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Abstract

The environmental conditions of microorganisms’ habitats may fluctuate in unpredictable

ways, such as changes in temperature, carbon source, pH, and salinity to name a few. Envi-

ronmental heterogeneity presents a challenge to microorganisms, as they have to adapt not

only to be fit under a specific condition, but they must also be robust across many conditions

and be able to deal with the switch between conditions itself. While experimental evolution

has been used to gain insight into the adaptive process, this has largely been in either

unvarying or consistently varying conditions. In cases where changing environments have

been investigated, relatively little is known about how such environments influence the

dynamics of the adaptive process itself, as well as the genetic and phenotypic outcomes.

We designed a systematic series of evolution experiments where we used two growth condi-

tions that have differing timescales of adaptation and varied the rate of switching between

them. We used lineage tracking to follow adaptation, and whole genome sequenced adap-

tive clones from each of the experiments. We find that both the switch rate and the order of

the conditions influences adaptation. We also find different adaptive outcomes, at both the

genetic and phenotypic levels, even when populations spent the same amount of total time

in the two different conditions, but the order and/or switch rate differed. Thus, in a variable

environment adaptation depends not only on the nature of the conditions and phenotypes

under selection, but also on the complexity of the manner in which those conditions are com-

bined to result in a given dynamic environment.

Author summary

The environments in which organisms evolve typically fluctuate, in both predictable ways,

such as daily, seasonal and annual changes in, for example, temperature and photoperiod,

as well as in hard to predict ways, such as changes in the weather. Most laboratory evolu-

tion experiments evolve organisms in either constant environments, or environments that

change predictably, such as by serial dilution into fresh media periodically. To investigate

how unpredictable changes in the environment can affect an organism’s evolution, we
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designed a series of experiments where the environment alternated between two condi-

tions, either predictably, or randomly, with different timescales of switching. We then

evolved the budding yeast, Saccharomyces cerevisiae under these different conditions. We

found that the both the switch rate and the order of the conditions influences adaptation,

and that switching can both speed up and slow down adaptation. We also observed differ-

ent adaptive outcomes between populations, both at the genetic and phenotypic level,

even if populations spent the same amount of total time in the two different conditions,

but that the order and/or switch rate differed. These data suggest that adaptive outcomes

are dependent on the exact nature of the prevailing environmental conditions.

Introduction

How organisms evolve is a fundamental question in biology, and how they adaptively evolve in

response to changing environments is a question whose answer is central to rational vaccine

development [1], as well as to understanding the evolution of multiple antibiotic resistance

[2,3], the evolution of immune systems [4], and even heritability [5]. In nature, some environ-

mental changes are predictable, and organisms can evolve responses to such predictable

changes. For example, E. coli shows asymmetric anticipation of carbon sources, such that in

the presence of lactose, E. coli anticipates that maltose will soon become available, because this

is what has been repeatedly experienced in the mammalian gut. Mechanistically, this is due to

lactose modestly inducing the genes required for maltose metabolism [6]. However, when wild

E. coli are grown under laboratory conditions, which typically lack this selective pressure, this

“anticipation” is lost as the strain undergoes domestication [6]. Likewise, circadian clocks are

thought to provide a fitness benefit, allowing organisms to adapt physiologically to diurnal

changes in light, temperature, and humidity [7]. In Cyanobacteria, the benefit of a circadian

clock can only be maintained in the lab by continued exposure to a rhythmic environment [8].

Environmental change may vary based on the frequency of switching, and whether the switch-

ing is random or predictable–one way in which organisms can adapt to deal with environmen-

tal uncertainty is by bet hedging, whereby by the stochastic switching between different

phenotypic states can allow a portion of a population to be more fit under a certain environ-

ment[9]. It has been experimentally shown that bet-hedging approaches that resulting in

greater average fitness across environments can be engineered [10] or evolved [11,12], and

there is a rich theory on bet hedging as a strategy to survive in variable environments that

switch more rapidly than can be kept up with through mutation and selection alone [13,14].

Experimental Microbial Evolution (EME [15]; also referred to as Adaptive Laboratory Evo-

lution (ALE)) is a prospective approach to studying adaptive evolution in the laboratory and

was first used ~140 years ago [16]. EME has been used to address fundamental evolutionary

questions, such as the rate at which beneficial mutations fix [17], and the influence of both

ploidy [17] and sex [18] on that rate. High-throughput sequencing has made it possible to

establish at high resolution how mutations accumulate in co-evolving lineages, revealing clonal

interference, with hundreds or thousands of beneficial lineages competing [19–22], sometimes

even with multiple lineages persisting in a quasi-stable state for thousands of generations [23].

While EME has provided many insights into the evolutionary process (see [24,25] for reviews),

such experiments have typically been performed in either constant environments (such as the

chemostat), consistently fluctuating environments (as in by serial transfer), or in environments

where a variable of interest changes monotonically over either time, as in a morbidistat[26], or

over space, as in the mega-plate experiment [27]. However, outside of the laboratory organ-

isms are almost never challenged to adaptively evolve in such predictable environments, but
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rather must cope with variability and stochasticity. To date, only a few EME studies (see [28]

for review) have sought to determine either how microbes adapt to unpredictable changes in

the environment, or what characteristics of such changes might be important in influencing

adaptation. For example, when Pseudomonas fluorescens was evolved in variable environ-

ments, switching between contrasting carbon sources (xylose and mannose), it was found,

contrary to expectation, that populations frequently evolved to be niche specialists, and

became adapted to the less favorable carbon source [29]. By contrast, when evolving in a het-

erogeneous environment containing multiple carbon sources, adaptation converged on the

most productive carbon source [30]. In another example, a recent study investigated the fitness

of the yeast deletion collection under different time scales of periodic environmental change

and showed that some mutants are better at dealing with the environmental switch itself, sug-

gesting that it is possible to evolve genotypes that are adapted to change, per se [31]. To date no

study has characterized the dynamics of evolution during adaptation to a changing environ-

ment or asked specifically how these dynamics might change as a function of the switch rate

and strength of selection.

To fill this gap, and to improve our knowledge of how dynamic environments impact the

evolutionary process, a systematic (for a given set of environments) exploration of the parame-

ters of dynamic environments is needed, to determine how these parameters affect evolution-

ary dynamics, and the fitness effects of adaptive mutations across environments. Here we

present a series of experiments that explore evolution during switching between two environ-

mental conditions (glucose-containing medium with fluconazole, vs. medium containing etha-

nol/glycerol with no drug), varying two important parameters: 1) the degree of randomness of

the switches between the two conditions, and 2) the consecutive time spent in each condition.

Using DNA barcode-based lineage tracking we followed the evolutionary dynamics in 8 differ-

ent environmental scenarios, investigating the statistics of the evolutionary dynamics, and

determining the phenotypic and genotypic characteristics of adaptive mutants arising in each.

We found that the speed of adaptation is influenced by the rate of switching between condi-

tions, and that different switching dynamics could lead to the selection of clones with very dif-

ferent behaviors in each environment. Finally, we found that different environmental

sequences select for different phenotypic and genotypic outcomes; for example, a randomly

switching environment tended to select for generalists, while a consistent strong selection in a

non-switching environment selected for specialists.

Results

Experimental design and overview

We evolved, by serial transfer, barcoded diploid yeast populations in dynamic environments

built using two single environment blocks (see Fig 1 for experimental design), varying two

main parameters: i) the time spent in each particular environment, relative to the timescale of

adaptation within that environment and ii) the periodicity/randomness of the switching

between environments. We defined the timescale of adaptation as the evolutionary time

required for a certain fraction of the population to be adaptive within a given environment: for

diploid yeast evolving by serial transfer in synthetic complete (SC) medium with 2% glucose

+ 4 μg/ml Fluconazole (hereafter referred to as “Fluconazole”), ~20% of the population is

adaptive after 48 generations, while, in SC medium with 2% glycerol and 2% ethanol (“Gly/

Eth”), the timescale of adaptation is much longer: ~15% of the population is adaptive after 144

generations (Fig 2A and Humphrey, Hérissant et al, in prep.). The timescale of adaptation for

these two environments is thus 48 and 144 generations respectively. We designed 8 different

evolution experiments (Fig 1) that combined the Fluconazole and Gly/Eth environments,

PLOS GENETICS Environmental complexity influences adaptation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009314 January 25, 2021 3 / 27

https://doi.org/10.1371/journal.pgen.1009314


chosen specifically because of their different timescales of adaptation. The first two experimen-

tal sequences were designed so that environmental blocks are periodically switched, with con-

secutive time spent in each on the order of the time scale of adaptation (switch_adap1 and

switch_adap2): 144 consecutive generations in Gly/Eth and 48 consecutive generations in Flu-

conazole. The next two sequences were designed so that blocks were periodically switched at a

rate that is 6-fold faster than the previous sequence; thus the consecutive time spent in each

environment was 6-times shorter than the time scale of adaptation (periodic_smaller1 and per-

iodic_smaller2): 24 consecutive generations in Gly/Eth and 8 consecutive generations in Flu-

conazole. We also designed one experiment with random switching between environments,

with blocks for which the duration of residence is of the magnitude of the time scale of adapta-

tion (random_adap1), and two experiments that randomly switch between blocks of environ-

ment, for which the duration of residence in each environment is less than the time scale of

adaptation (random_smaller1 and random_smaller2). We also designed an experiment that

combined the two block environments, i.e. SC with 2% glycerol, 2% ethanol and 4μg/ml Flu-

conazole (Mix–note, there is no glucose present in this environment), as well as evolved popu-

lations in either Gly/Eth, or in Fluconazole, with no switching.

Barcoded populations of diploid yeast were then evolved for 192 generations in each of the

8 different sequences of switching environments. The yeast populations contain two barcodes,

such that one (BC1, low diversity) encodes the identity of the evolution experiment itself,

while the second (BC2, high diversity) is used for lineage tracking within the evolution experi-

ment, to distinguish lineages from one another. We characterized the early stages of adaptation

in different dynamic environments using lineage tracking [19] to follow the population

dynamics. We also isolated 336 clones from generation 192 of each evolution, determined

their barcodes (see Methods), and pooled unique clones for which we could recover a barcode

sequence–there were a total of 1,578 clones in this pool. To understand phenotypically how

clones from different experiments had adapted to different environmental sequences, we then

remeasured the fitness of all clones in this pool in 5 environments: Fluconazole, Gly/Eth, Mix,

five switching cycles of 8 generations in Fluconazole and then 24 in Gly/Eth (1:3), two switch-

ing cycles of 8 generations in Fluconazole and then 8 in Gly/Eth (1:1) (Figs 3 and S1 and S2).

The rationale behind remeasurement in the 1:1 environment was to determine if there has

been selection for a phenotype related to their ability to switch between environments, instead

of fitness in one of the two environment blocks per se. Pooled fitness remeasurement experi-

ments were performed in triplicate as previously described [32], and also included known

Fig 1. Experimental design. Each experiment with a fluctuating environment was constructed using blocks of 8 generations in Fluconazole and 24 generations in

Gly/Eth. At the end of 192 generations, the total time spent in Fluconazole is 48 generations and 144 generation in Gly/Eth, for switch_adap1, switch_adap2,

periodic_smaller1, periodic_smaller2 and random_smaller2 experiments. By contrast, in random_adap1 and random_smaller1 the total time spent in Fluconazole is

24 generations, with 168 generations in Gly/Eth. Two additional experiments, which did not switch between environments, were also carried out. Clones isolated

from each experiment were pooled, and then had their fitness remeasured under 5 different conditions (right).

https://doi.org/10.1371/journal.pgen.1009314.g001
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neutral barcoded clones, barcoded adaptive yeast from a Fluconazole only evolution and bar-

coded adaptive yeast from a Gly/Eth only evolution as controls. Neutral clones in our experi-

ments are defined as clones that show behavior in the 5 environments similar to known,

unevolved neutral clones (S3 Fig). Fitness was determined as described previously [33]–note,

fitness is per cycle, such that in the 1:1 or the 1:3 environments, there is a single value for the

cycle across both conditions, rather than two values.

The dynamics of adaptation are affected by the environmental dynamics

Visual inspection of lineage trajectories suggested that while each sequence of environments

gave rise to distinct lineage dynamics (Fig 2A), some environmental sequences gave rise to

similar lineage behaviors. For example, lineage trajectories from periodic_smaller1 and

Fig 2. A] Lineage tracking data for a subsample of 300 lineages for each experiment over the course of 192 generations. Colored lines correspond to lineages for

which single colonies were later isolated; white lines correspond to a randomly selected set lineages which were not sampled for fitness remeasurement. Dashed lines

represent sampled time points. Environments are indicated by the color strips above each graph, with colors as in Fig 1. B] Shannon-Wiener index, calculated using

frequencies for all lineages in each experiment. C] Strength of selection. 336 lineages were randomly picked from each experiment at generation 192, and we

determined the fraction that were non-neutral (y-axis) and how many unique barcodes there were, out of 336 (x-axis). Error bars indicate error based on counting

statistics. D] Similarity of experimental conditions. Kolmogorov Smirnov distances were calculated between all the experimental conditions based on the fitness

remeasurement data (see Methods for details). The distance matrix was hierarchically clustered.

https://doi.org/10.1371/journal.pgen.1009314.g002
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periodic_smaller2 behave similarly possibly because their sequences of environment are essen-

tially the same, except they are offset from one another by a single environmental block. Like-

wise, switch_adap2 and random_adap1 display visually similar lineage trajectories, likely

because the lengths of the environmental blocks are similar (on the order of timescale of adap-

tation). By contrast, trajectories from periodic_smaller1 and periodic_smaller2 clearly differ

from those of switch_adap2 and random_adap1. To further investigate similarities and differ-

ences between conditions, we classified the environments into 3 groups: strong selection,

intermediate selection and weak selection, based on the change in Shannon-Wiener index

(also known as Shannon’s diversity index) during the evolution (Fig 2B), and both the rate at

which neutral lineages went extinct and the diversity of adaptive lineages after 192 generations

(Fig 2C). Under strong selection (switch_adap1, Mix (which both initially contain Flucona-

zole), and random_smaller1), the diversity tends to crash early and populations are rapidly

taken over by a few, fit lineages, with neutral lineages going rapidly extinct. Indeed, after 192

Fig 3. Fitness remeasurement shows different types of interaction between environments according to the time scale. All correlations are Pearson

correlation. A] Fitness measurement for Gly/Eth and Fluconazole for 40 uninterrupted generations shows no particular correlation between environments. B]

When fitness measurement is performed on a smaller timescale in the context of switching there is a net negative correlation between the two environments.

Grey braces indicate when the fitness was measured.

https://doi.org/10.1371/journal.pgen.1009314.g003
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generations the 100 most abundant lineages are 84%, 80%, and 80% of these populations

respectively. By contrast, in the weak selection environments (periodic_smaller1, periodic_s-

maller2) the diversity decreases around 160 generations and only a few lineages increased in

frequency; after 192 generations the 100 most abundant lineages represent only 6.7% or 2.7%

of the populations respectively. Under intermediate selection (switch_adap2, random_adap1

and random_smaller2) many more lineages significantly change their frequencies, while there

is still diversity in the isolated lineages: the top 100 lineages at generation 192 represent 20%,

32% and 13% of the total populations for those experiments respectively. Under weak selection

(periodic_smaller1 and periodic_smaller2), diversity stays high through 192 generations and

only a few lineages rise in frequency. We also used the Kolmogorov-Smirnov distance between

experiments (based on the fitness remeasurement data) to characterize their relatedness (Fig

2D). These groupings are largely consistent the categorization in Fig 2C, with the exception of

random_smaller2, which switched between groups. In random_smaller diversity drops later

than in the other conditions with which it was grouped in Fig 2C, and when it does decline, it

falls precipitously, likely driven by the emergence of a highly fit lineage that is almost fixed by

192 generations (Fig 2A).

Environmental switching can limit the increase in frequency of adaptive

lineages

The fitness remeasurement data allow us to better understand the differences in evolutionary

behavior between different environments, how clones evolved in one environment fare in

another, and how a change in environment affects fitness and adaptation (and possibly also

evolvability). For clones isolated from any of the environments, other than the consistent Flu-

conazole environment, we observe no strong deleterious fitness effects when fitness is measured

in a single environment block for either of the two conditions (Figs 3A and S4). By contrast,

there is a strong negative correlation between these two conditions when fitness is measured in

the context of a switching environment, such that clones often display a fitness cost in the flu-

conazole portion of the environment (Fig 3B; for full data see S5 Fig). In Fig 3A, fitness is mea-

sured over 40 consecutive generations in each condition separately (see S1 Fig), but in Fig 3B

fitness in Fluconazole is measured over 8 generations in between 24 consecutive generations in

Gly/Eth, and fitness in Gly/Eth is measured following 8 generations in Fluconazole. This change

of fitness behavior results in fewer beneficial lineages rising to high frequency in periodic_smal-

ler1 and periodic_smaller2. The deleterious effect results from the 8 generations in Fluconazole

rather than the 24 generations in Gly/Eth (see S6 and S7 Figs). Indeed, fitness in the 24 genera-

tions in Gly/Eth (separated by Fluconazole) and 40 generations in Gly/Eth without switching is

largely the same (S7 Fig). By contrast, fitness in the Fluconazole environment over 8 generations

(with a switch to Gly/Eth in between) is not strongly correlated with fitness in the Fluconazole

over 40 generations with no switching (S6 Fig). The effect of environment switching is also evi-

dent in the lineage abundances, as observable ‘zig-zag’ patterns in the fitness remeasurement

experiments (S1 Fig, bottom two panels). We hypothesize that at small timescales we are observ-

ing the effects of the switch rather than of the environments themselves; for example, the switch

may lead to a change in lag phase, dependent on the new environmental block. Such a change

then appears to slow down adaptation in these rapidly switching conditions.

Environmental switching can result in adaptive lineages reaching high

frequency

As discussed above, sometimes environmental change can elicit a fitness cost, which can

decrease the number of lineages reaching high frequency. However, in switch_adap2 and
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random_smaller2, a changing environment appears to result in a larger number of lineages

reaching high frequency (Fig 4). In both switch_adap2 and random_smaller2, we observe little

adaptation in Gly/Eth before entering the Fluconazole block, but then substantial increases in

the frequencies of some lineages either at or immediately following the environment switch.

These lineages show significant beneficial fitness effects in Gly/Eth (Fig 4). It is possible that

selection for lineages with modest fitness benefits in the Gly/Eth condition incidentally selects

generalists that also have increased fitness in Fluconazole–indeed, we see strong evidence for

this, in that clones isolated from the Gly/Eth condition alone show fitness benefits in the Flu-

conazole fitness remeasurement consition (S4 Fig). The stronger selective pressure in the Flu-

conazole condition compared to Gly/Eth (see difference of scale in fitness S2B Fig) might then

be the reason for this behavior, as both neutral and non-generalist lineages are then rapidly

Fig 4. A change in the environment aids selection of lineages with high fitness in Gly/Eth. A] Lineages isolated from

switch_adap2 having an average slope per cycle smaller than 0.08 in the Gly/Eth environment during the evolution yet have a

remeasured fitness per cycle in Gly/Eth of> 0.2. Those fit Gly/Eth mutants were not able to reach high frequency in 144

generations in Gly/Eth, yet considerably increased their frequency during 48 generations in Fluconazole. B] A similar

phenomenon is seen in Random_smaller2. The Fluconazole episode has reshuffled lineage frequencies: some frequent lineages

decrease, while others increase. When the population goes back to Gly/Eth, a large increase in frequency can be seen.

https://doi.org/10.1371/journal.pgen.1009314.g004
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outcompeted in the face of the drug. Alternatively, some lineages may be good at switching, or

instead might opportunistically take advantage of a dip in the population mean fitness due to

the environmental switch. We note (see below) that in the mixed environment that generalists

do indeed emerge (Fig 5), which would be consistent with the first of the above scenarios,

while not ruling out the second.

Different sequences of environment select for different phenotypes

To further understand how the sequence of environments affects the types of fitness benefits

that are selected, we performed Principal Components Analysis on the fitness remeasurement

data for all of the isolated mutants in the 5 remeasurement conditions; the first two principal

components explain 89% of the variance (Fig 5A). Based on their fitness profiles, we defined

seven clusters of clones (see Methods, S8–S10 Figs for threshold dependence), and examined

the fitness of the clones in each cluster in each condition (Fig 5B and 5C). Cluster 3 contains

clones that are modestly more fit in all remeasurement conditions, while Cluster 5 contains

clones with extreme beneficial fitness in all the remeasurement environments, suggesting

clones in both clusters are generalists. By contrast, clones in cluster 7 have very high fitness in

fluconazole and the mixed environment, but generally neutral fitness in Gly/Eth. Cluster 4

clones shows fitness benefits in the mixed environment, but more modest fitness gains in the

switching environments (1:1, 1:3), while clones in cluster 6 show extreme fitness gains in the

switching environments (1:1, 1:3), high fitness in the Gly/Eth environment, but small/average

fitness in the others. Finally, cluster 1 clones only show fitness benefits in Fluconazole, with

strong trade-offs in the switching environments and the Gly/Eth environment; notably, none

of the other clusters showed marked trade-offs in any of the environments. Clones from a

given evolving environment map to one or occasionally two clusters (Fig 5D), while some

evolving environments share some cluster usage. For example, strong initial selection for a

“long” time in Fluconazole in both the Mix and switch_adap1 environments selects for similar

phenotypes in cluster 7. By contrast, a “long” time in Gly/Eth followed by a “long” time in Flu-

conazole may explain the similar usage of cluster 3 for clones from switch_adap2, Random_

adap1 and random_smaller2. Finally, cluster membership for clones from both periodic_

smaller1 and periodic_smaller2 is similar (clusters 3 and 4) and shares some properties with

cluster membership of clones from random_smaller1, another sequence built with blocks of 8

generations in Fluconazole.

The dynamics of the changing environment affects both the beneficial

mutational spectrum and adaptive outcomes

We sequenced the whole genomes of adaptive clones isolated from generation 192 from each

evolution (7 to 51 uniquely barcoded clones per environment, for a total of 198 sequenced

clones; of these, 112 had reliable fitness estimates, and 81 were considered to be non-neutral in

at least one of the remeasurement conditions, i.e. adaptive); across all 198 sequenced clones,

we identified a total of 482 mutations. From these, we identified genes that were recurrent tar-

gets of mutation, as they are most likely to be beneficial (Table 1). The pair of paralogous zinc

finger transcription factors encoded by PDR1 and PDR3, mutations in which are known to

result in pleiotropic drug resistance, were frequent targets of adaptation in switch_adap1,

switch_adap2, and Mix, likely due to selection in a “long” consecutive period in Fluconazole.

Conversely, we observed frequent, heterozygous, likely loss of function mutations in HEM3 in

the periodic_smaller1 and random_smaller1 environments, which spend “short” amounts of

consecutive time in Fluconazole, and for which the main fitness contribution likely comes

from Gly/Eth environment. HEM3 encodes porphobilinogen deaminase [34], which catalyzes
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the third step in heme synthesis [35]. Heme is a cofactor needed for a wide variety of biological

processes, including respiration and ergosterol biosynthesis; HEM3 is essential in media lack-

ing specific supplements and knockout mutants both lack ergosterol and fail to respire. It is

Fig 5. Fitness clusters. A] PCA analysis of combined fitness data. Each clone is represented by a five-dimensional vector of fitness

values, which is projected onto a 2D space using PCA. Clones with similar fitness vectors are close together and clones from the same

experiment are frequently close to one another (switch_adap2, random_smaller2, random_adap1 or fluconazole). B] Distribution of

fitness effects in the different remeasurement experiments for each cluster (see S8C Fig for cluster membership). C] Spider plot of

cluster characteristics in the different remeasurement experiments, indicating (in black) the percentile rank of the median fitness for

each cluster in a given remeasurement environment. For example, cluster 1 is highly specialized in Fluconazole whereas cluster 5 is

describing generalist behavior type. White lines indicate neutral fitness in each environment. D] Spider plot indicating the fraction of

isolated clones in each cluster from each evolution environment.

https://doi.org/10.1371/journal.pgen.1009314.g005
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unclear why decreased heme biosynthesis might be adaptive in the respiratory conditions of

the Gly/Eth environment; heme is a cofactor of cytochrome C, which is responsible for the

transfer of electrons between complexes III and IV in the electron transport chain. Heme is

also a co-factor for cytochrome C peroxidase, which contributes to mitochondrial detoxifica-

tion of hydrogen peroxide. A decreased rate of heme biosynthesis likely benefits one or both of

these respiratory processes, resulting in increased fitness in the presence of a non-fermentable

carbon source. Strikingly, heme is also required for sterol production (e.g. [36]), and flucona-

zole itself inhibits ergosterol production, through the inhibition of the heme containing pro-

tein cytochrome P450, encoded by ERG5. Clustering of the fitness data for the sequenced

clones shows that all but one of the HEM3 mutants show a fitness trade-off in the fluconazole

containing environments, except for the Mix environment (Fig 6). This suggests that the

trade-off is not due to fluconazole itself, but instead is likely due to the switch of carbon source,

and that the HEM3 loss of function fitness benefit is specific to an environment where respira-

tion is required.

In addition to the nature of the periodic environment influencing the beneficial mutational

spectrum, it also influences the nature of adaptation itself, specifically in regard to the emer-

gence of generalists (which have positive fitness in both growth conditions) vs. specialists

(which are fit in only one or a few of the growth conditions). First, we note that selection for

Table 1. Genes mutated at least twice by 2 different non-synonymous mutations (FRS = frame_shift).

Periodic_ Random_

Gene adap1 adap2 smaller1 smaller2 adap smaller1 smaller2 Mix

PDR1 T817K, A763E, L878S, C756S

F769L, Q274R, G280V, P298L

Y270S, S753C, L1056P

R310W, T243A, S814Y, L537F

N234K

K253E

T817K

P870L

N234K

HEM3 L318M D218E

K267(FRS)

P108L

G133R

G250(FRS)

E65K

A181D

V132M

PDR3 V219A

H964P

L708F K272N

V954F

G948S

TMN2 P522T V633M

SGD1 D284Y

M641V

SPT23 E122K N348K

MNE1 Q284L P121S

LAP3 D421N H247Y

KAP114 I107L I335L

MGM1 D841Y

L626V

VID27 D737A R62K

SAN1 R183K

R185K(FRS)

YHR028W-A S73C

S73A

DYN1 P3506S

A2554T

RPO31 P507A,

E516Q

https://doi.org/10.1371/journal.pgen.1009314.t001
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generalists is order dependent (Fig 3). Indeed, strong selection for Fluconazole at the begin-

ning of switch_adap1, followed by selection in Gly/Eth enriched the population for lineages

with high fitness in Fluconazole but approximately neutral fitness in Gly/Eth. Conversely,

growth in Gly/Eth, followed by growth in the presence of Fluconazole selects for generalists,

that are highly fit in Gly/Eth, with even modest fitness benefits in Fluconazole; in addition, a

few mutants with high fitness in Fluconazole, of a similar magnitude to those selected in

switch_adap1, also had time to be selected (S2A and S4 Figs). This kind of generalist also arose

during evolution in a consistent Gly/Eth environment (S2 and S4 Figs), despite the lack of

selection in the Fluconazole environment; however, the converse is not true–clones selected in

fluconazole do not show fitness gains when measured in Gly/Eth (S2 and S4 Figs), suggesting

the most fit clones in Fluconazole are not generalists. Finally, a group of mutants that have

high fitness in both Fluconazole and Gly/Eth arose in the Mix experiment, but those strategies

were rarely observed in switch_adap1 or 2 (S2 Fig).

Discussion

Our data demonstrate that a population’s adaptation to a changing environment depends on

the order and tempo of environmental change and the strength of selection exerted by the

environment. We defined our environmental sequences using two parameters: residence time

in each environment and periodicity/randomness of the switches between environments. In

doing so, we shed light on how those parameters influence the outcome of adaptation in

dynamic environments.

Adaptation in a varying environment will also be influenced by the joint distribution of fit-

ness effects for adaptive mutations in each of those environments–that is, the fitness effects of

all beneficial mutations from any given environment as measured across the other environ-

ment(s). If there is strong antagonistic pleiotropy between two environments, then the most fit

mutations in the first environment will be strongly selected against in the second environment.

The evolutionary outcome will thus depend on the time scale of adaptation relative to the

switching frequency–if sufficient time is spent in the first environment for adaptive mutations

to reach high frequency, the second environment is likely to subsequently select for compensa-

tory mutations that alleviate their deleterious effects. Conversely, if a short time is spent in the

first environment relative to the time scale of adaptation, the second environment will instead

likely cause such mutants to go extinct. In both cases, adaptation is likely to slow down. The

joint distribution of fitness effects will depend on the nature of the specific environments–cor-

related, or even uncorrelated environments may not greatly constrain adaptation, while we

expect that anticorrelated environments will.

Our study also highlights the importance of the order of environmental conditions in deter-

mining evolutionary outcomes. We explored the simplest of ordering possibilities–with only 2

environments, one ordering is simply a shift of the alternate order. Even so, we detect a strong

influence (1 then 2 or 2 then 1, i.e. switch_adap1 and _2) at small time scales, probably driven

by the difference of fitness scale between the two blocks in switch_adap1 and 2 (S2 Fig). The

fact that we do not see any fit clones for Gly/Eth in switch_adap1 might stem from the fact that

many lineages are at high frequency after the fluconazole environment: under such conditions

it becomes hard to capture the rise of mutants of small to medium fitness effect, as they are

swamped by the high frequency lineages. In switch_adap2, we observe the opposite: at the end

Fig 6. Hierarchical clustering of clone fitness data. Fitness remeasurement data, per cycle, for each clone that had reliable data in all five remeasurement conditions

and at least one mutation in a gene that was recurrently mutated, were hierarchically clustered. The presumptive adaptive mutation(s) in each clone is indicated on the

right, and the gene names are colored by the evolution experiment from which they were isolated.

https://doi.org/10.1371/journal.pgen.1009314.g006
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of the first environment, Gly/Eth, lineages had not reached high frequencies, and they then

encountered a new environment, Fluconazole, for which mutations with a much higher fitness

effect could be selected. Nonetheless, we were unable to comprehensively determine how envi-

ronment order influences adaptation. For example, environment order may become more rel-

evant over a longer time scale, with more switches between environments, and for a

population to become adapted to a well-defined, repetitive sequence of environments, the pop-

ulation should likely face this repeated sequence many times. Indeed, to fully understand the

influence of dynamic environments on adaptation, the time scales required may be orders of

magnitude longer than needed for non-switching environments. This has two main conse-

quences for our experiment:

First, as our experimental approach relied on having barcode diversity remaining in the

population, both for lineage tracking to follow the trajectories, and fitness remeasurement (we

require that lineages have different barcodes to be able to remeasure their fitness in pooled

fashion), by necessity we had to focus on short-term (192 generations) evolution. Indeed, we

continued the evolutions for 576 generations but only one or two lineages remained. Further-

more, those lineages were already the most abundant at generation 192, meaning that lineage

tracking beyond generation 192 has limited power to observe ongoing adaptation (S11 Fig).

Moreover, those lineages that fix (or nearly so) by generation 576 are already “special” by gen-

eration 192, in that they are somewhat distinct from the clusters to which they belong in the

PCA projection.

Second, due to the changing environment, it is challenging to measure fitness from the line-

age trajectories during the evolution itself and it is therefore difficult to estimate the shape of

the Distribution of Fitness Effects (DFE). Using Maximum Likelihood inference on the lineage

tracking data is less informative than when analyzing such trajectories resulting from evolution

in a consistent environment. This is because in our case, four models (rather than two), have

to be considered, capturing the behavior of each lineage in the different conditions as either:

neutral in both, neutral then adaptive, adaptive then neutral, or adaptive then further adaptive.

Distinguishing between these models is challenging, as the number of data points available to

reconstruct the distribution is low. Even more challenging is the uncertainty on the identity of

the remeasured clone–for example, is it representative of the lineage from which it comes? We

developed an algorithm for Maximum Likelihood inference of dynamics in our changing envi-

ronment data that highlight the limitations of our capacity to analyze the data that way. The

power and flaws of such algorithm are depicted on simulated data (S12–S20 Figs) and applied

to our data (S21–S25 Figs).

Both of those limitations inherent to exploring long time scales of adaptation using barcod-

ing approaches would likely be mitigated by using an approach that allows either periodic

introduction of additional barcodes (as in [37]), or allows modification of barcodes over time

(e.g. [38]), to maintain barcode diversity within the evolving populations, and measuring fit-

ness of isolated clones in each of the environments at each environmental switch.

Conclusions

We characterized the impacts that dynamic environments can have on adaptation and found

that switching between conditions with different dynamics can influence adaptation at multi-

ple levels. We found that the rate of adaptation itself is influenced by switching, and that adap-

tation could speed up or slow down, depending on the rate of switching. When switching was

fast relative to the timescale of adaptation within a condition alone, adaptation was generally

slowed down, while a slower switching rate could speed up adaption. We also found that the

order of conditions influenced the adaptive outcome: that is, conditions are not commutative,
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similar to the idea of priority effects in the field of ecology, such that it matters what happens

first. Specifically, we found that the order could influence whether generalists were selected

over specialists. Finally, different targets of adaptation were selected in different dynamic envi-

ronments (even when the same amount of time had been spent in each of the different condi-

tions), necessarily resulting in different phenotypic outcomes.

Methods

Yeast barcode library construction

We used 8 independently constructed barcoded diploid yeast libraries (Humphrey, Hérissant

et al., in prep.) each containing ~500,000 unique barcodes. Each of these libraries bears two

types of barcode: a low diversity barcode that is uniquely associated to a library and a high

diversity of barcodes that is associated to a specific lineage within a library. Humphrey, Héris-

sant et al. first introduced the low diversity barcode as part of the landing pad (see [19]), before

the introduction of the high diversity barcode. Once the low diversity barcode was introduced,

the high diversity barcode was incorporated for each strain carrying a different low diversity

barcode separately.

Construction of the ancestor strain

Briefly, Humphrey, Hérissant et al. (in prep.) generated the ancestral strain for barcoding by

first crossing strain SHA321 [39], which carries the pre-landing pad, Gal-Cre-NatMX, at the

YBR209W locus [19] and the strains HR026d (see S1 Table for genotype) which contains the

Magic Marker [40].

Matα spores derived from this cross were grown on Nourseothricin, to select for the pre-

landing pad, which contains Gal-Cre-NatMX, and then backcrossed to FY3 [41] five times,

each time selecting for NatMX and Canavanine. Spores derived from the final backcross were

after one more mating with FY3 was performed to obtain the diploid ancestor (Strain

GSY6699). This last cross allowed us to obtain a diploid strain heterozygous for the YBR209W

locus, containing one copy of the wild type locus and one copy with the pre-landing pad.

Construction of barcoded landing pad strains

From the ancestor diploid strains, a low diversity barcoded landing pad was introduced. The

landing pad contained lox66, an artificial intron, the 3’ half of URA3 and HygMX along with

the low diversity barcode.

To introduce this landing pad, Humphrey, Hérissant et al.(in prep.) amplified by PCR the

fragment of interest from the plasmid library L001 (~75,000 barcodes) [39]. The PCR fragment

was inserted into the genome by homologous recombination, using NatMX as a selectable

marker. After selection using Hygromycin, the grown colonies, that were the Barcoded Land-

ing pad strains, were isolated and saved for subsequent introduction of the high diversity

library of DNA barcode.

Construction of high diversity libraries and final pool

Each individual diploid barcoded landing pad was then transformed using the plasmid library

pBAR3-L1 (~500,000 barcodes) [19]. This plasmid carries lox71, a DNA barcode, an artificial

intron, the 5’ half of URA3, and HygMX. Transformants were plated onto SC +Gal–Ura, to

allow expression of the Cre recombinase, which is under the GAL1 promoter. The recombina-

tion between lox66 and lox71 is irreversible and brings the two barcodes in close proximity to

form an intron within the complete and functional URA3 gene. Per landing pad strain, we
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generated between ~10,000 and 250,000 transformants. The plates were scraped, and transfor-

mants from each plate were stored separately in glycerol at -80˚C.

Experimental evolution

The final pools, each containing ~500,000 unique barcodes, were evolved by serial batch cul-

ture in 100 mL of SC -URA media in 500 mL baffled flasks in the different sequences of envi-

ronment shown in Fig 1.

In the list below, a letter represents one passage (8 generations). G stands for SC-URA 2%

Ethanol/2% Glycerol (48 hours between passage), F for SC-URA 2%Glucose + 4 μg Flucona-

zole in 100 mL culture (24 hours between passage) and P for SC-URA 2% Ethanol/2% Glycerol

4 μg Fluconazole in 100 mL culture (48 hours between passage). All cultures were grown at

30˚C; the list below corresponds to the first 192 generations.

The evolution experiments were started with a pre-culture of each pool in 100 mL of SC

-URA 2% Glucose at 30˚C overnight. This pre-culture was used to inoculate evolutions with

~5e7 cells (~ 400 μL).

Switch_adap1: FFFFFFGGGGGGGGGGGGGGGGGG

Switch_adap2: GGGGGGGGGGGGGGGGGGFFFFFF

Periodic_smaller1: FGGGFGGGFGGGFGGGFGGGFGGG

Periodic_smaller2: GGGFGGGFGGGFGGGFGGGFGGGF

Random_adap: GGGGGGGGGGGGGGGGGGFFFGGG

Random_smaller1: GGGFGGGGGGGGGGGGFGGGGGGF

Random_smaller2: FGGGGGGFGGGFFFGGGGGGGGGF

Mix: PPPPPPPPPPPPPPPPPPPPPPPP

Serial transfers were performed by transferring ~5e7 cells (~ 400 μL) into fresh media. The

remainder of the culture was used to make glycerol stocks; 3 tubes with 1 mL of culture each

were stored at -80˚C (with 16.6% final Glycerol), while the remaining ~90 mL were centrifuged

(3,000 rpm for 5 min) and resuspended in 5ml 0.9M sorbitol solution (0.9M Sorbitol, 0.1M

Tris-HCL, pH7.5 0.1M EDTA, pH8.0) for storage at -20˚C.

PCR amplification of the barcode locus

DNA extraction for barcode sequencing. From the sorbitol stock, DNA was extracted

using the MasterPure Yeast DNA Purification Kit (Epicentre MPY80200), with slight modifi-

cations compared to the manufacturer’s guidelines as follows: the lysis step was performed for

one hour in lysis buffer, supplemented with RNAse at 1.66 μg/μL. The DNA was washed at

least twice with 70% Ethanol to remove remaining contaminants. Because the number of cells

in a pellet exceeded the upper limit of the kit by roughly 6-fold, 6 extractions were performed

per pellet. To do so, a cell pellet was resuspended in 900 μL of the lysis buffer and aliquoted in

6 tubes (150 μL each). The aliquots were complemented with the appropriate volume of lysis

buffer (150μL, 300 μL total) to follow the manufacturer’s guidelines. We used the same proce-

dure for DNA extraction during the lineage tracking or the fitness measurements.

Barcode amplification from population samples. We used a two-step PCR to amplify

the barcode locus for Illumina sequencing as described [19, 32], with the following modifica-

tions. For the first step, we supplemented the PCR reaction with 2mM MgCl2 and used only 6

PCR reactions per timepoint (600 ng of genomic DNA per tube). Nevertheless, in the event of

PCR failure, we performed 12 additional reactions per timepoint for the first step with the

same amount of DNA, lowering the DNA concentration, each with 300 ng of genomic DNA.

The primers used for this first step are listed in S2 Table. The Ns in the primers are the

Unique Molecular Identifiers (UMIs) which are random nucleotides used to uniquely tag each

PLOS GENETICS Environmental complexity influences adaptation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009314 January 25, 2021 16 / 27

https://doi.org/10.1371/journal.pgen.1009314


amplicon product for subsequent removal of PCR duplicates during downstream analysis. All

primers were HPLC purified to ensure that they were the correct length.

After the first step, all tubes were pooled and purified using the QIAquick PCR Purification

Kit (Qiagen, 28106). For the second step, we used Herculase II Fusion DNA Polymerase (Agi-

lent– 600677) which is a more efficient high fidelity enzyme, with the following PCR settings:

2’ 98˚C, followed by 24 cycles of (10” 98˚C, 20” 69˚C, 30” 68˚C). The PCR reaction was per-

formed with the standard Illumina paired-end ligation primers at recommended concentra-

tions according to the manufacturer’s guidelines. The purified first step was split into the 3

PCR reaction tubes (15 μL each).

After amplification, the tubes were pooled and the reaction was purified using one column

from QIAquick PCR Purification Kit and the DNA was eluted in 30μL of water. Finally, the

eluted DNA was gel-purified from a 2% agarose gel to select the appropriate band and elimi-

nate primer dimers using the QIAquick Gel Extraction Kit. The final gel-purified DNA was

quantified using Qubit fluorometry (Life Technologies).

Samples were pooled according to their concentrations.

We used the same procedure for amplification of the barcode locus during the lineage

tracking or for fitness measurements.

Barcode sequencing was performed with 2x150 paired end sequencing using NextSeq.

Isolation of clones and fitness remeasurement. Samples from generations 192 and 576

were grown overnight in SC–URA and single cells were sorted into each well of 96 well plates

containing 100 μL YPD using FACSJazz at the Stanford Shared FACS Facility as described pre-

viously [42]. We used four 96 wells plates per experiment. The barcodes for each well were

recovered (see Barcode amplification of individual clones in individual wells) and a single repre-

sentative for each unique barcode was pooled together. We also added 96 clones that were

defined as neutral from prior fitness remeasurement experiments (Humphrey, Hérissant et al.,

in prep.). To have a reference to what fitness type was expected in steady environment we also

added 96 clones from Fluconazole (4 μg/ml) evolution in steady environment (Humphrey, Hér-

issant et al., in prep.) taken at generations 48 and 96 clones from a Gly/Eth evolution (2%,2%)

in consistent environment taken at generation 168 (Humphrey, Hérissant et al., in prep.).

The final pool containing all barcoded clones was grown overnight in 100 mL baffled flasks

in SC–URA 2% Glucose; the ancestor was grown in a separate flask. To begin the Bulk Fitness

Assay, the ancestor and the pools were each mixed in a 9:1 ratio, and then ~5e7 cells were used

to inoculate cultures to remeasure fitness in each of the different environments. Each fitness

remeasurement was performed in triplicate. The conditions for fitness remeasurement are as

follow (S1 Fig):

• Gly/Eth: SC-URA 2% Ethanol/2% Glycerol for 40 generations with a passage at approxi-

mately every 8 generations (48 hours between passage).

• Fluconazole: SC-URA 2% Glucose + 4 μg/mL Fluconazole for 40 generations with a passage

approximately every 8 generations (24 hours between passage).

• Mixture: SC-URA 2% Ethanol/2% Glycerol + 4 μg/mL Fluconazole for 40 generations with a

passage approximately every 8 generations (48 hours between passage).

• 1:1: SC-URA 2% Glucose + 4 μg/mL Fluconazole for 8 generations (24 hours) then SC-URA

2% Ethanol/2% Glycerol for 8 generations (48 hours) for a total of 80 generations.

• 1:3: one passage in SC-URA 2% Glucose + 4 μg/mL Fluconazole for 8 generations (24 hours)

followed by three passages in SC-URA 2% Ethanol/2% Glycerol for 8 generations (48 hours

per passage) for a total of 64 generations.
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Barcode amplification of individual clones in individual wells. To determine the loca-

tions of the individual lineages in the 96 well plates after FACS sorting, a small volume of cul-

ture was boiled and saved. For amplification, a similar 2-step protocol was used. In the first

step, each well had a unique combination of primers at a final concentration of 0.416 μM. One-

Taq enzyme was used for amplification following this PCR settings: 3’ 94˚C—(20” 94˚C, 30”

48˚C, 30” 68˚C) 40 cycles. After this first step, 5μL of each well were pooled into one tube per 5

plates. After centrifuging to remove cellular debris, 20μL of the pooled mix were gel purified

using QIAquick Gel Extraction Kit. The purified PCR product was then diluted 50 times for

the second step of the PCR. In contrast to the previously described second step, Phusion High-

Fidelity DNA Polymerase was used, following manufacturer’s instructions for 12 cycles.

Finally, the PCR product was gel-purified as described above and the purified product was

quantified using Qubit before mixing the different libraries.

Whole genome sequencing

DNA extraction. The re-arrayed plates containing clones/lineages of interest were grown

in 750 mL of YPD for 2 days. DNA was extracted in 96 well format using the PureLink Pro 96

Genomic DNA Purification Kit (Thermo- K182104A). The sequencing libraries were made

following the protocol previously described using Nextera technology [27,43]. We multiplexed

up to 192 libraries using sets A and D primers from Nextera XT kits.

Analysis of whole genome sequencing data. Genome sequencing was performed with

2x150 paired end sequencing on NextSeq.

The analysis generally followed GATK best practices, as we have used previously [32,39]

(code from Humphrey, Hérissant et al.). Briefly, from the split and demultiplexed fastq files,

reads were trimmed for adaptors, quality and minimum length with cutadapt 1.7.1 [44]. Reads

were then mapped to the yeast reference genome (Saccharomyces_cerevisiae R64-1-1, from

SNPeff) using BWA version 0.7.10-r789 [45], variants were called with GATK’s Unified Geno-

typer v.3.3.0 [46] and finally the variants were annotated using SNPeff [47]. Variant filtering

was performed, first by GATK recommended parameters and then using custom scripts to

remove variants with low quality scores (below 150) or low coverages. Additionally, any vari-

ant in repetitive regions or low complexity regions, called using the Tandem Repeat Finder

with default parameters, was excluded [48].

Calculation of shannon-wiener index. Shannon-Wiener index was calculated using the

frequencies for all lineages as:

S ¼
P

kfklnðfkÞ

Where, fk is the frequency of the kth lineage.

Hierarchical clustering of Kolmogorov Smirnov distances. Given two fitness distribu-

tions Fj
k and Ej

l for clones from experiments k and l and for which the fitness has been remea-

sured in remeasurement experiment j, we used the Kolmogorov Smirnov distance between

those two distributions Dj
k;l, to calculate an overall distance between two experiments with

Dk;l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P5

j¼1
Dj

k;l

2
q

. Hierarchical clustering of the resulting distance matrix was performed

using scipy.cluster.hierarchy module with median linkage and a max_cluster value of 4.

Defining clusters from fitness data. Principal Components Analysis (PCA) was per-

formed using the sklearn.decomposition module on a five dimensional space representing the

fitness data from the five remeasurement experiments. The first two principal components

were used to project onto a 2-dimensional space (S3 Fig). In this projection we identified

clones that occupy the same space as our neutral clones; we then defined an ellipse around the
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neutral clones using their spreading along the two principal components (two times the stan-

dard deviation along PC1 and PC1) and aggregated clones within this ellipse with the neutral

clones and removed them from subsequent analysis. In this resulting dataset, where each point

represents a non-neutral clone (S8 Fig), all the pairwise Euclidian distances between clones

were calculated. This distribution of distances is multimodal, which is a sign of clustering. We

chose a distance of 2.5 as our threshold to define the limits of a cluster, as it is a typical interme-

diate distance in our data. Finally, the matrix of Euclidian distances was hierarchically clus-

tered using the scipy.cluster.hierarchy module. Clusters were defined as subgroup of the

hierarchical matrix that were separated by more than 2.5 along the diagonal. This is identical

to using a maximum cluster condition of 7 in scipy.cluster.hierarchy module. Two points were

initially defining their own clusters. For the sake of simplicity, we assigned them to their closest

cluster neighbors. We checked for how the choice of threshold or projection affected our clus-

ters (S9 and S10 Figs) and determined that our clusters are generally robust to modifying these

parameters.

Calculation of cluster characteristics. Given a fitness distribution Aj
k consisting of clones

from clusters k for which the fitness has been remeasured in remeasurement experiment j, and

fitness distribution Aj made of clones from all the clusters together for which the fitness has

been remeasured in remeasurement experiment j, we calculate the characteristic of cluster k in

remeasurement experiment j by calculating its median (medianðAj
kÞ) and compare it to which

quantile this fitness will represent in Aj.

Fitness calculations from the fitness remeasurement experiments. The fitness of each

lineage was estimated based on the slopes of the lineage trajectories, as described previously

(Venkataram et al., 2016). The software repository for the fitness estimation can be found at

https://github.com/barcoding-bfa/fitness-assay-python. The code was slightly modified for fit-

ness estimation within a sequence of environments (Fluconazole 1:1, Gly/Eth 1:1, Gly/Eth 1:3),

by limiting the average of the slopes and noise parameter to the slopes and noise parameter of

our interest: meaning we measure either the slopes in Gly/Eth, or the slopes in Fluconazole for

the two changing environment sequences that we remeasured (1:1 and 1:3).

Simulation of adaptation in multiple environments

Simulations were performed as follows. 500,000 barcodes are generated. They have a

mean probability of 10^-5 per generation to acquire a beneficial mutation during the 16 gener-

ations of the simulated library making process. This step is performed by drawing a random

number from a Poisson distribution with mean: size_of_lineage � 1e-5. The effect of that bene-

ficial mutation is drawn from a uniform DFE corresponding to the first environment

encountered.

The sizes of lineages are calculated from a Poisson statistic centered around the size of the

lineage at the previous generation multiplied by their fitness advantage. This lineage is then

submitted to mutation via a non-synonymous mutation rate mu_env. The same process is

used as before, i.e. a random number is drawn from a Poisson distribution with mean size_

of_lineage � mu_env. If multiple mutants already exist in a lineage, the next mutations occur-

ring can only be fed by the most frequent mutant in the lineage at the beginning of an environ-

ment. In case of multiple mutations, mutation effects are considered additive.

After 8 generations, which is the estimated time of passage, the population is rescaled to its

saturation size, Ns, by drawing a random number from a Poisson distribution centered around

the frequency of the lineage before passage multiplied by Ns. Finally, the population goes

through a bottleneck of 1/256 size reduction, again using Poisson sampling. This is repeated

through the total number of passages needed.
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To limit the required memory size and computation time, all mutants that reached a size of

0 (i.e. went extinct) by the time of the environment change are erased. Thus, when the environ-

ment is changed, each mutation that has not been assigned a fitness in the new environment

has a probability Pn to be neutral, Pd to be deleterious and Pb to be beneficial. Practically that

happens by deciding the sign of the mutation effect due to those probabilities. An absolute

value for this mutation is then drawn from a uniform DFE from which the boundaries are spe-

cific to the environment. We do not assume any relationship between the two environments

for a mutation’s fitness, such as correlation or anticorrelation.

Finally, for each stored time point, a sample of each lineage is draw from a Poisson distribu-

tion with mean frequency of the lineage � sequencing depth. In the presented simulations this

sequencing depth per time point was 3�10^7.

Supporting information

S1 Table.

(XLSX)

S2 Table.

(XLSX)

S1 Fig. Fitness remeasurement. Each plot represents one of three replicates for lineage track-

ing fitness remeasurement experiments in the 5 different conditions. Dashed lines represent

measured time points and the upper color strip indicates the environment. For the conditions

1:1 and 1:3, the line above the color strip indicates over which interval of environment the fit-

ness is remeasured. Lineages known to be neutral (added in the remeasured population for

that purpose) are depicted by a hollow circles. Lineages are color-coded according to their fit-

ness proximity to either the most fit or deleterious lineage: negative fitness mutants are com-

pared to maximally deleterious mutant and positive fitness mutants to the fittest mutants.

(TIFF)

S2 Fig. Fitness remeasurement distributions in different conditions for non-neutral clones

according to the experiment they are from. A] Rows correspond to a specific dynamic envi-

ronment from which the clones were isolated. Columns correspond to the fitness distribution

of those clones in the 5 remeasurement experiments. B] Fitness probability density distribu-

tion for the 5 different remeasurement experiments. The mean of the fitness distribution is

given for each of the remeasurement experiments.

(TIFF)

S3 Fig. Definition and removal of neutral clones. Each clone is represented by a 5-dimen-

sional vector containing their fitness in the 5 fitness remeasurement environments. We then

project that 5-dimensional space on a 2 dimensional space along the first two principal compo-

nents. Clones known to be neutral are grouped together forming what can be approximated by

an ellipse. This ellipse is defined by its spreading (twice the standard deviation) along the PC1

and PC2 axes. Clones falling inside that ellipse are considered to be neutral.

(TIFF)

S4 Fig. Relationship between fitness per cycle in Fluconazole and fitness per cycle in Gly/

Eth. Underlined correlation indicates a P-value<0.05.

(TIFF)

S5 Fig. Relationship between fitness per cycle in Fluconazole 1:3 and fitness per cycle in

Gly/Eth 1:3. Underlined correlation indicates a P-value<0.05. Braces on the color strip
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indicate in which block of environment fitness was remeasured.

(TIFF)

S6 Fig. Relationship between fitness per cycle in Fluconazole 1:3 and fitness per cycle in

Fluconazole. Underlined correlation indicates a P-value<0.05. Braces on the color strip indi-

cate in which block of environment fitness was remeasured.

(TIFF)

S7 Fig. Relationship between fitness per cycle in Gly/Eth 1:3 and fitness per cycle in Gly/

Eth. Underlined correlation indicates a P-value<0.05. Braces on the color strip indicate in

which block of environment fitness was remeasured.

(TIFF)

S8 Fig. Cluster definition from Euclidian distance in the 2D PCA projection with threshold

2.5. A] Hierarchical cluster matrix of Euclidian distances between clones in the PCA pro-

jection. White dashed lines delimit clusters, defined by choosing a distance as defined below.

B] Distribution of Euclidian distances between clones in the PCA projection. We chose a

threshold of 2.5 to separate clusters. C] Cluster coloring in the PCA projection. Based on our

clustering, clones are colored according to which cluster they fall in.

(TIFF)

S9 Fig. Effect of distance threshold on clustering A] Hierarchical cluster matrix of Euclid-

ian distance between clones in the PCA projection, using a threshold of 1.5. B] Cluster col-

oring in the PCA. C] Spider plots of cluster repartitioning with different threshold. These

spider plots are very similar to Fig 4C and shows that the choice of the threshold is not very

critical to our conclusion and fitness clustering: periodic_smaller1 and 2 still show the same

usage of clusters as do periodic_adap2, random_adap1, random_smaller2, and Glycerol/Etha-

nol.

(TIFF)

S10 Fig. Clusters from the 5-dimensional Euclidian distances. A] Distribution of Euclidian

distances between clones in the 5-dimensional space. To calculate those distances, the fitness

measurements were rescaled by their standard deviation so that they have the same weight.

Here again we see different length scales and chose 1.5 as a threshold between clusters. B]

Hierarchical cluster matrix of Euclidian distance between clones in the 5-dimensional

space. With the 1.5 threshold we have 34 clusters. C] Spider plots of clusters repartition in

our evolution experiment. The threshold choice, or even projection into a lower dimensional

space does not affect our conclusions.

(TIFF)

S11 Fig. Simulation of barcode diversity loss after 192 generations due to uncorrelated fit-

ness changes between two environments. Here the two environments have the same uniform

DFE [0,125], non synonymous mutation rate mu_env = 10^-5 and consecutive spent time of

96 generations. The initial barcode diversity is of 500 000 barcodes. Barcode diversity loss was

calculated for simulation were Pn, Pb and Pd were varied. There is no correlated behavior of a

mutant between the two environments. We see that unless high bias toward a joint distribution

of fitness effect of those two environments that links preferentially a beneficial mutation in the

first environment to a deleterious or neutral fitness in the second environment, we end up

with a reduction of diversity of 50-fold after 192 generations.

(TIFF)
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S12 Fig. Simulation: Population mean fitness estimation by different mean. A] Population

mean fitness evolution in simulation: first environment. In blue the mean fitness is calcu-

lated using a thread of similarly behaving lineages, as described in SI. In red, the mean fitness

is calculated from the slopes of the lineage tracking data. In black, mean fitness is derived from

exponentially decaying small size lineages, as described [19]. In yellow mean fitness is fitted

using lineages for which we know the fitness. B] Mean fitness evolution in simulation: sec-

ond environment.

(TIFF)

S13 Fig. Parameter estimation from simulation with lineage mean fitness criterion and

with population mean fitness calculated from thread. All fitness are per generation. A]

Sample of lineages from a simulated lineage tracking experiment. B] Fitness comparison

between real fitness fed to the simulation and Maximum Likelihood estimation of fitness

for the first environment. The estimation includes only the top 1,000 lineages present at the

end of each environment. Note, for the 2 parameter model original: a vast majority of the

points are by definition stacked at coordinate (0,0), the others, only representing dozens of

poorly estimated points out of 1,000. The discrepancy between estimated fitness and real fit-

ness emphasized by the grey box, can be explained. Those boxes contain the same lineages. In

the simulation for those lineages, there is no second mutation on the background of an original

mutant: the two mutants coexisted before the start of the first environment because of the

probability to mutate during the 16 generations of library preparation. They are not related to

each other. The algorithm still predicts the correct fitness (as seen in the second upper panel of

B) but was unable to choose the best model. Adding another model where the two mutants

exist in the lineage before the environment where we performed the measurement does not

solve the problem (S16 and S17 Figs). C] Fitness comparison between real fitness fed to the

simulation and ML estimation of fitness for the second environment. The estimated fitness

and the true fitness are well correlated but there is an offset due to the way we calculated the

mean fitness. The discrepancy between real fitness and estimated fitness in the second panel

comes from the fact that those mutants rose in the last ten generations of the simulation. In

other words, they should not count: the algorithm should have chosen a one parameter model

instead of the three parameters model. Another possibility is that some mutations actually

arose but then were outcompeted by the growing population mean fitness. In that case the sim-

ulation cannot see it at the final time point, but a 3 parameter model was necessary because at

some point this mutant contributed to the mean fitness of the lineage.

(TIFF)

S14 Fig. Parameter estimation from simulation with Aikike criterion and with population

mean fitness calculated from thread. As in S13 Fig, but with an AIC for model differentia-

tion.

(TIFF)

S15 Fig. Simulation: Full analysis from lineage mean fitness criterion and with population

mean fitness calculated from thread. A] Analysis for the first environment. 1) Distribution

of fitness effect according to the different model picked. 2) Space phase for evolution in the

first environment. We can see that some of the fitness have an establishment time more nega-

tive than that allowed by their fitness. We checked if a model which would represent the trajec-

tories as two existing mutants sharing the lineage at time zero, could alleviate this observation,

but saw no improvement (S16 and S17 Figs). 3). Distribution of log likelihood for picked mod-

els. 4) Relation between the number of mutants that participate to the fitness of a lineage (non-

zero at the end of the environment) and the goodness of the fit for those lineages: the worst
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estimations are well correlated with the hypothesis of the single mutant being broken. B] Anal-

ysis for the second environment. Same as A] but the goodness of fit 3) is now orders of mag-

nitude worse than in panel A] and the trend with the number of mutants is even clearer. The

relative poorness of the fit can be explained by our crude estimation of mean fitness, as we can

see that goodness of fit comes back to acceptable level when a better estimation of mean fitness

is used (S19 and S20 Figs).

(TIFF)

S16 Fig. Simulation first environment: Comparison between model for fitness estimation

and real fitness from the simulation with additional model: using lineage mean fitness cri-

terion and with population mean fitness calculated from thread. A] 2 parameters model:

Original. B] 2 parameters model: Mutant. As we removed the estimation for which the estab-

lishment time was not coherent with the fitness we see a better correlation between estimation

and reality. Nonetheless, those removed points have to be estimated with the initial mix model

which is a model that assume that two mutants are present in the lineage at the start of the

experiment. C] One parameter model. D] 3 parameters model initial mix of mutants: origi-

nal 1 (larger fraction). This model suffers from the same problems as the 3 parameter model

with rising mutant: poor estimation of original 1.E] 3 parameters model initial mix of

mutants: original 2 (smaller fraction). F] 3 parameters model rising mutant: original. Con-

sidering the incoherent fitness to establishment time estimation and estimate those lineages

with another model, did not solve our problem: bad estimation of original mutant. G] 3

parameters rising mutant: mutant. H] Distribution of fraction for the original 2 from initial

mix of mutants model. We can see that on average the initial mix mutant model predicts an

initial 5 to 10% of the lineages made of the original 2, which is not negligible.

(TIFF)

S17 Fig. Simulation second environment: Comparison between models for fitness estima-

tion and real fitness from the simulation with additional models: using lineage mean fit-

ness criterion and with population mean fitness calculated from thread. A] 2 parameters

model: Original. B] 2 parameters model: Mutant. C] One parameter model. D] 3 parameters

model initial mix of mutants: original 1 (larger fraction). E] 3 parameters model initial mix of

mutants: original 2 (smaller fraction). F] 3 parameters model rising mutant: original. G] 3

parameters rising mutant: mutant. H] Distribution of fraction for the original 2 from 3 param-

eters model initial mix of mutants.

(TIFF)

S18 Fig. Parameters estimation from simulation with lineage mean fitness criterion and

with population mean fitness calculated from known lineage fitness.

(TIFF)

S19 Fig. Overall comparison of the fits in environment 1 of simulation, of the first 1,000

largest lineages at the end of environment 1: A] Using for mean population fitness estima-

tion either the thread method or B] Known lineages’ fitness. Using the population mean fit-

ness calculated from known lineage fitness strongly increases the goodness of fit (comparing

panels A]3) and B]3)). In terms of distribution of the different parameters there is no striking

differences even though the two ways of calculating mean population fitness show sensible dif-

ferences.

(TIFF)

S20 Fig. Overall comparison of the fits in environment 2 of simulation, of the first 1,000

biggest lineages at the end of environment 2: A] Using the thread method or B] Known
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lineages fitness for estimation of the population mean fitness. Using the mean fitness from

known lineage fitness strongly increase the goodness of fit (comparing panels A]3) and B]3)).

In terms of distribution of the different parameters there is no striking differences even though

the two ways of calculating mean population fitness shows sensible difference (S12 Fig).

(TIFF)

S21 Fig. Recapitulation of lineage tracking analysis for switch_adap1 evolution using a

model choice based on lineage fitness criterion and a population mean fitness calculated

from thread. A] Analysis of the top 1,000 largest lineages at the end of the first environ-

ment. The most left panel is an estimation of the evolution of the population mean fitness

using the exponential decay of lineages behaving similarly (thread). The population mean fit-

ness function has a big jump in the middle, which follows well the type of behavior that we see

in the lineage tracking, but which is not a behavior expected for usual population mean fitness.

1) Distribution of fitness effects according to the different model picked. The underlined num-

ber on the right of each panel represents the fraction of this particular model chosen by the

algorithm. 2) Space phase for evolution in the first environment. 3) Fitness comparison

between measured fitness and Maximum Likelihood estimation of fitness for the first environ-

ment of switch_adap1. The estimation follows quite well the measured fitness with of course

an offset that comes from our estimation of mean fitness. 4) Distribution of log-likelihood for

picked models. The fits are not very good as they are peaked around -10^4, whereas the good

fit usually peaked around -10^2 (see simulations). This is probably coming from the big jump

in mean fitness that we cannot explain. 5) Relationship between the size of a lineage at the

beginning of an environment (as a proxy for the number of mutants contributing to the mean

fitness of the lineage) and the goodness of the fit for those lineages. L is the likelihood of the

model. B] Analysis of the top 1,000 largest lineages at the end of the second environment.

Everything is smoother and makes more sense for the second environment. Still the goodness

of fit is quite bad and should be reestimated using population mean fitness estimated from

known lineages.

(TIFF)

S22 Fig. Recapitulation of lineage tracking analysis for periodic adap2 evolution using a

model choice based on lineage fitness and a population mean fitness calculated from

thread.

(TIFF)

S23 Fig. Recapitulation of lineage tracking analysis for second environment of periodic

adap1 and 2 evolution using a model choice based on lineage mean fitness and a popula-

tion mean fitness calculated from known lineages. A] The goodness of fit distribution 3) is

orders of magnitude better than with the thread way to calculate population mean fitness. In

addition, most of the 1 parameter models seen before have been moved to a three parameters

model. B] The goodness of fit distribution 3) is orders of magnitude better than before even

though still being quite large. If one looks at the mean population function associated with that

Fluconazole environment in all our experiments, it is obvious that we are lacking a full descrip-

tion of that environment.

(TIFF)

S24 Fig. Recapitulation of lineage tracking analysis for periodic_smaller2 evolution using

a model choice based on lineage fitness and a population mean fitness calculated from

thread.

(TIFF)
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S25 Fig. Aikike criterion and thread mean fitness: Comparison of fitness between remea-

surement and Maximum Likelihood estimation from lineage tracking.

(TIFF)
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