyond

transcriptomics. Deep learning methods have been employed to link GWAS-identified vari-

ants to nearby regulatory mechanisms to generate functional hypotheses for SNP-trait
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associations [18–20]. These ideas have been extended to TWAS: the EpiXcan method demon-

strates that incorporating epigenetic information into transcriptomic prediction models gener-

ally improves predictive performance and power in detecting gene-trait associations in local-

only TWAS [21]. Wheeler et al have leveraged TWAS imputation to show that trans-acting

genes are often found in transcriptional regulation pathways and are likely to be associated

with complex traits [22]. Thus, it is imperative to prioritize distal variants that are trans-acting

to fully capture heritable gene expression that is associated with complex diseases in TWAS.

To this end, we developed two extensions to TWAS, borrowing information from other

omics assays to enrich or prioritize mediator relationships of eQTLs in expression models.

Using simulations and data from Religious Orders Study and the Rush Memory and Aging

Project (ROS/MAP) [23] and The Cancer Genome Atlas (TCGA) [24], we show considerable

improvements in transcriptomic prediction and power to detect gene-trait associations. These

Multi-Omic Strategies for Transcriptome-Wide Association Studies are curated in the R pack-

age MOSTWAS, available freely at https://bhattacharya-a-bt.github.io/MOSTWAS.

Results

Overview of MOSTWAS

MOSTWAS incorporates two methods to include distal-eQTLs in transcriptomic prediction:

mediator-enriched TWAS (MeTWAS) and distal-eQTL prioritization via mediation analysis

(DePMA). Here, we refer to an eQTL as a SNP with an association with the expression of a

gene, and a distal-eQTL is more than 1 Mb away from the eGene. As large proportions of total

heritable gene expression are explained by distal-eQTLs local to regulatory hotspots

[6,11,13,14], we used data-driven approaches to either identify mediating regulatory biomark-

ers (MeTWAS) or distal-eQTLs mediated by local biomarkers (DePMA) to increase predictive

power for gene expression and power to detect gene-trait associations. These methods are

described in Methods with an algorithmic summary in Fig 1A and 1B and S1 Text.

Fig 1C provides an example of the biological mechanisms MOSTWAS attempts to leverage

in its predictive models for a gene G of interest: here, without loss of generality of the regula-

tory mechanism, assume a SNP within a regulatory element affects the transcription of gene X
that codes for a transcription factor. Transcription factor X then binds to a distal regulatory

region and affects the transcription of gene G. Methodologically,

• MeTWAS first detects the association between the expression of gene X and expression of

gene G. It proceeds upstream in the regulatory pathway to the genetic locus around gene X
and builds a predictive model for the expression of gene X using only SNPs in a local window

around it. Imputed expression of gene X (imputed via cross-validation) is then included as a

fixed effect in the predictive model of gene G, along with the genetic variants local to gene G.

This model is fit using a two-stage regression model [25]: first fitting the imputed mediators

using least squares regression and then fitting the local genotypes using elastic net regression

[26] or linear mixed modeling [27]. Full details are provided in Methods and S1 Text.

• DePMA first detects the distal-eQTL association between the distal SNP and expression of

gene G. It then proceeds downstream in the regulatory pathway from the distal SNP to iden-

tify whether there is a strong association between the SNP and the expression of the local

gene X. Using mediation analysis, DePMA tests if the indirect effect of the SNP on gene G
mediated through gene X is significantly large. If so, the SNP is included in the final predic-

tive model for the expression of gene G. All local SNPs to gene G and significantly mediated

distal-eQTLs are used to fit a predictive model for gene G using elastic net regression [26] or

linear mixed modeling [27]. Full details are provided in Methods and S1 Text.

PLOS GENETICS MOSTWAS: Multi-omic strategies for TWAS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009398 March 8, 2021 3 / 30

https://bhattacharya-a-bt.github.io/MOSTWAS/
https://doi.org/10.1371/journal.pgen.1009398


MeTWAS and DePMA can consider any set of regulatory elements as potential mediators

(e.g. transcription factors, microRNAs, CpG methylation sites, chromatin-binding factors,

etc). For both methods, individual-level genotype data and omic data for mediators and genes

of interest are required. Further, MeTWAS requires a list of mediators associated with the

gene of interest. This list can be generated from correlation analysis between mediators and

genes or through a priori knowledge about a particular tissue. DePMA additionally requires

distal-eQTL summary statistics and local-xQTL summary statistics between SNPs and

mediators.

In MOSTWAS, if expression of a gene has significantly positive germline heritability [28]

and the model has five-fold cross validation adjusted R2�0.01 in predicting observed expres-

sion of the gene, then we call the gene model significant and it can be used in TWAS. If indi-

vidual genotype data is available in an external GWAS panel, a MeTWAS or DePMA model

Fig 1. Overview of MOSTWAS methods and biological context. (A) Overview of Mediator-enriched TWAS

(MeTWAS). We build local predictive models of distal mediators associated with the gene of interest (Step 1). Next, we

imputed mediator intensities into the training step (Step 2) and fit the final predictive model with imputed mediator

intensities as fixed effects and local SNPs to the gene as regularized effects (Step 3). This model can be used for TWAS

(Step 4). (B) Overview of Distal-eQTL Prioritization via Mediation Analysis (DePMA). We test distal-eQTLs for their

indirect mediation effect on the gene through mediators local to the distal-eSNP (Step 1). We append the set of local

SNPs to the gene with highly mediated distal-eSNPs and fit the final model with regularized regression (Step 2). This

model can be used for TWAS (Step 3). (C) Example of a biological mechanism MOSTWAS leverages in its predictive

models. Here, assume a SNP (in green) within a regulatory element affects the transcription of gene X that codes for a

transcription factor. Transcription factor X then binds to a distal regulatory region and affects the transcription of gene

G. The association between the expression of gene X and gene G is leveraged in the first step of MeTWAS. A distal-

eQTL association is also conferred between this distal-SNP and the eGene G, which is leveraged in the DePMA

training process.

https://doi.org/10.1371/journal.pgen.1009398.g001
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may be used to impute tissue-specific expression. If only summary statistics are available in the

GWAS panel, the Imp-G weighted burden testing framework [29] as implemented in FUSION

[4] can be applied. We further implement a permutation test to assess whether the overall

gene-trait association is significant, conditional on the GWAS effect sizes [4] and a novel dis-

tal-SNPs added-last test that assesses the added information from distal-SNPs given the associ-

ation from the local SNPs (Methods).

Simulation analysis

We first conducted simulations to assess the power to predict gene expression and power to

detect gene-trait associations under various settings for phenotype heritability, local heritabil-

ity of expression, distal heritability of expression, and proportion of causal local and distal

SNPs for MeTWAS and DePMA (full simulation details in Methods). Using genetic data from

TCGA-BRCA as a reference, we used SNPs local to the gene ESR1 (Chromosome 6) to gener-

ate local eQTLs and SNPs local to FOXA1 (Chromosome 14) to generate distal-eQTLs for a

400-sample eQTL reference panel and 1,500-sample GWAS imputation panel. Though the

choice of these loci was arbitrary for constructing the simulation, there is evidence that ESR1
and FOXA1 are highly co-expressed in breast tumors, and local-eQTLs of FOXA1 have been

shown to be distal-eQTLs of ESR1 [30]. We considered two scenarios for each set of simulation

parameters: (1) an ideal case where the leveraged association between the distal-SNP and gene

of interest exists in both the reference and imputation panel, and (2) a “null” case where the

leveraged association between the distal-SNP and the gene of interest exists in the reference

panel but does not contribute to phenotype heritability in the imputation panel. We ran 1,000

simulations for every unique set of simulation parameters in both simulation scenarios and

computed TWAS power for models trained using local-only modeling (traditional FUSION

models), Bayesian Genome-Wide TWAS (BGW-TWAS), a concurrent TWAS method that

includes distal variants [31], and MOSTWAS.

In these simulation studies, we found that MOSTWAS methods performed well in predic-

tion across different causal proportions and local and distal mRNA expression heritability and

generally outperform local-only modelling. Furthermore, across all simulation settings, we

observed that MOSTWAS showed greater or nearly equal power to detect gene-trait associa-

tions compared to local-only models. We found that, under the setting that distal-eQTLs con-

tribute to trait heritability, the best MOSTWAS model had greater power to detect gene-trait

associations than the local-only models, with the advantage in power over local-only models

increasing with increased distal expression heritability (Fig 2A). In comparison to BGW-

TWAS, across most simulation parameters, we find similar TWAS power between BGW-

TWAS and MOSTWAS. We observed slight advantages (Figs 2A and S1A) for BGW-TWAS

at low trait heritability (h2
p ¼ 0:20), higher distal expression heritability (h2

trans ¼ 0:25), and

higher causal eQTL proportion (pC = 0.20). At the same trait and distal expression heritability

settings but causal proportion pc = 0.01, we find a small power advantage for MOSTWAS over

BGW-TWAS (S1A Fig). As trait heritability increases, the positive difference in TWAS power

for MOSTWAS and BGW-TWAS models over local-only models decreases slightly. Similarly,

we found that as the proportion of total expression heritability attributed to distal variation

increased, the positive difference in predictive performance between the best MOSTWAS

model and the local-only model increased (S2 Fig). Under the “null” case that distal variation

influences expression only in the reference panel, we observed that local-only, BGW-TWAS,

and MOSTWAS models perform similarly. Only at low trait heritability (h2
p ¼ 0:20) did local-

only and BGW-TWAS models have a small advantage in TWAS power over MOSTWAS mod-

els (Fig 2B and https://doi.org/10.5281/zenodo.4314067). This difference was reduced at larger
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causal proportions and trait heritability (Fig 2B). Using these same simulation parameters, we

also simulated the false positive rate (FPR), defined as the proportion of positive associations

at P<0.05 under the null, where the phenotype trait in the GWAS panel was permuted 1,000

Fig 2. Comparison of TWAS power via simulations using MOSTWAS, BGW-TWAS, and local-only models. (A) Proportion of gene-trait associations at

P<2.5×10−6 using local-only (red), BGW-TWAS (blue), and the most predictive MOSTWAS (green) models across various local and distal expression heritability, trait

heritability, and one setting of causal eQTL proportion. (B) Proportion of significant gene-trait associations across the same simulation parameters with no distal effect

on the trait in the simulated external GWAS panel.

https://doi.org/10.1371/journal.pgen.1009398.g002
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times across 20 sets of simulations. We found that the FPR was generally around 0.05 for both

local-only and MOSTWAS methods (S3 Fig).

The power of the distal-SNPs added-last test increased significantly as both the sample sizes

of the eQTL reference panel and the GWAS imputation panel increased (S4 Fig). At a sample

size of 10,000 in the GWAS panel with summary statistics (a suitably large GWAS) and a sam-

ple size greater than 200 in the eQTL panel, MOSTWAS obtained over 65% power to detect

significant distal significant associations (S4 Fig). Overall, these results demonstrated the

advantages of MOSTWAS methods for modeling the complex genetic architecture of tran-

scriptomes, especially when distal variation has a large effect on the heritability of both the

gene and trait of interest. Simulation results are provided at https://doi.org/10.5281/zenodo.

4314067 [32]. The MOSTWAS package also contains functions for replicating this simulation

framework.

Real data applications in brain tissue

We applied MOSTWAS to multi-omic data derived from samples of prefrontal cortex, a tissue

that has been used previously in studying neuropsychiatric traits and disorders with TWAS

[33,34]. There is ample evidence from studies of brain tissue, especially the prefrontal cortex,

that non-coding variants may regulate distal genes [33,35,36]; in fact, an eQTL analysis by Sng

et al found that approximately 20–40% of detected eQTLs in the frontal cortex can be consid-

ered trans-acting [37]. Thus, the prefrontal cortex, in the context of neuropsychiatric disor-

ders, provides a prime example to assess MOSTWAS.

Using ROS/MAP data on germline SNPs, mRNA expression, CpG DNA methylation, and

miRNA expression (N = 370), we trained MeTWAS, DePMA, and local-only (FUSION with-

out BSLMM) predictive models for the expression of all genes with significant non-zero herita-

bility. Estimates of gene expression heritability were considerably larger when we considered

distal variation with MOSTWAS (S1 Table). We also found that MeTWAS and DePMA per-

formed better in cross-validation R2 than local-only models (Fig 3A, 3B and 3C). Overall, we

trained 1,385 significant local-only models, 2,287 MeTWAS models, and 4,725 DePMA mod-

els. Comparing genes with significant models with at least one of the local-only method, MeT-

WAS, or DePMA, we found that MeTWAS and DePMA overwhelmingly outperformed the

local-only model; 86% and 79% of MeTWAS and DePMA models, respectively, had higher CV

R2 than corresponding local-only models. Likewise, DePMA models generally outperformed

MeTWAS models, with 70% of DePMA models outperforming corresponding MeTWAS

models. As shown in Fig 4A, median predictive R2 for significant local-only models was 0.021

(25% to 75% inter-quartile interval (0.010,0.060)), for MeTWAS models was 0.030 (0.019,

0.071), and for DePMA models was 0.023 (0.017, 0.044).

We used 87 samples in ROS/MAP with genotype and mRNA expression data that were not

used in model training to test portability of MOSTWAS models in independent cohorts. As

shown in Fig 4A, DePMA and MeTWAS models obtained similar predictive adjusted R2 in

the external cohort: median external R2 for DePMA was 0.024 (25% quantile 0.008, 75% quan-

tile 0.035) and median R2 for MeTWAS was 0.025 (0.008, 0.043) both outperforming local-

only models (0.014 (0.006, 0.025)). Overall, among models with cross-validation adjusted

R2�0.01, 587 genes achieved external predictive R2�0.01 using local-only models, 1,646 using

MeTWAS, and 3,289 using DePMA.

We also compared MOSTWAS external predictive performance with BGW-TWAS, which

employs Bayesian variable selection to train predictive models using both local- and distal-

eQTLs [31]. Here, as BGW-TWAS models were trained on the entire ROS/MAP dataset, we

extracted expression data from the PsychENCODE project for 646 samples from dorsolateral
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Fig 3. Predictive adjusted R2 from cross-validation across local-only, MeTWAS, and DePMA models. If a given gene does not have h2>0 with

P<0.05, we set the predictive adjusted R2 to 0 here for comparison. The top row compares local-only and MeTWAS, middle row compares local-

only and DePMA, and the bottom row compares MeTWAS and DePMA. The left column has performance in ROS/MAP, while the right column

has performance in TCGA-BRCA. All axes indicate the CV adjusted R2 for different models. We also provide the proportion of models with larger

CV R2 with the model reflected in the Y-axis compared to that on the X-axis.

https://doi.org/10.1371/journal.pgen.1009398.g003
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prefrontal cortex tissue and corresponding individual-level genotype data; these 646 samples

are derived from patients in the control group, with no symptoms of schizophrenia or bipolar

disorder [38,39]. We then imputed expression using both MOSTWAS and BGW-TWAS mod-

els trained using ROS/MAP and assessed predictive performance via McNemar’s adjusted R2.

Here, we note that BGW-TWAS uses a different inclusion criteria than MOSTWAS, where a

Fig 4. Comparison of MOSTWAS prediction with other TWAS methods. (A) Median predictive adjusted R2 from in-sample and out-sample predictions using

TCGA-BRCA and ROS/MAP data using local-only (red), MeTWAS (blue) and DePMA (green) models. The error bars show the 25% and 75% quantiles for predictive R2

across all genes. (B) Scatterplot of predictive adjusted R2 of genes using MOSTWAS (X-axis) and BGW-TWAS (Y-axis) models in a 646-sample dataset from the

PsychENCODE project. The vertical and horizontal dotted lines provide reference for R2 = 0.01 and the diagonal line is the 45-degree line. Each point is colored blue if

the gene has a higher R2 using the MOSTWAS model, gold if the gene has a higher R2 with BGW-TWAS, and grey if the R2 are equal. (C) Scatterplot of predictive

adjusted R2 of genes using MOSTWAS (X-axis) and BGW-TWAS (Y-axis) models in a 351-sample external dataset from the TCGA-BRCA. The vertical and horizontal

dotted lines provide reference for R2 = 0.01 and the diagonal line is the 45-degree line. Each point is colored blue if the gene has a higher R2 using the MOSTWAS model,

gold if the gene has a higher R2 with BGW-TWAS, and grey if the R2 are equal.

https://doi.org/10.1371/journal.pgen.1009398.g004
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BGW-TWAS model is trained if at least one eQTL with non-zero effect and sufficiently large

posterior causal probability is detected without heritability estimation or cross-validation per-

formance [31]. Possibly due to MOSTWAS’s more conservative inclusion criteria, BGW-

TWAS imputes a larger number of genes than MOSTWAS (11,990 versus 4,931, respectively).

However, of the 3,385 genes that both MOSTWAS and BGW-TWAS imputed, MOSTWAS

models generally have larger adjusted R2 in the PsychENCODE data, where 59% of genes have

higher R2 with MOSTWAS compared to BGW-TWAS (Fig 4B). Across all genes imputable by

each method, MOSTWAS and BGW-TWAS have roughly the same proportion of predictions

at external validation R2�0.01 (MOSTWAS 13.6%, BGW-TWAS 14.3%).

We next conducted association tests for known Alzheimer’s disease risk loci using two

local-only methods (PrediXcan [3] and TIGAR [40]) and the best MOSTWAS model (selected

by comparing MeTWAS and DePMA cross-validation R2) trained in ROS/MAP and sum-

mary-level GWAS data from the International Genomics of Alzheimer’s Project (IGAP) [41].

This comparison is similar to an analysis of recapitulation of GWAS signals in Alzheimer’s dis-

ease from Nagpal et al [40]. From literature, we identified 14 known common and rare loci of

late-onset Alzheimer’s disease that have been mapped to genes [41–44], all of which had

MOSTWAS models with cross-validation R2�0.01. (S5 Fig) Eight of these loci (AKAP, APOE,

CLU, FERMT2, MEF2C, PLCG2, SORL1, ZCWPW1) showed significant association at nominal

P<0.05 (S2 Table), compared to those identified by PrediXcan [3] and TIGAR [40] in Fig 5A.

MOSTWAS showed stronger associations at 8 of these loci than both local-only and DPR

models. We followed up on the 8 significantly associated loci using the permutation and

added-last tests (Methods and S1 Text). Four of these loci (AKAP9, APOE, SORL1,

ZCWPW1) showed significant associations, conditional on variants with large GWAS effect

sizes (permutation test significant at FDR-adjusted P<0.05). Three of the 4 loci also showed

significant associations with distal variants, above and beyond the association with local vari-

ants, at FDR-adjusted P<0.05 (S2 Table). We also assessed TWAS associations for Alzheimer’s

disease risk using MOSTWAS for the 11 autosomal risk genes identified by Luningham et al
using BGW-TWAS [31]. Due to more conservative inclusion criteria in MOSTWAS, we only

trained significant models for 5 of these genes (AEP1, BTN3A2, GPX1, APOC1, and

HLA-DRB1). At P<2.5×10−6, we found significant associations with risk of Alzheimer’s disease

for APOC1 (Z = 4.84, P = 1.29×10−6) and HLA-DRB1 (Z = 6.80, P = 1.05×10−11) that also

passed permutation testing. Overall, across all 5,407 genes with significant MOSTWAS mod-

els, 18 genes showed TWAS associations at P<2.5×10−6 and passed permutation testing at

nominal P<0.05 (Fig 5B, S3 Table, S4 Fig).

Using the final suite of 5,407 MOSTWAS models, we also conducted a transcriptome-wide

association study for risk of major depressive disorder (MDD) using summary statistics from

the Psychiatric Genomics Consortium (PGC) genome-wide meta-analysis that excluded data

from the UK Biobank and 23andMe [45]. Of the 618 genes that had cross-validation R2�0.01

in ROS/MAP using both local-only and MOSTWAS models and non-zero SNP intersection

with PGC summary statistics, we found 4 genes with significant MDD associations using both

MOSTWAS and local-only models, 1 significant gene using only the MOSTWAS model, and 4

significant genes with the local-only model. Furthermore, 552 of these genes showed larger or

equal strengths of association with survival using the MOSTWAS model than the local-only

model (S6 Fig). QQ-plots for TWAS Z-statistics and P-values are provided in S7 Fig and S8

Fig for both local-only and MOSTWAS models, showing earlier departure from the null using

local-only models compared to MOSTWAS. Overall, we identified 88 MDD risk-associated

loci at P<2.5×10−6, a Bonferroni correction over 20,000 tests generally used in TWAS to sig-

nify transcriptome-wide statistical significance. Of these 88 genes, 43 persisted when subjected

to permutation testing at nominal P<0.05 (colored red in Fig 5C).
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Fig 5. TWAS results using MOSTWAS models. (A) TWAS associations (nominal −log10 P on Y-axis) with 14 known Alzheimer’s risk loci (X-axis), as identified in

literature, using MOSTWAS (red), PrediXcan (blue), and TIGAR Dirichlet process regression (green). Loci are labeled with P if the permutation test achieves P<0.05 and

D if the added-last test achieves Bonferroni-adjusted P<0.05. (B) Putative TWAS genes identified by MOSTWAS (right) and BGW-TWAS (right). Genes specific to each

method and in common are labelled. (C) TWAS associations for major depressive disorder risk using GWAS summary statistics from PGC. Loci are colored red if the

overall association achieves FDR-adjusted P<0.05 and the permutation test also achieves FDR-adjusted P<0.05. We label the 7 loci that were independently validated with

UK Biobank GWAX summary statistics at FDR-adjusted P<0.05 for both the overall association test and permutation test. (D) TWAS associations for breast cancer-

specific survival using GWAS summary statistics from iCOGs. Loci are colored red and labeled if the overall association achieves FDR-adjusted P<0.05.

https://doi.org/10.1371/journal.pgen.1009398.g005
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Lastly, we downloaded genome-wide association study by proxy (GWAX) summary statis-

tics from the UK Biobank [46] for replication analysis of loci identified using PGC summary

statistics. We found 11 of these 43 loci (labeled in Fig 4C and listed in S4 Table) also showed

an association in UK Biobank GWAX that was in the same direction as in PGC. In compari-

son, using local-only models, we identified 5 genes associated with MDD risk at P<2.5×10−6

that persisted after permutation testing; one of these loci showed transcriptome-wide signifi-

cant associations in the UK Biobank GWAX in the same direction as in PGC (ZKSCAN3,

Z = 10.67 in PGC; Z = 5.44 in UK Biobank GWAX). These replication rates between MOST-

WAS and local-only models were similar (accounting for the total number of associations),

highlighting that the inclusion of distal variation does not hinder the replicability of MOST-

WAS associations in comparison to local-only models [46,47]. TWAS results are provided at

https://doi.org/10.5281/zenodo.4314067. It is important to note here that the UK Biobank

dataset is not a GWAS dataset as it defined a case of MDD as any subject who has the disorder

or a first-degree relative with MDD. Hence, the study forfeits study power to detect gene-trait

associations for MDD [46,47]. Nonetheless, we believe that strong prediction in independent

cohorts and TWAS results across two independent cohorts provided an example of the robust-

ness of MOSTWAS models.

In summary, we observed that MOSTWAS models generally had higher predictive R2 than

local-only models both in training and independent cohorts. In addition, we observed that, for

genes that could be imputed by both MOSTWAS and BGW-TWAS, MOSTWAS models out-

performed BGW-TWAS models in external datasets, though BGW-TWAS trained more sig-

nificant models, possibly due to differences in inclusion criteria between the two methods. We

also found that MOSTWAS recapitulated 8 known Alzheimer’s risk loci that were not detected

by local-only modeling (both PrediXcan [3] and TIGAR [40]), 3 of which had significant distal

associations above and beyond the information in local variants using our added-last test. We

also illustrated that some MDD-risk-associated loci detected by MOSTWAS in a GWAS

cohort were replicable in an independent GWAX cohort [45,46].

Real data applications in breast cancer tumors

We applied MOSTWAS using breast tumor multi-omics and disease outcomes, motivated by

recent GWAS and TWAS for breast cancer-specific survival [48–52]. Previous breast tumor

eQTL studies have revealed several significant distal-eQTLs in trait-associated loci, many of

which are in regulatory or epigenetic hotspots [52,53], motivating our application of MOST-

WAS in breast tumor expression modeling.

Using TCGA-BRCA [24] datasets for germline SNPs, tumor mRNA expression, CpG DNA

methylation, and miRNA expression (N = 563), we trained MeTWAS, DePMA, and local-only

(FUSION without BSLMM) predictive models for the mRNA expression of all genes with sig-

nificant non-zero germline heritability at P<0.05. Estimates of heritability for genes were 2–5

times larger when we considered distal variation using MOSTWAS methods (S1 Table). We

also found that MeTWAS and DePMA performed better in cross-validation R2, with larger

numbers of models at R2�0.01 and significant germline heritability using MOSTWAS models

than local-only models (Fig 3D, 3E and 3F). In total, we trained 849 significant local-only

models, 2,641 significant MeTWAS models, and 4,862 significant DePMA models. Of these

significant models, median predictive R2 for local-only models was 0.016 (25% to 75% inter-

quartile interval (0.011,0.027)), for MeTWAS models was 0.024 (0.0161, 0.038), and for

DePMA models was 0.034 (0.021, 0.056). In addition to cross-validation, we used 351 samples

in TCGA-BRCA with only genotype and mRNA expression data, which were not used in

model training, to test the portability of MOSTWAS models in independent external cohorts.
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As shown in Fig 4A, DePMA models obtained the highest predictive adjusted R2 in the exter-

nal cohort (median 0.014, 25% to 75% inter-quartile interval (0.003,0.016)), with MeTWAS

models (0.009, (0.002,0.013)) performing on par with local-only models (0.008, (0.001, 0.013)),

considering only genes that showed significant heritability and cross-validation adjusted

R2�0.01 using a given method. Overall, among genes with cross-validation adjusted R2�0.01,

153 achieved external predictive R2�0.01 using local-only models, 449 using MeTWAS, and

2,527 using DePMA.

We also trained expression models with BGW-TWAS using TCGA-BRCA data, computed

cross-validation adjusted R2 across three folds, and imputed expression into this external data-

set for comparison. We trained 14,029 models using BGW-TWAS at default input parameters

with at least one SNP in the model, compared to 5,897 models using MOSTWAS. Over 3-fold

cross-validation, we found that 6.2% of these models met R2>0.01. Comparing the 10,202

genes with BGW-TWAS models and h2>0 with P<0.05, as calculated in the MOSTWAS pipe-

line, we found that 77% of MOSTWAS models outperform BGW-TWAS models in cross-vali-

dation (S9 Fig). Of the 4,682 genes that passed both MOSTWAS and BGW-TWAS inclusion

criteria, MOSTWAS models generally had larger adjusted R2 in the external dataset, whereas

nearly 60% of genes had higher R2 with MOSTWAS compared to BGW-TWAS (Fig 4C).

Across all genes with models of each method, MOSTWAS (5,897 significant models) trained

more models with external validation R2�0.01 (MOSTWAS 46.9%, BGW-TWAS 38.5%).

Lastly, we conducted association studies for breast cancer-specific survival using local-only

and the MOSTWAS model with largest R2 trained in TCGA-BRCA and summary-level

GWAS data from iCOGs [51]. Here, we constructed the weighted burden test, as described

above and in Pasaniuc et al and Gusev et al [4,29]. We prioritized genes with P<2.5×10−6

(Bonferroni correction across 20,000 genes) for permutation testing. Of the 377 genes that had

cross-validation R2�0.01 in TCGA-BRCA using both local-only and MOSTWAS models and

non-zero SNP intersection with iCOGs summary statistics, we found no transcriptome-wide

significant survival associations with the same loci. Furthermore, 370 of these loci showed

larger or equal strengths of association with survival using the MOSTWAS model than the

local-only model (S6 Fig). QQ-plots for TWAS Z-statistics (S7 Fig) and P-values (S8 Fig)

showed earlier departure from the null using local-only models. These results in TCGA-BRCA

demonstrated the improved transcriptomic prediction and power to detect gene-trait associa-

tions using MOSTWAS over local-only modeling.

Functional hypothesis generation with MOSTWAS. We next conducted TWAS for

breast cancer-specific survival using all genes with significant germline heritability at P<0.05

with the most predictive MOSTWAS model (i.e. MeTWAS or DePMA model with the larger

cross-validation R2 greater than 0.01); this final set of models included 5,897 genes. We identi-

fied 23 survival-associated loci at P<2.5×10−6. Of these 23 loci, 11 persisted when subjected to

permutation testing at nominal P<0.05 (colored red in Fig 5D and S5 Table).

An advantage of MOSTWAS is its ability to aid in functional hypothesis generation for

mechanistic follow-up studies. The distal-SNP added-last test allows for identification of genes

where trait association from distal variation is significant, above and beyond the contribution

of the local component. For 6 of the TWAS-associated 11 loci, at FDR-adjusted P<0.05, we

found significant distal variation added-last associations (see S1 Text and S5 Table), suggest-

ing that distal variation may contribute to the gene-trait associations. These loci showed distal

association with the gene of interest mediated through transcription factors and methylation

sites, many of which have critical roles in breast cancer proliferation. For example, we found

that ATAD1, TBC1D9, and TNNC2 expression are all mediated by transcription factors

ACTRT2, MMP23B, and TP73 and methylation sites around MMP23B and TP73; these tran-

scription factors have known functions in tumor suppression or proliferation [54–57]. In fact,
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it has been shown that both MMP23B and TP73 are affected by hypermethylation of CpG sites

in their promoter region, a mechanism that may activate breast cancer tumorigenesis [58,59].

We also found two transcription factors (ROCK2, USF3) in the distal components of the

CTRL- and MAP3K6-associations with survival; both transcription factors are interconnected

within the MAPK pathway, known to be involved in breast cancer proliferation [60–63]. These

regulatory sites serve as an example of how distal genomic regions can be prioritized for func-

tional follow-up studies to elucidate the mechanisms underlying the SNP-gene-trait associa-

tions. These results showed the strength of MOSTWAS to detect and prioritize gene-trait

associations that are influenced by distal variation and to aid in generating functional hypothe-

ses for these distal relationships.

Differences in eQTL architecture leveraged by MeTWAS and DePMA. To study how

eQTL architecture differs across genes well-predicted by MeTWAS and/or DePMA, we looked

at genome-wide eQTLs of three genes: LQK1 (high CV R2 with both MeTWAS and DePMA),

C6orf94 (high R2 only with MeTWAS), and TSC22D4 (high R2 only with DePMA), with Man-

hattan plots of eQTL associations in S10 Fig. Here, we saw that LQK1 bears a strong local-

eQTL signal that is leveraged by both models. In C6orf94, we find that eQTL signal is distrib-

uted evenly across the genome and the superior MeTWAS model leverages clusters of distal-

eQTLs that are local to gene-associated mediators. In contrast, the distal-eQTL signal for

TSC22D4 is concentrated in a single peak with linkage disequilibrium (LD) support. This

eQTL analysis provides some insight into genetic architectures that favor a MOSTWAS

method over the other.

Comparison of computation time

To assess the difference in computational burden between local-only, MeTWAS, and DePMA

modeling, we randomly selected a set of 50 genes that are heritable across all three models

from TCGA-BRCA and computed per-gene time for fitting models serially using a high-per-

formance cluster (RedHat Debian operating system) with 3.0 GHz processor and 8 gigabytes

of RAM. As shown in S11 Fig, we found that MeTWAS (average of 40 seconds per gene) and

DePMA (average 193 seconds per gene) took approximately 1–6 times longer to fit than a tra-

ditional FUSION-like local-only model (average 36 seconds) [4]. These computation times do

not include QTL detection steps (detecting distal mediators in MeTWAS and distal-eQTLs in

DePMA) prior to fitting the predictive models. The computational bottlenecks for MeTWAS

and DePMA are fitting mediator prediction models and testing the mediation effect through

permutation, respectively. Model-fitting here includes heritability estimation, estimating the

SNP-expression weights, and cross-validation. MeTWAS and DePMA are aided considerably

by the efficient memory mapping of the bigsnpr package and the in-built LASSO implementa-

tion from the biglasso package [64,65]; presumably, local-only modeling using the trainLocal-

Model() function in MOSTWAS will also speed up training FUSION-like models for cis-only

TWAS (without Bayesian sparse linear mixed modeling). We have also implemented paralle-

lized methods to train an expression model for a single gene in MOSTWAS. We recommend

fitting an entire set of genes from an RNA-seq panel via a batch computing approach [66–68].

Using a parallel implementation with 5 cores and batch computing, we trained MOSTWAS

expression models for 15,568 genes from TCGA-BRCA in approximately 21 hours.

Discussion

Through simulation analysis and real applications using two datasets [23,24], we demonstrated

that multi-omic methods that prioritize distal variation in TWAS have higher predictive per-

formance and power to detect tissue-specific gene-trait associations [9,13,69], especially when
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distal variation contributes substantially to trait heritability. We proposed two methods (MeT-

WAS and DePMA) for identifying and including distal genetic variants in gene expression pre-

diction models. Specifically, our methods recover traditional local-only TWAS models and

associations when distal genetic variants have little influence on the heritability of gene expres-

sion [4]; however, when heritable mediators or distal-eQTLs explain variance in gene expres-

sion, local-only models ignore this important information that MOSTWAS has the ability to

leverage. MeTWAS, a two-step regression method that leverages SNPs local to gene-associated

mediators that are heritable, is preferred for genes that are influenced by a complex network of

molecular features across the genome. A tissue-wide approach that searches for distal eQTL

signals conserved across different tissues could be an extension for MeTWAS [70]. In contrast,

DePMA, which prioritizes significant distal-eQTLs with large mediation effects on the gene,

may perform better when distal eQTLs that have strong LD support and are local to regulatory

machinery that have indirect effects on transcription of a gene. These distal eQTLs with large

mediated effects may be tissue-specific, as they generally cluster around epigenomic or regula-

tory markers [71–73]. We have provided implementations of these methods in MOSTWAS

(Multi-Omic Strategies for Transcriptome-Wide Association Studies), an R package available

freely on GitHub.

Not only does MOSTWAS improve transcriptomic imputation both in- and out-of-sample,

but it also provides a test for the identification of heritable mediators that affect eventual tran-

scription of the gene of interest. These identified mediators can provide insight into the under-

lying mechanisms for SNP-gene-trait associations to improve detection of gene-trait

associations and to prioritize biological units for functional follow-up studies. TWAS using

MOSTWAS models was able to recapitulate 8 out of 14 known Alzheimer’s disease risk loci in

IGAP GWAS summary statistics [41], many of which were not recoverable with local-only

models. We showed the utility of the distal-SNPs added-last test to prioritize significant distal

SNP-gene-trait associations for follow-up mechanistic studies, which could not be identified

using traditional local-only TWAS. In PGC GWAS summary-level data for major depressive

disorder [45], we found 43 risk loci, 11 of which were replicated in independent GWAX sum-

mary statistics from the UK Biobank [46]. A few of these genes have been implicated in neuro-

psychiatric traits or disorders. For example, genetic and methylomic variation in YJEFN3 has

shown associations with schizophrenia [74,75] and common and rare genetic variants in

GCH1 are associated with Parkinson’s disease [76]. Furthermore, KCTD10 encodes a protein

that belongs to a family implicated in fetal development of many psychiatric traits [77,78].

Using MOSTWAS and iCOGs summary-level GWAS statistics for breast cancer-specific sur-

vival [51], we identified 6 survival-associated loci involved with p53 binding and oxidoreduc-

tase activity pathways [79,80]. These loci include MAP3K6, which encodes a mitogen-activated

protein kinase, a signaling transduction molecule involved in the progression of aggressive

breast cancer subtypes [81]. The utility of the distal-SNPs added-last test was highlighted in the

breast-cancer survival TWAS, where we uncovered a set of transcription factors and methyla-

tion sites predicted to mediate expression of these survival-associated genes. Many of these

mediators (e.g. MMP23D, TP73, ROCK2, USF3) have been implicated in tumorigenesis and

tumor suppression or progression pathways [54–63]. None of the risk- or survival-associated

loci identified by MOSTWAS were detected using local-only models.

We compared MOSTWAS to a contemporary TWAS method that incorporates distal-

eQTLs, BGW-TWAS [31]. BGW-TWAS can impute a larger number of gene models than

MOSTWAS, but among genes both BGW-TWAS and MOSTWAS were able to impute in

external PsychENCODE and TCGA-BRCA data [38,39], MOSTWAS generally showed larger

predictive adjusted R2. MOSTWAS’s stricter inclusion criterion (thresholds for both expres-

sion heritability and cross-validation performance) may lead to fewer genes trained and
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ultimately tested; for example, when we subjected BGW-TWAS models trained with

TCGA-BRCA data to cross-validation, few met MOSTWAS’s inclusion criterion of cross-vali-

dation adjusted R2>0.01. We believe that assessing expression heritability signal and cross-val-

idating models prior to TWAS is necessary: as Ding et al points out in their systematic power

analysis, expression heritability is a major factor in determining TWAS power [82]. Alternative

methods of fitting the predictive model, like TIGAR’s Dirichlet Prior Regression, could be

built into the MOSTWAS framework to boost predictive power [40]. In a TWAS for Alzhei-

mer’s disease, results from MOSTWAS and BGW-TWAS showed two overlap genes, out of a

total of 18 and 13 putative TWAS genes in each respective method. BGW-TWAS employs

Bayesian methodology to scan the entire genome for potentially causal distal-eQTLs and can

build models for more genes at a large computational cost [31]. For example, BGW-TWAS

requires approximately 30 minutes per gene with 3 GB of memory with parallel computation

over 4 cores, whereas DePMA (the slower of the two MOSTWAS methods) takes approxi-

mately 6 minutes per gene with 8 GB of memory with serial implementation. Note that

BGW-TWAS computation time includes genome-wide single-variant eQTL tests.

BGW-TWAS only requires genetic and transcriptomic data for its prediction, an advantage

over MOSTWAS. On the other hand, MOSTWAS has an interpretational advantage over

BGW-TWAS by pinning distal variants to mediating biomarkers and testing trait association

at these distal loci with the added-last test.

A limitation of MOSTWAS is the increased computational burden over local-only model-

ing, especially in DePMA’s permutation-based mediation analysis for multiple genome-wide

mediators. By making some standard distributional assumptions on the SNP-mediator effect

size and mediator-gene effect size vectors (e.g. effect sizes following a multivariate Normal dis-

tribution with non-zero off-diagonal covariance), we believe a Monte-Carlo resampling

method to estimate the null distribution of the product of these two effect size vectors may

decrease computational time without significant loss in statistical power [83]. Nevertheless, we

believe that MOSTWAS’s gain in predictive performance and power to detect gene-trait asso-

ciations outweighs the added computational cost, especially with our implementation leverag-

ing the bigsnpr and bigstatsr packages [64]. Furthermore, compared to BGW-TWAS [31],

model training in MOSTWAS is considerably faster. Another concern with the inclusion of

distal variants is that RNA-sequencing alignment errors can lead to false positives in distal-

eQTL detection [84], and in turn, bias the mediation modeling. Cross-mapping estimation, as

described by Saha et al, can be used to flag potential false positive distal-QTLs that are detected

in the first step of MeTWAS and DePMA. Another limitation of MOSTWAS is the general

lack of rich multi-omic panels, like ROS/MAP and TCGA-BRCA, that provide a large set of

mediating biomarkers that may be mechanistically involved in gene regulation. However, the

two-step regression framework outlined in MeTWAS allows for importing mediator intensity

models trained in other cohorts to estimate the germline portion of total gene expression from

distal variants. Importing mediator models from an external cohort can also reduce the testing

burden in the preliminary QTL analysis in MeTWAS and DePMA.

MOSTWAS provides a user-friendly and intuitive tool that extends transcriptomic imputa-

tion and association studies to include distal regulatory genetic variants. We demonstrate that

the methods in MOSTWAS based on two-step regression and mediation analysis generally

out-perform local-only models in both transcriptomic prediction and TWAS power without

signs of inflated false positive rates, though at the cost of longer computation time. MOSTWAS

enables users to utilize rich reference multi-omic datasets for enhanced gene mapping to better

understand the genetic etiology of polygenic traits and diseases with more direct insight into

functional follow-up studies.
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Methods

We first outline the two methods proposed in this work: (1) mediator-enriched TWAS (MeT-

WAS) and (2) distal-eQTL prioritization via mediation analysis (DePMA). MeTWAS and

DePMA are combined in the MOSTWAS R package, available at www.github.com/

bhattacharya-a-bt/MOSTWAS. MOSTWAS employs the bigstatsr and bigsnpr packages for

efficient memory mapping and faster computation [64]. Full mathematical details are provided

in S1 Text.

Transcriptomic prediction using MeTWAS

Across all samples in the training dataset and for a single gene of interest, MeTWAS, an adap-

tation of two-step regression, takes in a vector of gene expression, the matrix of genotype dos-

ages local to the gene of interest (default of 1 Megabase around the gene), and a set of

mediating biomarkers that are estimated to be significantly associated with the expression of

the gene of interest through a QTL analysis. In accordance with previous studies that use

penalized regression methods [52,85,86], we only select the most significant gene-associated

mediators as adding too many potentially redundant features often leads to poorer predictive

performance. This feature selections also limits computational time. Through simulations, we

observed that including all SNPs local to the mediators results in lower predictive R2 compared

to the two-step regression method in MeTWAS (S12 Fig). These mediating biomarkers can be

DNA methylation sites, microRNAs, transcription factors, or any molecular feature that may

be genetically heritable and affect transcription.

Transcriptome prediction in MeTWAS draws from two-step regression, as summarized in

Fig 1A. Using the genotype local to these mediators, MeTWAS first trains a predictive model

for their intensities (i.e. expression, methylation, etc.) using either elastic net [26] or linear

mixed modeling [27]. In practice, we found that a simpler, one-step procedure of including all

variants local to both the gene and to potential mediators led to the distal SNP effects being

estimated as zero during the regularization process, even in simulations when the true distal

SNP effects were nonzero. We then use these predictive models to estimate the genetically reg-

ulated intensity (GRIn) of each mediator in the training set, through cross-validation. The

GRIns for each mediator are then included in a matrix of fixed effects. The effect sizes of the

GRIns on the expression of the gene of interest are estimated using ordinary least squares

regression, and then the expression vector is residualized for these effect sizes. Effect sizes of

variants local to the gene of interest are then estimated using elastic net or linear mixed model-

ing [26,27] on the residualized gene expression quantity. Details are provided in S1 Text.

Transcriptomic prediction using DePMA

Expression prediction in DePMA hinges on prioritizing distal-eSNPs via mediation analysis

for inclusion in the final DePMA predictive model, adopting methods from previous studies

[11,12,14]. A multi-omic dataset with gene expression, SNP dosages, and potential mediators

is first split into training-testing subsets. Based on the minor allele frequencies of SNPs and

total sample size, we recommend a low number of splits (less than 5).

In the training set, we identify mediation test triplets that consist of (1) a gene of interest,

(2) a distal-eSNP associated with the expression of the gene (default of P<10−6), and (3) a set

of mediating biomarkers local to and associated with the distal-eSNP (default of FDR-adjusted

P<0.05). We estimate the total indirect mediation effect (TME) of the distal-eSNP on the gene

of interest mediated through the set of these mediators, as defined by Sobel [87]. We assess the

magnitude of this indirect effect using a two-sided permutation test to obtain a permutation P-

value, as more direct methods of computing standard errors for the estimated TME are often
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biased [14,88]. We also provide an option to estimate an asymptotic approximation to the stan-

dard error of the TME and conduct a Wald-type test. This asymptotic option is significantly

faster at the cost of inflated false positives (see S1 Text and S13 Fig). Distal-eSNPs with signifi-

cantly large absolute TMEs are included with the local SNPs for the gene of interest in a predic-

tive model, fit using elastic net or linear mixed modeling [26,27]. These SNP effect sizes can

then be exported for imputation in external GWAS cohorts. Details are provided in S1 Text.

Transcriptomic imputation with MOSTWAS

In an external GWAS panel, if individual level genotypes are available, we construct the media-

tor-enriched genetically regulated expression (GReX) of the gene of interest by multiplying the

genotypes in the GWAS panel by the effect sizes estimated in a MOSTWAS model. This GReX

quantity represents the component of total expression that is attributed to germline genetics

and can be used in downstream TWAS to detect gene-trait associations.

Tests of association

If individual level genotypes are not available, then the weighted burden Z-test, proposed by

Pasaniuc et al and employed in FUSION [4,29], can be employed and applied to summary sta-

tistics. Briefly, the test statistic is a linear combination of the Z-scores corresponding to the

SNPs included in the MOSTWAS model for a gene of interest, where each individual GWAS

Z-score is weighted by the corresponding MOSTWAS effect size. The covariance matrix for

this weighted burden test statistic is estimated from the linkage disequilibrium between SNPs

in the eQTL panel or some publicly available ancestry-matched reference panels. This

weighted burden test statistic is compared to the standard Normal distribution for inference.

We implement a permutation test, conditioning on the GWAS effect sizes to assess whether

the same distribution SNP effect sizes could yield a significant association by chance [4]. We

permute the effect sizes 1,000 times without replacement and recompute the weighted burden

test statistic to generate permutation null distribution. This permutation test is only conducted

for overall associations at a user-defined significance threshold (default to FDR-adjusted

P<0.05).

Lastly, we also implement a test to assess the information added from distal-eSNPs in the

weighted burden test beyond what we find from local SNPs. This test is analogous to a group

added-last test in regression analysis, applied here to GWAS summary statistics. Formally, we

test whether the weighted burden test statistic for the distal-SNPs is significantly non-zero

given the observed weighted burden test statistic for the local-SNPs. We draw conclusions

from the assumption that these two weighted burden test statistics follow bivariate Normal dis-

tribution. Full details and derivations are given in S1 Text.

Simulation framework

We first conducted simulations to assess the predictive capability and power to detect gene-

trait associations under various settings for phenotype heritability (h2
p 2 f0:2; 0:5; 0:8g), local

(h2
l 2 f0:1; 0:25g) and distal heritability (h2

d 2 f0:1; 0:25g) of expression, and proportion of

causal local and distal SNPs (pc2{0.01,0.20}). We considered two scenarios for each set of sim-

ulation parameters: (1) an ideal case where the leveraged associated between the distal-SNP

and gene of interest exists in both the reference and imputation panel, and (2) a “null” case

where the leveraged association between the distal-SNP and the gene of interest exists in the

reference panel but does not contribute phenotype heritability in the imputation panel.
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Using genetic data from TCGA-BRCA as a reference, we used SNPs local to the gene ESR1
(Chromosome 6) to generate local eQTLs and SNPs local to FOXA1 (Chromosome 14) to gen-

erate distal-eQTLs for a 400-sample eQTL reference panel and 1,500-sample GWAS imputa-

tion panel, as in Mancuso et al’s twas_sim protocol [89]. We computed the adjusted predictive

R2 in the reference panel for the trained MeTWAS and DePMA models and tested the gene-

trait association in the GWAS panel using the weighted burden test. The association study

power was defined as the proportion of gene-trait associations with P<2.5×10−6, the Bonfer-

roni-corrected significance threshold for testing 20,000 independent genes across 1,000 simu-

lations under each set of simulation parameters. With these simulated datasets, we also

assessed the power of the distal added-last test by computing the proportion of significant dis-

tal associations, conditional on the local association at FDR-adjusted P<0.05. Full details are

provided in S1 Text.

Data acquisition

Multi-omic data from ROS/MAP. We retrieved imputed genotype, RNA expression,

miRNA expression, and DNA methylation data from The Religious Orders Study and Memory

and Aging Project (ROS/MAP) Study for samples derived from human pre-frontal cortex

[23,90,91]. We excluded variants (1) with a minor allele frequency of less than 1% based on

genotype dosage, (2) that deviated significantly from Hardy-Weinberg equilibrium (P<10−8)

using appropriate functions in PLINK v1.90b3 [92,93], and (3) located on sex chromosomes.

Final ROS/MAP genotype data was coded as dosages, with reference and alternative allele cod-

ing as in dbSNP. We intersected to the subset of samples assayed for genotype (at 4,141,537 var-

iants), RNA-seq (15,857 genes), miRNA-seq (247 miRNAs), and DNA methylation (391,626

CpG sites), resulting in a total of 370 samples. Again, we only considered the autosome in our

analyses. We adjusted gene and miRNA expression and DNA methylation by relevant covari-

ates (10 principal components of the genotype age at death, sex, and smoking status).

Genetic and gene expression data from PsychENCODE. For external validation and

comparison to BGW-TWAS, we obtained genetic and RNA-seq expression data from 646 con-

trol samples from the PsychENCODE project. Quality control and pre-processing of this data

has been described previously [38,39]. Gene expression data for all 646 samples was derived

from dorsolateral prefrontal cortex tissue and was residualized for the following covariates:

post-mortem interval (PMI), RNA integrity number (RIN), age, sex, the square of PMI, the

square of RIN, and 50 hidden covariates with prior, as estimated using Mostafavi et al’s meth-

odology [94].

Multi-omic data from TCGA-BRCA. We retrieved genotype, RNA expression, miRNA

expression, and DNA methylation data for breast cancer indications in The Cancer Genome

Atlas (TCGA). Birdseed genotype files of 914 subjects were downloaded from the Genome

Data Commons (GDC) legacy (GRCh37/hg19) archive. Genotype files were merged into a sin-

gle binary PLINK file format (BED/FAM/BIM) and imputed using the October 2014 (v.3)

release of the 1000 Genomes Project dataset as a reference panel in the standard two-stage

imputation approach, using SHAPEIT v2.87 for phasing and IMPUTE v2.3.2 for imputation

[95–97]. We excluded variants (1) with a minor allele frequency of less than 1% based on geno-

type dosage, (2) that deviated significantly from Hardy-Weinberg equilibrium (P<10−8) using

appropriate functions in PLINK v1.90b3 [92,93], and (3) located on sex chromosomes. Final

TCGA genotype data was coded as dosages, with reference and alternative allele coding as in

dbSNP.

TCGA level-3 normalized RNA-seq expression data, miRNA-seq expression data, and

DNA methylation data collected on Illumina Infinium HumanMethylation450 BeadChip were
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downloaded from the Broad Institute’s GDAC Firehose (2016/1/28 analysis archive) via Fire-

Browse [24,98]. We intersected to the subset of samples assayed for genotype (4,564,962 vari-

ants), RNA-seq (15,568 genes), miRNA-seq (1,046 miRNAs), and DNA methylation (485,578

CpG sites), resulting in a total of 563 samples. We only considered the autosome in our analy-

ses. We adjusted gene and miRNA expression and DNA methylation by relevant covariates

(10 genotype principal components, tumor stage at diagnosis, and age).

Summary statistics for downstream association studies. We conducted TWAS associa-

tion tests using relevant GWAS summary statistics for breast cancer-specific survival, risk of

late-onset Alzheimer’s disease, and risk of major depressive disorder. We also downloaded

GWAS and genome-wide association by proxy (GWAX) summary statistics for risk of major

depressive disorder (MDD) from the Psychiatric Genomics Consortium [45] and the UK Bio-

bank [46], respectively. IGAP is a large two-stage study based on GWAS on individuals of

European ancestry. In stage 1, IGAP used genotyped and imputed data on 7,055,881 single

nucleotide polymorphisms (SNPs) to meta-analyze four previously-published GWAS datasets

consisting of 17,008 Alzheimer’s disease cases and 37,154 controls (The European Alzheimer’s

disease Initiative–EADI, the Alzheimer Disease Genetics Consortium–ADGC, The Cohorts

for Heart and Aging Research in Genomic Epidemiology consortium–CHARGE, The Genetic

and Environmental Risk in AD consortium—GERAD). In stage 2, 11,632 SNPs were geno-

typed and tested for association in an independent set of 8,572 Alzheimer’s disease cases and

11,312 controls. Finally, a meta-analysis was performed combining results from stages 1 and 2.

We downloaded iCOGs GWAS summary statistics for breast cancer-specific survival for

women of European ancestry [51]. All studies and funders as listed in Michailidou et al [49,50]

and in Guo et al [51] are acknowledged for their contributions. Furthermore, we downloaded

GWAS summary statistics for risk of late-onset Alzheimer’s disease from the International

Genomics of Alzheimer’s Project (IGAP) [41].

Model training and association testing in ROS/MAP and TCGA-BRCA

Using both ROS/MAP and TCGA-BRCA multi-omic data, we first identified associations

between SNPs and mediators (transcription factor genes, miRNAs, and CpG methylation

sites), mediators and gene expression, and SNPs and gene expression using MatrixEQTL [99].

These QTL analyses were adjusted for 10 genotype principal components to account for popu-

lation stratification, along with other relevant covariates (age, sex, and smoking status for

ROS/MAP; tumor stage and age for TCGA-BRCA). For MeTWAS modeling, we considered

the top 5 mediators associated with the gene of interest, assessed by the smallest FDR-adjusted

P<0.05. For DePMA models, we considered all distal-SNPs associated with gene expression at

raw P<10−6 and any local mediators at FDR-adjusted P<0.05. Local windows for all models

were set to 0.5 Mb. For association testing, we considered only genes with significant non-zero

estimated total heritability by GCTA-LDMS [28] and cross-validation adjusted R2�0 across 5

folds. The MeTWAS or DePMA model with larger cross-validation R2 was considered as the

final MOSTWAS model for each gene. All other modeling options in MeTWAS and DePMA

were set to the defaults provided by the MOSTWAS package. Local-only modeling, unless oth-

erwise noted, is a default implementation of FUSION without considering Bayesian sparse lin-

ear mixed modelling (BSLMM), as BSLMM is computational expensive [4]. We consider

default PrediXcan and DPR modeling only in the comparison of recapitulated GWAS signals

in Alzheimer’s disease risk [3,40]. We downloaded BGW-TWAS weights from Luningham

et al [31] and imputed expression in the sample from the PsychENCODE project [31]. We

assessed predictive performance for both MOSTWAS and BGW-TWAS by computing McNe-

mar’s adjusted R2 between observed and imputed expression.
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Using ROS/MAP models, we first conducted TWAS burden testing in GWAS summary

statistics for late-onset Alzheimer’s disease risk from IGAP [41–44]. We subjected TWAS-

identified loci at P<2.5×10−6 to permutation testing, and any loci that persisted past permuta-

tion testing to distal variation added-last testing. Our significance threshold is a strict Bonfer-

roni-correction across 20,000 genes, representing the approximate protein-coding

transcriptome. We compared Alzheimer’s risk TWAS results from MOSTWAS with those

identified by BGW-TWAS. We similarly conducted TWAS for risk of major depressive disor-

der (MDD) using GWAS summary statistics from PGC (excluding data from 23andMe and

the UK Biobank) with the necessary follow-up tests. For any TWAS-identified loci that per-

sisted permutation in PGC, we further conducted TWAS in GWAX summary statistics for

MDD risk in the UK Biobank [46] for replication.

Using TCGA-BRCA models, we conducted TWAS burden testing [4,29] in iCOGs GWAS

summary statistics for breast cancer-specific survival in a cohort of women of European ances-

try. We subjected TWAS-identified loci at P<2.5×10−6 to permutation testing, and any locus

that persisted past permutation testing to distal variation added-last testing.

Model training and TWAS using BGW-TWAS

For comparison with MOSTWAS models trained with ROS/MAP data, we downloaded

BGW-TWAS models using ROS/MAP provided by Luningham et al [31]. To impute expres-

sion, as described by Luningham et al, we multiplied the genotype matrix by BGW-TWAS

weights, defined as the product of the weights and the posterior causal probabilities for each

SNP.

We independently trained BGW-TWAS models in TCGA-BRCA using the same sample of

563 individuals. We first defined independent genotype blocks using LDetect [100], generated

eQTL summary statistics for each block, and pruned the genome segments by selecting all

local blocks and ranking distal blocks by the minimum distal-eQTL P-value in each block. We

selected a maximum of 100 distal blocks with minimum distal-eQTL P-value less than 0.001.

Lastly, we trained the BGW-TWAS expression model using default parameters: 3 Expectation-

Maximization iterations, 10,000 burn-in MCMC iterations, 10,000 MCMC iterations, poste-

rior causal probability threshold of 0.0001, and non-informative hyperparameters for prior

causal probability (π = 10−5 for both local- and distal-eQTLs) and effect size variance (σ2 = 1

for both local- and distal-eQTLs). In TCGA, we also split the data into 3 training-test folds to

calculate a cross-validation R2, defined as the adjusted R2 between observed and predicted val-

ues. These settings and this procedure were also employed in training models in simulation

analyses.

Supporting information

S1 Text. Supplemental methods. Supplemental information about mathematical and techni-

cal details of methods.

(PDF)

S1 Fig. Comparison of TWAS power via simulations using MOSTWAS, BGW-TWAS, and

local-only models. (A) Proportion of gene-trait associations at P<2.5×10−6 using local-only

(red), BGW-TWAS (blue), and the most predictive MOSTWAS (green) models across various

local and distal expression heritability, trait heritability, and two setting of causal eQTL pro-

portion. (B) Proportion of significant gene-trait associations across the same simulation

parameters with no distal effect on the trait in the simulated external GWAS panel.

(PDF)
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S2 Fig. Comparison of predictive R2 in simulations. Mean adjusted R2 across various local

and distal expression heritability, trait heritability, and causal proportions using local-only

(red) and the best MOSTWAS (blue) models. The error bars reflect a width of 1 standard devi-

ation of the 1,000 simulated adjusted R2 values.

(PDF)

S3 Fig. Comparison of false positive rates in simulations. Boxplots of false positive rate (Y

-axis) across various distal expression heritability settings (X-axis), stratified by local expres-

sion heritability (horizontal) and causal eQTL proportion (vertically) and colored by the

method used to test gene-trait associations. These boxplots are from 20 simulations of 1,000

permuted phenotype traits in the simulated GWAS. The red line provides a reference at a false

positive rate of 0.05.

(PDF)

S4 Fig. Simulation analysis for the power of the distal variants added-last test. Across vari-

ous sample sizes for the eQTL reference (X-axis) panel and GWAS imputation panel (color),

the power of the distal added-last test to detect a significant association with distal variants

conditional on a significant local association at FDR-adjusted P<0.05.

(PDF)

S5 Fig. Manhattan plot for Alzheimer’s risk associations using MOSTWAS on IGAP sum-

mary statistics. Z-statistic of TWAS association on the Y-axis and chromosomal position of

gene on X-axis. Genes are colored red if overall P<2.5×10−6 and nominal permutation P<0.05

and labelled if distal association is significant at a Bonferroni threshold (a ¼ 0:05

18
¼ 0:0028).

(PDF)

S6 Fig. Gene-trait associations in iCOGs and PGCs using local-only and MOSTWAS mod-

els. −log10 P-values of weighted burden gene-trait associations using PGC MDD risk GWAS

in predominantly European-ancestry patients (A) and iCOGs survival GWAS in European-

ancestry women (B) and among genes that were predicted at cross-validation R2�0.01 using

both local-only and MOSTWAS models and have enough SNPs in summary statistics to con-

duct TWAS via weighted burden test. The X- and Y-axes display the −log10 P-values for local-

only and the best MOSTWAS model, respectively. Points are colored black if P-value of associ-

ation is less than or equal using the MOSTWAS model. The horizontal and vertical reference

lines indicate overall Bonferroni-corrected significance thresholds (P<2.5×10−6).

(PDF)

S7 Fig. Comparison of QQ-plots from TWAS associations. QQ-plots of Z scores from

TWAS for MDD in PGC (A) and breast cancer-specific survival in iCOGs (B) with local-only

models (left) and MOSTWAS (right)

(PDF)

S8 Fig. Comparison of QQ-plots from TWAS associations. QQ-plots of −log10 P-values

from TWAS for breast cancer-specific survival in iCOGs (left) and MDD in PGC (right) with

local-only models and MOSTWAS models.

(PDF)

S9 Fig. Comparison of cross-validation R2 of TCGA models using MOSTWAS and

BGW-TWAS. Scatterplot of cross-validation adjusted R2 of genes using MOSTWAS (X-axis)

and BGW-TWAS (Y-axis) models across 563 samples from TCGA-BRCA. The vertical and

horizontal dotted lines provide reference for R2 = 0.01 and the diagonal line is the 45-degree

line. Each point is colored blue if the gene has a higher R2 using the MOSTWAS model, gold if
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the gene has a higher R2 with BGW-TWAS, and grey if the R2 are equal. The proportion of

models by method with R2�0.01 across all imputed genes is provided.

(PDF)

S10 Fig. Comparison of eQTL architectures across LQK1, C6orf94, and TSC22D4. Manhat-

tan plot of genome-wide eQTL associations by −log10 P -values (Y-axis) and chromosomal

position (X-axis) at P<10−3. SNPs included in each predictive model are highlighted in green.

CV R2 under each type of MOSTWAS model is provided.

(PDF)

S11 Fig. Comparison of computation times between local-only and MOSTWAS modelling.

Mean and standard deviation of per-gene computation time across 50 randomly selected

genes in TCGA-BRCA. Computations here were done in serial on a 3.0 GHz processor with 8

gigabytes of RAM.

(PDF)

S12 Fig. Comparison of predictive ability of MeTWAS with one- and two-step regression.

Comparison of predictive performance (Y-axis) of two-step regression (labelled as MeTWAS)

and one-step regression (labelled no selection) across 100 simulations across various causal

proportions of eQTLs (vertically arranged), local expression heritability (horizontal), and distal

expression heritability (X-axis).

(PDF)

S13 Fig. Comparison of test power and computational speed of Sobel asymptotic and per-

mutation tests of total mediation effect. Power (Y-axis, left) and computational time (Y-axis,

right) to detect a true large absolute total mediation effect and computation speed over various

eQTL panel sample sizes (X-axis) in 10,000 simulations of mediation testing triplets.

(PDF)

S1 Table. Comparison of h2 across local-only, MeTWAS, and DePMA predictive models.

The mean and standard deviation of h2 across all genes that are significantly heritable with the

genetic loci considered in the design matrix of each predictive model.

(PDF)

S2 Table. Summary statistics for known Alzheimer’s risk-associated loci identified by

MOSTWAS models. TWAS associations (weighted Z-score and FDR-adjusted P-value) with

late-onset Alzheimer’s risk from GWAS statistics from IGAP. The top IGAP GWAS SNP in

the identified loci with its location and P-value are provided. For the 6 loci with significant

TWAS associations, the FDR-adjusted P-value for the follow-up distal SNP added last test is

provided.

(PDF)

S3 Table. Summary statistics for 18 Alzheimer’s risk-associated loci identified by MOST-

WAS models. TWAS associations with Alzheimer’s risk from GWAS statistics from IGAP

with P<2.5×10−6 and permutation P<0.05. The top IGAP GWAS SNP in the identified loci

with its location and P-value are provided.

(PDF)

S4 Table. Summary statistics for 11 MDD risk-associated loci identified by MOSTWAS

models. TWAS associations with major depressive disorder from GWAS statistics from Psy-

chiatric Genomics Consortium that were replicated with GWAX summary statistics in UK

Biobank with permutation test results and added-last Z-statistics with P<2.5×10−6 and permu-

tation P<0.05. The top PGC GWAS SNP in the identified loci with its location and P-value are
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