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Abstract

Chimpanzees, humans’ closest relatives, are in danger of extinction. Aside from direct

human impacts such as hunting and habitat destruction, a key threat is transmissible dis-

ease. As humans continue to encroach upon their habitats, which shrink in size and grow in

density, the risk of inter-population and cross-species viral transmission increases, a point

dramatically made in the reverse with the global HIV/AIDS pandemic. Inhabiting central

Africa, the four subspecies of chimpanzees differ in demographic history and geographical

range, and are likely differentially adapted to their particular local environments. To quantita-

tively explore genetic adaptation, we investigated the genic enrichment for SNPs highly dif-

ferentiated between chimpanzee subspecies. Previous analyses of such patterns in human

populations exhibited limited evidence of adaptation. In contrast, chimpanzees show evi-

dence of recent positive selection, with differences among subspecies. Specifically, we

observe strong evidence of recent selection in eastern chimpanzees, with highly differenti-

ated SNPs being uniquely enriched in genic sites in a way that is expected under recent

adaptation but not under neutral evolution or background selection. These sites are

enriched for genes involved in immune responses to pathogens, and for genes inferred to

differentiate the immune response to infection by simian immunodeficiency virus (SIV) in

natural vs. non-natural host species. Conversely, central chimpanzees exhibit an enrich-

ment of signatures of positive selection only at cytokine receptors, due to selective sweeps

in CCR3, CCR9 and CXCR6 –paralogs of CCR5 and CXCR4, the two major receptors uti-

lized by HIV to enter human cells. Thus, our results suggest that positive selection has con-

tributed to the genetic and phenotypic differentiation of chimpanzee subspecies, and that

viruses likely play a predominate role in this differentiation, with SIV being a likely selective

agent. Interestingly, our results suggest that SIV has elicited distinctive adaptive responses

in these two chimpanzee subspecies.
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Author summary

Viruses are a major factor driving recent and ongoing natural selection in mammalian

genomes. Studying the effects such selection has had on chimpanzee genomes can provide

valuable insights into how pathogens are affecting an endangered primate species. As

there are many notable examples of cross-species transmission between other primates

and humans—including the HIV/AIDS pandemic—these studies can also illuminate

mechanisms of adaption to pathogens of medical and economic importance. By investi-

gating patterns of genetic differentiation amongst the four chimpanzee subspecies, we

show that genetic differences among some subspecies are due to recent genetic adaptation.

The genetic variants selected uniquely in eastern chimpanzees fall disproportionally

within genes that differentiate the immune response to infection by simian immunodefi-

ciency virus (SIV) in natural vs. non-natural host species. Thus, we infer that SIV has

likely elicited adaptive responses in chimpanzees, building upon a growing body of work

suggesting that SIV elicits ongoing selection in African primates.

Introduction

Chimpanzees (Pan troglodytes) are, alongside bonobos, human’s closest living relatives–the

Pan and Homo lineages having diverged ~6Myr ago [1]. With a per nucleotide divergence of

only ~1% [2], Pan and Homo also share many aspects of their physiology and behaviour,

including susceptibility to some pathogens. Studying chimpanzees can teach us about our spe-

cies by putting recent human evolution in its evolutionary context i.e. the mode and tempo of

adaptation and the pressures driving it.

Selection imposed by pathogens has greatly shaped the long-term history of genetic adapta-

tion in the great apes, including chimpanzees and humans [3, 4]. The interest in recent human

evolution [5–9] means that we now also have good catalogues of the main targets of local adap-

tation in many non-African human populations–albeit one biased towards hard selective

sweeps. Earlier analyses of genome-wide patterns of diversity in genic and non-genic sites sug-

gested that adaptation via hard selective sweeps has had a limited direct role in shaping human

genomes [10,11], with little evidence that local adaptation has substantially affected human

population differentiation [10]–unless inferences are boosted with ancient DNA [11]. For

instance, Hernandez et al (2011) found that complete selective sweeps involving non-synony-

mous substitutions have been rare. However, if classical tests of neutrality are underpowered,

they may lead us to under estimate the prevalence of natural selection. In fact, sweeps at non-

synonymous sites are still important if background selection is controlled for [12]. More recent

advances in both datasets and methods have indicated that we had previously lacked power to

reliably identify selected loci, particularly in the case of soft sweeps, which are missed by most

classical neutrality tests. For instance, machine learning approaches [13–15] with higher

power to identify different types of selective sweeps provide some evidence for more pervasive

action of selection in the human genome, in particular soft sweeps, than previously thought

[16]. Nonetheless, the relative contributions of drift and selection on human population differ-

entiation, particularly soft sweeps [17], are still a matter of debate and are still to be fully

determined.

The focus on humans of genomic studies may also bias our general view of the influence of

genetic adaptations in natural populations of primates. We know that genome-wide evidence

of positive selection scales positively with effective population size (Ne) across great ape genera
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[1, 3, 18, 19], but we largely ignore whether positive selection plays a similarly limited role in

shaping other primate genomes as it does in humans. We aim to add to this burgeoning field

of knowledge by exploring the recent adaptive history of chimpanzees, by focussing particu-

larly on differentiation caused by divergent selection across the subspecies. This approach does

not necessarily capture all the recent adaptations (it is likely insensitive to most potential

instances of convergent adaptation), but it provides an excellent global view of the adaptive dif-

ferences among subspecies, and their selective drivers.

There are four recognised subspecies of chimpanzees, with common names reflecting their

location in western and central Africa: eastern, central, Nigeria-Cameroon and western (Fig 1,

adapted from [20]). Each chimpanzee subspecies is currently endangered, with western chim-

panzees critically so [21]. Subspecies are clearly differentiated, with divergence times ranging

from 450 kya to 100 kya, and estimated long-term Ne from 8,000 to 30,000 reflected in varying

levels of genetic diversity (Fig 1, adapted from [20]). There is a wide range of ecological varia-

tion across the chimpanzee range, which spans over 5,000 km in western and central Africa

and includes deep forest and savanna-woodland mosaics. Pathogen incidence can also vary

between these groups, as seen recently with the lethal outbreaks of Anthrax [22] and Ebola

[23], or the Simian immunodeficiency virus (SIV). SIV, the precursor of the human immuno-

deficiency virus type 1 (HIV-1) virus that is responsible for the human AIDS pandemic [24], is

thought to be largely non-lethal to chimpanzees, although some eastern chimpanzees can

develop immunodeficiency, see [25, 26]). Its prevalence is not uniform across the subspecies,

and there is no evidence for infections in western or Nigeria-Cameroon chimpanzees [27],

while infections have been detected in multiple communities of central and eastern chimpan-

zees [27, 28]. Given the separate history and differential habitat of each subspecies, and the fact

that each subspecies is an independent conservation unit, it is crucial that we identify not only

the genetic adaptations shared by all chimpanzees [3], but also the genetic differences confer-

ring differential adaptation to each subspecies.

To do this, we investigated the signatures of recent genetic adaptation in the genomes of the

four subspecies by comparing the levels of between subspecies genetic differentiation at genic

versus non-genic genomic regions. Such approaches have been utilised before, primarily in the

Fig 1. The geographic distribution and population history of chimpanzees. A, The ranges of each chimpanzee subspecies within western and central

Africa. Range data extracted from the map of chimpanzee geographic range from [21]. Map of Africa modified from public domain source [88]. B,

Phylogenetic relationships amongst chimpanzees and the timing of their population divergence, modified from [20]. 1 kya: Long term effective population

sizes until 1 kya; present: effective population sizes from 1 kya to present. C, Heterozygosity, reflective of relative differences in effective population sizes.

Box plots show median central interquartile range, whiskers the upper and lower interquartile range. Points show individual heterozygosity. For all panels,

colour designates subspecies: Blue = western, red = Nigeria-Cameroon, green = central, orange = eastern.

https://doi.org/10.1371/journal.pgen.1008485.g001
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study of human populations [10, 11, 29], and are not strongly restricted to particular modes of

selection. However, we note that certain conservative assumptions are made: such approaches

ignore selection acting on functional non-genic sites e.g. enhancers, and that selection on

genic sites can affect linked non-genic sites. These conservative assumptions may decrease our

estimates of the extent of positive selection, but we are still able to make quantitative compari-

sons about selection between different subspecies. Given the wide range of Ne between chim-

panzees, we also note that selection signals can be obscured in lower Ne subspecies, as random

genetic drift influences genetic differentiation; this must be considered when comparing sub-

species, and we discuss it with regard to all our inferences (see results). Lastly, differences in

average recombination rates between genic and non-genic sites could affect the levels of popu-

lation differentiation between the two classes of sites, making this an additional factor to con-

trol for in selection inferences.

We show that only eastern chimpanzees have an unequivocal genome-wide signal of recent,

local positive selection, particularly when compared to central chimpanzees. This adaptation is

potentially due to selection on immunity related genes, with evidence consistent with selection

imposed by viruses, SIV in particular. In contrast, putative adaptation to SIV in central chim-

panzees could be mediated by adaptation in a suite of cell-entry receptors, suggesting the possi-

bility of divergent paths of adaptation to a common pathogen.

Results

Genic enrichment in the distribution of derived allele frequency differences

To investigate the influence of recent genetic adaptation in chimpanzee subspecies we com-

pared population differentiation at putatively functional sites (genic sites, defined as +- 2kb

from protein-coding genes) to differentiation at non-functional sites (here non-genic). Natural

selection can only act on functional sites (although it can affect neutral sites tightly linked to

functional sites), so differences between functional and non-functional genomic sites can be

ascribed to natural selection. After binning every SNP by its signed difference in derived allele

frequency between a pair of subspecies (δ), for each bin of δ we calculated the genic enrich-

ment, defined as the ratio of genic SNPs vs. all SNPs for each bin of δ, normalized by the global

genic SNP ratio [10, 11, 29]. This strategy has been deployed in the study of human local adap-

tation [10, 11, 29], and by not relying on the patterns of linked variation it is not strongly

restricted to particular modes of selection. In all subspecies comparisons (Fig 2, orange line)

the genic enrichment is greatest for SNPs with the largest δ, and the tail bins of δ exhibit signif-

icantly greater genic enrichments than any other bin. While not every genic SNP is in this bin

due to positive selection, we expect these SNPs, which show the largest frequency differences

between subspecies in the genome, to be strongly enriched in targets of positive selection that

rose quickly in frequency in one of the two subspecies [10, 11, 29].

The number of tail SNPs and the magnitude of genic enrichment in the tails of δ across sub-

species pairs varies in accordance with their Ne and divergence times (Fig 2 and S1 Table). Cal-

culated against western chimpanzees, the subspecies with the lowest long-term Ne [1, 20], the δ
tail genic enrichment is the least, ranging from 1.05 to 1.10 (Fig 2A). This indicates that this

strategy to identify the targets of local adaptation has reduced power in this subspecies. A

greater tail genic enrichment, 1.21 to 1.29, is seen for δ calculated using Nigeria-Cameroon,

the species with the second lowest long-term Ne (Fig 2A). This is comparable to the magnitude

of the genic enrichment in the tails of δ between human populations (S1 Appendix, S1 Fig; see

[10, 11, 29]; the genic enrichment across each bin of δ also resembles those observed in human

populations (S1 Appendix, S1 Fig; see [10, 11, 29]. In these comparisons the tail genic

Chimpanzee subspecies genetic adaptation
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enrichment is symmetric (Fig 2A) with symmetry defined as overlapping δ tail bin genic

enrichment 95% CIs).

In marked contrast to these symmetric enrichments, we find a distinctive asymmetry

between the tail bin genic enrichments of central and eastern chimpanzees (Fig 2B). The

Fig 2. Genic enrichment in bins of signed difference in derived allele frequency (δ). A, X-axis: δ is computed as the

difference in derived allele frequency, for each pair of chimpanzee subspecies. Tail bins (the last bin in either end of δ)

contain those SNPs with the largest allele frequency differences. Numbers are of the genic SNPs in each tail bin. Y-axis:

genic enrichment in each δ bin (Methods). B, Genic enrichment eastern and central chimpanzee δ, plotted separately

due to a different Y-axis limit. NC = Nigeria-Cameroon. The asterisk shows significance of the asymmetry in the genic

enrichment (� = 0.01). Shading represents the 95% CI (i.e. alpha = 0.05 for a two-tailed test) estimated by 200kb

weighted block jackknife. Grey dashed lines represent simulations under increasing levels of background selection that

best match different aspects of the data: lightest to darkest shades: B = 0.93 (excluding δ tail bins), 0.92 (all δ bins), and

0.88 (unmodified genic B values form McVicker et. al. 2009 [34]).

https://doi.org/10.1371/journal.pgen.1008485.g002
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central δ tail exhibits a typical genic enrichment (1.19, 95 per cent confidence interval 1.01–

1.36) but surprisingly, the eastern δ tail has a much stronger genic enrichment (1.58, 95 per

cent confidence interval 1.47–1.68) that is significantly greater than the central tail (P< 0.005;

weighted 200kb block jackknife, see Methods) and any other δ tail (all P< 0.0001; weighted

200kb block jackknife).

The large confidence interval of the central chimpanzee δ tail genic enrichment is due to

the low number of SNPs in this tail. But we also identified a highly unusual 200kb genomic

block on chromosome 3 (chr3:46508626–46708625) that contains 67 highly differentiated

alleles between central and eastern chimpanzees, similarly distributed among the two tails (35

genic SNPs in the central tail and 32 genic SNPs in the eastern tail). Concerned that this block

could bias our results, we repeated the enrichment analysis after excluding all SNPs contained

within it. Removing this block reduces the genic enrichment slightly in the eastern tail (1.56)

but substantially in the central tail (1.03) resulting in an even stronger asymmetry between the

tails.

To directly quantify the asymmetry of the eastern and central chimpanzee δ tail genic

enrichments, we tested if the log2 ratio of each pair of δ tail bin genic enrichments departs

from zero, with the expectation that log2 ratios would be randomly distributed about zero if

the δ tail genic enrichments are symmetric. Not surprisingly, we find a trend for the genic

enrichment to be greater for the subspecies with the higher long-term Ne, although the log2

ratios are similar and small (ranging from 0.03 and 0.07). The only exception is for eastern vs.

central, where it is 0.41 (95% CI, 0.17–0.65, 200kb weighted block jackknife). This is six times

larger than the highest ratio between other subspecies pairs (Fig 3; S2 Table, Bonferroni cor-

rected p-value δ western vs. central = 0.16 all other Bonferroni corrected p-values< = 0.004, z-
test). The eastern vs. central asymmetry in genic enrichment is thus a clear outlier (p-value<
2.2e-16, two-sided Kolmogorov-Smirnov test).

Recombination rate variation does not explain the δ tail asymmetry

Lower average recombination rates at genic versus non-genic sites may influence our analysis

[30, 31], and we find a lower average inferred recombination rate at genic than non-genic sites

(1.36 cM/Mb versus 1.61 cM/Mb) based on the existing, population-based chimpanzee

Fig 3. Direct quantification of δ tail bin genic enrichment asymmetry. The asymmetry of the genic enrichments in

the δ tails is measured by taking their log2 ratio, thus 0 indicates a symmetric enrichment (equal enrichment in both δ
tails). NC = Nigeria-Cameroon. Dot = observed asymmetry. Horizontal lines represent confidence intervals estimated

by 200kb weighted block jackknife (light = 95%, i.e. alpha = 0.05 for a two-tailed test). Grey vertical marks represent

the δ tail asymmetry in simulations, under increasing levels of background selection that best match different aspects

of the data: lightest to darkest shades: B = 0.93 (excluding δ tail bins), 0.92 (all δ bins), and 0.88 (unmodified genic B

values form McVicker et. al. 2009 [34]).

https://doi.org/10.1371/journal.pgen.1008485.g003
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recombination map [32]. While this could lead to uniform increases in genic differentiation in

genic sites, it is difficult to imagine that it would lead to qualitatively differences between sub-

species, especially in the closely related eastern and central chimpanzees: while the recombina-

tion rate of individual sites may change through time, the global recombination rate at genic

and non-genic sites will not differ among them. Indeed, low recombination rate does not drive

our signal: recombination rates for both the eastern and central δ tails are not lower than the

genic average recombination rate or that recombination rate in the other δ tails (S2 Fig), indi-

cating that outliers in the recombination rate distribution do not contribute disproportionately

to the δ tails in this pairwise comparison, in contrast to other pairwise δ tails, (S2 Fig). To fur-

ther test the effect of varying recombination rates in the results, we repeated the δ tests restrict-

ing the analysis to sites with recombination rate< 0.5 cM/Mb. By restricting to this rate range,

we equalise the average genic and non-genic recombination rates (0.16 cM/Mb versus 0.15

cM/Mb), and remove the association between δ and recombination rates. Still, all δ tails are

significantly enriched for genic sites (S2 Fig). Most importantly, the eastern δ tail genic enrich-

ment is significantly greater than that of central chimpanzees (S2 Fig), showing that differences

in recombination rate do not drive the asymmetric genic enrichment observed in this

comparison.

Background selection does not explain the δ tail asymmetry

A certain level of δ tail bin genic enrichment (Fig 2) is, in principle, compatible with both

recent positive selection and background selection (BGS) [10], the latter because linkage to

sites under purifying selection reduces Ne locally in genic regions and increases the effects of

random genetic drift [33]. BGS in the range estimated for humans [34] can, for example,

explain the δ tail bin genic enrichment in human populations, suggesting that this pattern is

not evidence for pervasive recent human adaptation [10, 11, 29]. In this light, we next explored

if BGS can explain our observed δ tail bin genic enrichments, and in particular the observed

asymmetry between eastern and central chimpanzee δ tail bin genic enrichments.

The strength of BGS can be quantified as a B value, the ratio of diversity at a neutral site

linked to sites under purifying selection compared to the expected neutral diversity in the

absence of purifying selection. Equivalently, this can be expressed as the ratio of the respective

Ne [35, 36]. Previous attempts to simulate the effects of BGS on δ tail bin genic enrichments

have simulated a single genome average B value [10, 11, 29], but the genome is heterogenous

with regard to both the local density of sites under selection and the relative strength of selec-

tion, and thus B is expected to vary across the genome. We thus run coalescent simulations

(Methods) with B values sampled from the empirical distribution estimated for the human

genome by McVicker et. al. 2009 [34].

The B value that best explains the genic enrichments across all bins of δ (the B value that

minimizes the summed square differences between observed and simulated enrichments

across all pairwise δ bins, S2 Appendix) is 0.92 –i.e. a reduction of diversity of ~ eight per cent

with respect to non-genic regions–decreasing to 0.93 (weaker BGS) when excluding the δ tail

bins. We note that the vast majority of genic sites do not fall within the δ tail bins, thus a B of

0.93 explains most of the δ genic enrichment spectrum (Fig 2, lightest dashed line).

When fitting solely the twelve δ tail bins (Methods, S3 Table), 0.92 is still the best fitting B,

followed closely by 0.90 with a 3.5% worse fit. This suggests that BGS that reduces diversity up

to 10 per cent is enough to explain the observed δ tail bin genic enrichments. We note that

simulations of BGS using a single genome average B value for all sites shows congruent results,

but it requires much stronger BGS (B = 0.86) to match the 12 twelve δ tail bin genic enrich-

ments (S2 Appendix, S2 Fig).

Chimpanzee subspecies genetic adaptation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008485 November 25, 2019 7 / 32

https://doi.org/10.1371/journal.pgen.1008485


Previously, it was shown that BGS alone does not produce δ tail bin genic enrichment

asymmetries in comparisons of human populations [11]. We also find that BGS does not result

in significant eastern vs. central δ tail bin genic enrichment asymmetry. Simulations show a

slight asymmetry in the tail genic enrichment (Figs 2B and 3) due to differences in their demo-

graphic histories (S2 Appendix, S4 Table). Nevertheless, no simulated value of B in the range

(0.93–0.88) results in a tail genic enrichment log2 ratio that falls within the 95% CI of the

observed ratio (Fig 3). Further, we could not find a B value that results in a genic enrichment

that lies within the 95% CI for both eastern and central chimpanzees. In contrast, the small

(though statistically significant) asymmetries in all other pairwise δ tail bin genic enrichments

are observed in simulations and thus fully explicable by demography and BGS (Fig 3). We

note that the unmodified McVicker B values (which have an average B of 0.88) could explain

the observed eastern δ tail bin genic enrichment, but they provide an extremely poor fit to all

other δ bins (Fig 2)–including the central δ tail. We hypothesise that this is due to the B infer-

ence ignoring the effects of positive selection, which likely have a pronounced effect on the var-

iance of B.

Previous work has shown that background selection varies little among the great apes [18].

Theory suggests that the diversity-reducing effect of BGS is independent of Ne, being deter-

mined by the distribution of fitness effects (s), except for the narrow range of Ne
� s = 1 (Nam

et al., 2017), while previous work suggests that more than 80% of deleterious mutations in

chimpanzees have Nes » 1 [37] Thus, the expectation is that the diversity reducing effect of

BGS should be the same across all four chimpanzee subspecies. Indeed, we find comparable

effects of background selection across subspecies: the relative reduction in neutral variation

linked to genes is comparable amongst chimpanzee subspecies (S4A Fig), and neutral diversity

has similar dependency on recombination rate and density of functional features across sub-

species (with the exception of western chimpanzees, S4B Fig). Further, using a population

genetic statistical model [38] we estimate the same reduction in neutral diversity due to back-

ground selection in each chimpanzee subspecies, at 11%, in the highest likelihood model (S3

Appendix, S5 Table). Thus, despite their differing demographic histories (Fig 1), the effects of

BGS are very similar across each chimpanzee subspecies. This justifies using the same average

strength of BGS across subspecies above. Nevertheless, to explore if our conclusions are robust

to this assumption, we also modelled a greater strength of BGS in eastern chimpanzees

(B = 0.825, the value which best matches the eastern δ tail bin genic enrichment) than in the

other subspecies (B range 0.900–0.850), using a single genome wide average B value for each

scenario. Stronger BGS in eastern chimpanzees does not produce an eastern central δ tail bin

asymmetry as large as that observed in the genomes (log2 ratio range 0.120–0.146), further

illustrating that BGS cannot explain the greater tail genic enrichment in eastern chimpanzees

(S5 Fig). Rather, this is most likely a signal of recent adaptation.

Population-specific branch lengths with PBSnj

Pairwise comparisons cannot determine which subspecies has changed. Direction, and there-

fore biological meaning, to allele frequency difference can only be garnered by assuming that

derived alleles most often provide the basis for new adaptations. This approach is also limited

by the collapsing of the shared history of lineages. For example, in the Nigeria-Cameroon vs.

eastern comparison, 22% of the SNPs in the eastern δ tail are also in the central δ tail (for Nige-

ria-Cameroon vs. central comparison), whereas only 3.5% are highly differentiated to both

Nigeria and central chimpanzees. Thus, δ summarises the allele frequency change across sev-

eral parts of the phylogeny, limiting the biological interpretation of its tails.

Chimpanzee subspecies genetic adaptation
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To overcome this limitation, we developed a statistic that extends the widely used Popula-

tion Branch Statistic (PBS) [8]. Briefly, large PBS values identify targets of positive selection as

SNPs with population-specific allele frequency differentiation, as these sites result in unusually

long branch lengths in pairwise FST-distance trees between three taxa. Small PBS values are

due to very short branches, for example due to purifying, shared balancing selection or rare

mutations. We extend this test to more than three taxa in the novel PBSnj statistic by applying

the Neighbor-Joining (NJ) algorithm on the matrix of the per-SNP pairwise FST distances of

the four subspecies (Methods, S4 Appendix). This way, PBSnj allows us to jointly compare the

four subspecies and identify SNPs with very long branches (allele frequency differentiation) in

one subspecies only. Additional advantages of PBSnj are that it does not rely on the specifica-

tion of ancestral or derived states, and that the NJ algorithm does not require specification of a

phylogenetic tree describing the relationship amongst taxa (S4 Appendix).

PBSnj allows us to determine within which lineage, eastern or central chimpanzees, allele

frequencies have changed to result in the asymmetric δ genic enrichment. Analogous to the δ
tail bins, we binned PBSnj scores and calculated the genic enrichment for each species PBSnj

tail (Fig 4A). The PBSnj eastern tail has significantly stronger genic enrichment than the cen-

tral tail (eastern: 1.35, central: 1.13, log2 ratio = 0.27, p< 0.0005 estimated from weighted

200kb block jackknife, Fig 4B). This shows that the central vs. eastern asymmetry in the δ tail

bin genic enrichments (Figs 2B and 3) is due to the drastic allele frequency rise of genic SNPs

in eastern chimpanzees since their divergence with central chimpanzees.

Again, recombination rate variation does not explain the observed eastern PBSnj enrich-

ment, as it persists even after comparing genic and non-genic sites with similar recombination

rates as described above (S6 Fig). Importantly, across the range of B values (0.88–0.93), simula-

tions show that eastern and central chimpanzee PBSnj tail genic enrichments are expected to

be equal or tend to be higher for central than eastern chimpanzees (Fig 4B). In fact, BGS would

Fig 4. Genic enrichment in bins of PBSnj in eastern and central chimpanzees. A X-axes: PBS scaled to take values

in the range 0–1. Y-axes: Genic enrichment computed as described in Fig 2. Shading represents the 95% CI (i.e.

alpha = 0.05 for a two-tailed test) estimated by 200kb weighted block jackknife. B: log2 ratio of the eastern and central

PBSnj tail (PBS> = 0.8) genic enrichment. A,B Grey dashed (A) or vertical (B) lines represent the PBSnj genic

enrichment in simulations, under increasing levels of background selection that best match different aspects of δ, as

described in Figs 2 and 3: lightest to darkest shades: B = 0.93 (excluding δ tail bins), 0.92 (all δ bins), and 0.88

(unmodified genic B values form McVicker).

https://doi.org/10.1371/journal.pgen.1008485.g004
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need to be much stronger in eastern chimpanzees than in central chimpanzees to produce the

observed levels of PBSnj tail genic enrichments. BGS with B< 0.93 would be required to pro-

duce the genic enrichment exhibited in the eastern PBSnj tail, but B> = 0.93 produces PBSnj

tail genic enrichments of equal or greater magnitude as those seen for central chimpanzees,

and it provides a much better fit to the data in the rest of the PBSnj distribution for both spe-

cies (Fig 4A). This result is replicated in simulations with a single average B value for all sites,

(S5 Appendix and S6 Appendix, and S6 Table). Thus, we observe strong evidence of positive

selection for eastern chimpanzees: they exhibit the greatest genic enrichment for highly differ-

entiated SNPs, an enrichment that (unlike in other subspecies) we cannot explain by demogra-

phy and background selection alone. By using the genomic blocks used to estimate the PBSnj

tail Confidence Intervals in Fig 4A, we estimate that an additional 12–23 population specific

sweeps are sufficient to explain this signature (Methods, S7 Fig). Although this is a conserva-

tive estimate, it shows that we do not require an unrealistically large number of selective

sweeps to explain the distinct pattern of eastern chimpanzees.

PBSnj eastern tail SNPs have regulatory functions

While less than 1% of PBSnj eastern tail SNPs result in an amino acid change, compared to the

genic background, PBSnj tail genic SNPs are significantly enriched in non-synonymous vari-

ants (PBSnj tail proportion amino acid change = 0.84%; genic background proportion = 0.06%,

permutation test p = 0.001, S7 Table lists PBSnj eastern tail non-synonymous SNPs). This is

not an indication that non-synonymous sites are especially important for local adaptation, but

rather reflects an enrichment of PBSnj SNPs in exonic (PBSnj tail proportion = 1.84%; genic

background proportion = 1.46%, permutation test p = 0.046) and CDS (PBSnj tail propor-

tion = 3.97%; genic background proportion = 2.87%, permutation test p = 0.001) SNPs, and

the observed proportion of exonic SNPs that are non-synonymous matches that of the genic

background (PBSnj tail proportion 0.45, genic background proportion = 0.44, permutation

test p = 0.53).

This puts the focus on regulatory changes. We used regulomeDB [39] to predict putative

regulatory consequences of chimpanzee SNPs from the sequence context and biochemical sig-

natures of homologous human sites. The PBSnj eastern tail genic SNPs are more likely to have

strong evidence of regulatory function (3.7% vs. 3.0%, permutation test p = 0.012) and less

likely to have no ascribed regulatory function (52.3% vs. 56.0%, permutation test p = 0.0001)

than randomly sampled genic SNPs, S8 Table. In contrast, PBSnj central tail SNPs show no dif-

ference to the genic background for either category (S8 Table; Nigeria-Cameroon and western

also exhibit weaker but significant enrichments). Interestingly, PBSnj eastern tail SNPs do not

differ in functional constraint (as measured by phastCons scores [40], see Methods) from ran-

dom genic SNPs (S9 Table). This suggests that while likely enriched in regulatory functions,

these sites are not under particularly strong long-term constraint, perhaps because they do not

affect functions that have been tightly conserved over long evolutionary times.

Potential biological functions of the PBSnj eastern tail SNPs

To understand the biological mechanisms and putative selective factors driving the recent

adaptations in eastern chimpanzees, we investigated the genes containing the genic SNPs in

the PBSnj eastern tail (hereafter PBSnj eastern genes). As there are very few studies of the func-

tional effects of chimpanzee genetic variation, we are reliant on homology and conservation of

function to other primate species. We therefore tested three different gene sets that are poten-

tially biologically informative: Human Gene Ontology (GO) annotations [41, 42]; human
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Viral Interacting Proteins (VIPs) [4]; and genes with specific gene expression changes in the

vervet monkey in response to SIV infection [43, 44].

Seven GO categories are significantly enriched (all p< = 0.00026, False Discovery Rate

(FDR) < 0.1; GOWINDA; S10–S13 Tables), with a striking preponderance of immunity-

related GO categories and genes involved in anti-viral activity. The top category is “cyto-

plasmic mRNA processing body assembly”, and three of the five PBSnj eastern genes in this

category (DDX6 [45], ATXN2 [46] and DYNC1H1 [47]) are either key components of process-

ing bodies (P-bodies) or regulate the assembly or growth of P-bodies in response to stress.

Selection on the immune system is suggested also by the second category, “antigen processing

and presentation of peptide antigen via MHC class I”. The signal in this category is due to six

genes, of which only HLA-A is an MHC gene, with the other genes being B2M, ERAP1, PDI3,

SEC13, and SEC24B. There are three more significant categories related with immunity: “T cell

co-stimulation”, “negative regulation of complement-dependent cytotoxicity”, and “type I

interferon signalling pathway”. Even the “cytoplasmic mRNA processing body assembly” cate-

gory is potentially linked to virus infection as P-bodies are cytoplasmic RNA granules manipu-

lated by viruses to promote viral survival and achieve infection [48, 49]. The enrichment in

immune categories and virus-related genes is in perfect agreement with the PBSnj eastern

genes being also enriched in three sets of VIPs [4]–genes with no annotated immune functions

but that interact with viruses. Specifically, the enriched VIPs are for Dengue virus, Bovine leu-
kaemia virus and human T-lymphotropic virus (p< 0.01, FDR < 0.1, see Table 1 and S14–S17

Tables), which are genes with no annotated immune functions but that interact with viruses.

The genes from these VIP sets are not members of the five significantly enriched immunity

related GO categories, and VIP sets generally do not contain immunity genes. This provides

an independent signal for the relevance of viruses to PBSnj eastern genes. Together, these

results suggest that adaptation to pathogens, and viruses in particular, may have had an impor-

tant role in the recent adaptation in eastern chimpanzees.

In light of the suggestive evidence for virus-related adaptation, our attention was drawn to

the simian immunodeficiency virus. Amongst chimpanzee viruses, SIV is intensively studied

as it is the progenitor of the human immunodeficiency virus (HIV) that created the global

acquired immune deficiency syndrome (AIDS) pandemic. It is also of interest here because it

appears to only infect natural populations of eastern and central chimpanzees [50–53], and

because it has mediated fast, recent adaptations in other natural hosts [54]. Specifically, Svardal

et. al. (2017) investigated a set of genes that change expression in response to SIV infection in

SIV natural hosts (vervet monkeys) but not in non-natural hosts that develop immunodefi-

ciency (macaques) [43, 44], hereafter referred to as “natural host SIV responsive genes”. Natu-

ral host SIV responsive genes are likely involved in the specific immune response of natural

hosts to SIV infection, which limits the effects of the virus and prevents subsequent immuno-

deficiency. These genes also show signatures of positive selection in vervet monkeys, suggest-

ing that ongoing adaptation to the virus occurs even in natural hosts [54]. These observations

also reveal natural host SIV responsive genes as a highly relevant candidate gene set for genes

under positive selection in SIV infected species. Strikingly, the PBSnj eastern tail SNPs, but

none of the other subspecies’ PBSnj tails, are significantly enriched in these same natural host

Table 1. VIP gene enrichment in the PBSnj eastern tail.

VIRUS P-VALUE FDR P-VALUE

BLV 0.0015 0.0239

DENV 0.0025 0.0239

HTLV 0.0145 0.0780

https://doi.org/10.1371/journal.pgen.1008485.t001
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SIV responsive genes [43, 44] (observed 118 genes, expected 100, p-value = 0.0195,

GOWINDA, FDR = 0.064 see Methods, Table 2, S18 Table).

In fact, the set of natural host SIV responsive genes can fully explain the unique eastern sig-

nature: the asymmetry in the PBSnj tail is abolished when this set of genes is removed from the

analysis–the genic enrichment in the eastern PBSnj tail decreases from 1.35 to 1.26, and the

95% confidence interval of this point estimate now overlaps those of Nigeria-Cameroon and

central chimpanzees (Methods). A reduction in the genic enrichment in the PBSnj tail is

expected, as it is enriched in natural host SIV responsive genes; but this exercise allows us to

show that in the absence of selection in natural host SIV responsive genes, the signature of

recent positive selection in eastern chimpanzees would not be exceptional.

The natural host response in vervet monkeys is associated with changes in the expression of

these natural host SIV responsive genes. In agreement with potential adaptations in gene

expression, the set of PBSnjE SNPs in the natural host SIV responsive genes are further

enriched in sites with putative gene regulatory function (p = 0.0485 when compared with

other PBSnj eastern tail genic SNPs, p = 0.0089 with all genic SNPs) and strongly depleted of

sites with no predicted regulatory function (p = 0.0001 when compared with other PBSnj east-

ern tail genic SNPs, p = 0.0001 with all genic SNPs, S19 Table).

While these genes were not identified in chimpanzees where SIV experiments are naturally

severely limited, this suggests a potentially similar mechanism of adaptation to SIV (or to an

unknown virus with a similar effect in gene expression) in vervet monkeys and chimpanzees.

Biological functions of the PBSnj central tail SNPs

Despite having a larger long-term Ne than eastern chimpanzees, central chimpanzees do not

show a clear genomic signature of recent adaptation. Despite being naturally infected by SIV

and being the source of pandemic HIV, they show no clear indication of selection in SIV

responsive genes: the PBSnj central tail has a greater number of SNPs in SIV responsive genes

than expected (36 vs. 29), but the enrichment is non-significant (p = 0.0763; resampling test,

Table 1). Power to identify a significant enrichment is hampered by the low number of SNPs.

However, highly differentiated SNPs in the PBSnj long branches of central chimpanzees are

significantly enriched in one GO category, “chemokine receptor activity”, due to SNPs in

CCR3, CCR9 and CXCR6 (p = 0.00001, FDR < 0.02, GOWINDA). Each of these genes is

located within the large cluster of cytokine receptor genes on chromosome 3, but they appear

to be associated with different sweep events (S8 Fig). Chemokine receptors facilitate the

response to chemokine signalling, and their functions are important for both inflammatory

and immunity responses [55]. For instance, CCR3 is involved in the recruitment of eosinophils

in the airway [56] and CCR9 is implicated in T-cell development [57].

These genes are of also interest because the human paralogs CCR5 and CXCR4 are the two

most common co-receptors for HIV-1 cell entry [58, 59]. Both CCR3 and CXCR6 can be used

to enter the cell by some SIV, HIV-1 and HIV-2 subtypes [60–63], and the SIV of both sooty

mangabey [64] and vervet monkey [65] use CXCR6. Although some results suggest that chim-

panzee SIV cannot use chimpanzee CXCR6 [66], the full breadth of co-receptors used by SIV

in chimpanzees is still being investigated. For instance, it is unknown how important coding

Table 2. SIV responsive gene enrichment in subspecies PBSnj tails.

Subspecies Observed Expected P-VALUE

Eastern 118 99 0.0198

Central 36 29 0.0739

https://doi.org/10.1371/journal.pgen.1008485.t002
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sequence variation is to co-receptor function [66]. We note that one of the PBSnj tail SNPs in

CCR3 results in an amino acid substitution (246 S/A) in transmembrane domain 6, and the

paralogous region has been implicated in the modulation of CCR5 activity [67]. Thus, changes

in these co-receptors may have the potential to affect the entry of SIV in chimpanzee cells.

Discussion

Comparing whole genomes from the four subspecies of chimpanzees we find that the alleles

whose frequency rose quickly and substantially in particular chimpanzee subspecies, resulting

in strong genetic differentiation, are enriched in genic sites. By simulating the effects of BGS,

we show that most features of this genic enrichment can be explained by the demographic his-

tory of chimpanzees combined with BGS. However, different strengths of BGS are required to

explain different aspects of the data. Weaker BGS, of B equal 0.93, best explains the genic

enrichment for all but the most highly differentiated alleles among the subspecies. Stronger

BGS, of B< = 0.92 is required to explain the genic enrichment in the most highly differenti-

ated SNPs. This difference suggests a contribution of positive selection. Notably, the compari-

son of eastern to central chimpanzees shows an asymmetry in the genic enrichment that we

cannot explain by BGS alone. Our PBSnj statistic shows that this signature is due to SNPs

whose frequency have changed specifically in eastern chimpanzees since their divergence with

central chimpanzees.

Many of these SNPs are polymorphic in central chimpanzees, so it is likely that many of

these adaptations have occurred from standing genetic variation and consist of soft sweeps

[68]. This would suggest that adaptation from standing genetic variation is important through-

out primate evolution, not just in recent human evolution [69]. Alternatively, some of these

sites may be polymorphic in central chimpanzees due to gene flow from eastern chimpanzees.

The inferred chimpanzee demography includes recurrent migration between eastern and cen-

tral chimpanzees, in both directions ([20] and see Methods), indicating that selection in east-

ern chimpanzees was strong enough to overcome the homogenising effect of gene flow from

central chimpanzees.

These strongly differentiated alleles in eastern chimpanzees are enriched in sites with

inferred regulatory function, but not in sites that have been strongly constrained during mam-

malian evolution. This agrees well with a role in adaptation to pathogens, which is often char-

acterized by fast arms-race evolution. The PBSnj eastern genes are enriched in several

immune-related categories, with many of them having known or potential virus-related func-

tions. OAS2 and RNASEL, for example, are involved in foreign RNA degradation [70], while

ERAP1 is a gene under long term balancing selection in humans [71] that is involved in MHC

class I epitope presentation [72]. These are plausible adaptations to viral infections in eastern

chimpanzees. In fact, these PBSnj eastern sites are located disproportionately in genes that dif-

ferentiate the CD4 transcriptional response to SIV in a natural host species that tolerates the

virus from a non-natural host species that develops immunodeficiency. Selection acting on

this set of genes is sufficient to produce the greater eastern signal. Two aspects of this enrich-

ment are notable. First, these genes are identified based on gene expression responses in vervet

monkeys and macaques to SIV infection [43, 44], and are thus completely independent of

chimpanzee genetics. Second, the SIV responsive genes also show diversifying selection in ver-

vet monkeys [54]. Of note, the PBSnj eastern SNPs are strongly enriched in putative regulatory

functions, in agreement with putative adaptations through gene expression.

How may this happen? The genes that are both SIV-responsive and contain PBSnj eastern

tail SNPs are significantly enriched in four GO categories (FDR< 0.1, GOWINDA, S21

Table). The top category is “type I interferon signalling pathway with four genes (IRF2,
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RNASEL, HLA-A and SP100). This category is also significantly enriched in the full set of

PBSnj eastern tail SNPs. OAS2 is also in this category but it is inducible in both vervet and

macaque shortly after SIV infection. IRF2, RNASEL and SP100 are all upregulated in the CD4

cells of vervet monkey but not of macaques one day post infection. This is relevant as regula-

tion of the interferon response is a key differentiator between natural and non-natural SIV

hosts [73] and the timing of interferon responses can be key in the progression to AIDS in

humans infected with HIV [74, 75]. Another enriched category is “polycomb group (PcG) pro-

tein complex”. PcG complexes can be involved in the epigenetic regulation of HIV-1 latency

[76, 77], and three of the genes in this GO category, PHC2, CBX7 and KDM2B encode compo-

nents of the same PcG complex, PCR1 [77].

Of course, it is also possible that other viruses elicited a selection response in eastern chim-

panzees, and in particular the SIV signature that we observe could be due to selection by other

ssRNA viruses. Possibilities include the viruses involved in the three significant sets of VIPs,

which are Dengue virus and the closely related Bovine leukaemia virus and human T-lympho-
tropic virus. However, we argue that SIV is a better candidate to explain our observations.

Aside from the evidence for ongoing selection of these genes in vervet monkeys [54], there are

some suggestions that SIV infection decreases fitness in populations of eastern chimpanzees

infected with the virus [26], with some infected individuals described as having an AIDS-like

pathology. It is thus plausible that the virus is a selective force in this subspecies. It is interest-

ing that while the eastern PBSnj tail is enriched in SIV-response genes, it is not enriched in the

SIV, HIV-1 or HIV-2 VIP categories (S14 Table). Further, while some VIPs are also SIV-

response genes, neither SIV, HIV-1 nor HIV-2 VIPs are more likely to be SIV responsive

genes than expected by chance (two-tailed binomial tests, number of genes in VIP category: 32

HIV-1, 8 HIV-2 SIV, observed proportions: HIV-1 0.13, HIV-2 0.38, SIV 0, expected propor-

tions = 0.13, p-values: HIV-1 = 0.77, HIV-2 = 0.07, SIV = 1). Thus, these results suggest that

the putative eastern chimpanzee-specific adaptations to SIV are mediated by expression

changes in factors that modulate the immune response to infection, rather than changes in

expression levels of direct SIV/HIV interactors. Our inferences are based on statistical enrich-

ments and gene function, and additional work would be necessary to definitively show the

effect of species-specific variants in function and phenotype. This is extremely challenging as

chimpanzees are, like all other great apes, endangered and strongly protected. Nevertheless,

the combination of results pointing to SIV-related genes suggests that SIV exerts a selective

force in chimpanzees; together with work in other species [54] it also suggests that SIV is likely

an important selective force in several natural primate species, which both vervet monkeys and

eastern chimpanzees may respond to by shaping gene expression. Thus, while we cannot be

completely certain that SIV is driving selection in eastern chimpanzees, this virus is the best

candidate considering all currently available evidence.

It is also probable that eastern chimpanzees have adapted to additional selective pressures

unrelated of viral pathogens or immunity. An obvious candidate would be life history traits.

For example, the gene SKOR2, which contains the fifth ranked eastern specific missense poly-

morphism, has been associated with the timing of female puberty in GWAS of age of menarche

in humans [78]. Unfortunately, like most polygenic traits, the genetic basis of menarche is

poorly understood making it hard to contextualise this result.

Perhaps surprisingly, central chimpanzees have weaker signatures of natural selection

despite being the subspecies with the largest Ne [1, 20]. A few factors could blunt the evidence

for positive selection in central chimpanzees, but none of them are able to explain the observed

difference in PBSnj tail genic enrichment between central and eastern chimpanzees–including

putative population substructure, gene flow from eastern chimpanzees or introgression from

bonobos (S7 Appendix). Central chimpanzees also do not have significant enrichment in SIV
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responsive genes despite, like eastern chimpanzees, being naturally infected by SIV [28]. How-

ever, central chimpanzees exhibit a significant enrichment of highly differentiated SNPs in the

chemokine genes CCR3, CCR9 and CXCR6. Given the known functions of these chemokine

receptors [55] this result is suggestive of immunity related selection in central chimpanzees. In

particular, we note that CCR3 and CXCR6 are used by SIV, HIV-1 and HIV-2 subtypes [60–

65]. The signature of positive selection in CXCR6 is interesting because the SIV of natural

hosts sooty mangabey [64] and vervet monkeys [65] predominantly use CXCR6 for host cell

entry. This is in contrast with the dominant CCR5 usage in hosts such as humans and

macaques that progress to AIDS. While it is unclear which particular channels are used by SIV

in each chimpanzee subspecies [66], the evidence of selection in central chimpanzees in these

receptors raises the intriguing possibility that the two chimpanzee hosts have in part used dis-

tinct evolutionary responses to the virus: limiting cell entry in central chimpanzees; modula-

tion of gene expression response in eastern chimpanzees.

While our attention has focussed on eastern, and to a lesser extent, central chimpanzees,

this is not to say that positive selection has not acted on western and Nigeria-Cameroon chim-

panzees. By applying a statistical model [29] to neutral diversity as a function of distance to

genes we find that while chimpanzees share the same average strength of BGS, the reduction in

neutral diversity due to hard selective sweeps is inferred to be greatest in western chimpanzees

and least in central and eastern chimpanzees (S6 Table). This is in contrast to our main results

for δ tail bin and PBSnj genic enrichments. This contradiction can be resolved in part if we

posit that the rate of soft selective sweeps also increases with Ne [18], as soft sweeps will not

have the same diversity reducing effect as hard sweeps. Nevertheless, regardless of the existence

of any relative differences in the type of selective sweeps, the divergence times and high genetic

drift of the western and Nigeria-Cameroon lineages makes tests of allele frequency differentia-

tion less well suited to identify adaptive loci than in eastern and central chimpanzees. Alterna-

tive approaches, for example using intensive within subspecies sampling, can help identify

adaptive loci in these subspecies. Nonetheless, our results show striking differences between

the sister subspecies of eastern and central chimpanzees. Besides helping us start to identify

the genetic and phenotypic differences among subspecies, this finding highlights the need for

genetic studies and conservation efforts to account for functional differentiation between sub-

species and local populations across the entire chimpanzee range.

Materials and methods

Genotypes, haplotypes and genic regions

We analysed the 58 chimpanzee genomes described in de Manuel et. al. (2016), with sample

sizes of: eastern 19, central 18, Nigeria-Cameroon 10, western 11 after excluding the hybrid

Donald. For most tests based on allele frequencies, we used the chimpanzee VCF file from de

Manuel et al., (2016) after removing every SNP with at least one missing genotype across all

chimpanzees. For haplotype phasing, we also included the 10 bonobo genomes from [20]. To

statistically phase haplotypes we used Beagle [79] v 4.1 (downloaded from https://faculty.

washington.edu/browning/beagle/b4_1.html, May 2016). We used default parameters without

imputation, except that after the initial 10 burn in iterations we performed 15 phasing itera-

tions (default is five) using the following command line: java -Xmx12000m -jar beagle.03-

May16.862.jar gt = vcf out = vcf.phased impute = false nthreads = 1 niterations = 15

For the analysis of δ we chose to use the inferred ancestral chimpanzee allele from EPO

alignments from ensembl. For comparison, and to show that our result was robust to AA infer-

ence method we also used the homologous human genome reference allele as the ancestral

state for chimpanzee SNPs. We used the human genome from the 1000 Genomes project
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phase III human_g1k_v37.fasta, available from: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

technical/reference/human_g1k_v37.fasta.gz

We used the UCSC liftover utility to convert chimpanzee SNPs’ coordinates from pantro

2.1.4 to human genome version 37 (hg19) coordinates, then used samtools faidx to retrieve the

human allele for that position. Both of these inference methods recovered the same signal of a

significantly greater δ tail bin genic enrichment for eastern vs. central chimpanzees, see S22

Table. Again, we also note that our new statistic PBSnj does not require inference of the ances-

tral allele. In total we analysed 29,778,147 autosomal SNPs. Of these there was EPO high confi-

dence inferred ancestral states for 27,081,963 SNPs and human inferred ancestral states for

28,776,489 SNPs.

We considered protein-coding genes on the autosomes (17,530 genes) and define ‘genic

sites’ by extending the transcription start and end coordinates from ENSEMBL biobank for

pantro2.1.4 by 2kb on each side.

Genetic map

For statistics that required a genetic map, we used the pan diversity genetic map [32] inferred

from 10 western chimpanzees. We downloaded the chimp_Dec8_Haplotypes_Mar1_chr-

cleaned.txt files from birch.well.ox.ac.uk/panMap/haplotypes/genetic_map. These files consist

of SNPs and their inferred local recombination rate. These map data were inferred from

sequences aligned to the pantro2.1.2 genome, so we used two successive liftover steps to con-

vert the coordinates of sites used to infer the genetic map to pantro2.1.4 coordinates: pan-

tro2.1.2 to pantro2.1.3, then pantro2.1.3 to pantro2.1.4. Two steps are required as there are no

liftover chains relating pantro2.1.2 to pantro2.1.4. Of the 5,323,278 autosomal markers, 33,263

were not lifted from pantro2.1.2 to pantro2.1.3. The remaining 5,290,015 were also successfully

converted to pantro2.1.4 coordinates. After liftover we filtered sites that after the two steps

were mapped to unassigned scaffolds or the X chromosome, which left 5,289,844 SNPs. Next,

we sorted loci by position to correct cases where their relative order was scrambled. This left a

final number of 5,289,460 autosomal SNPs. Recombination rates were then recalculated by lin-

ear interpolation between consecutive markers (marker x, marker y) using the average of their

estimated recombination rates (rate x, rate y).

Signed difference in derived allele frequency (δ)

Using the derived allele frequency of each SNP for each subspecies we calculated, for each pair

of chimpanzee subspecies, the signed difference in derived allele frequency (DAF) between

them: δ = DAFpop1 –DAFpop2; DAFpop1 > DAFpop2: δ> 0; DAFpop1 < DAFpop2: δ< 0; -1 < =

δ< = 1. We bin δ into 10 bins of 0.2. The choice of subspecies assigned to pop1 or pop2 is arbi-

trary and has no bearing on the results. To ensure that both tail bins are identically wide, we

define them as Bin 1: -1 < = δ< = 0.8 and Bin 10 as 0.79 < δ< = 1. As a consequence, the Bin

5 (0.00 < δ< 0.2) is marginally narrower than the other bins (by 0.01), but it contains a large

number of sites and the slight size difference has negligible impact on the analyses.

We estimate confidence intervals and infer p-values for δ genic enrichment using a

weighted block jackknife [80] utilising the method of Busing et. al. [81]. This has been used for

analogous tests, as it accounts for linkage disequilibrium, which means that SNPs in δ bins are

not full independent of each other. We divide the genome into non-overlapping 200kb win-

dows to capture the blocking effect of LD. We then recalculate, for each bin, the genic enrich-

ment using a delete-1 window jackknife. We also weight the windows by the total number of

SNPs in them, to downweigh, within each bin, blocks with large numbers of linked SNPs. We

determine that two tails are differentially enriched if their 95% CIs of enrichment do not
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overlap. For directly testing asymmetry (or in the case of PBSnj, equality) using the log2 ratio,

we use the same weighted block jackknife, and use the 95% CI as a two-tailed test with

alpha = 0.05. Other enrichment and resampling tests are described in Methods subsection

“Statistics”.

Population Branch Statistic neighbour-joining

The Population Branch Statistic (PBS), [8] is a test of population specific natural selection. In

the framework of a three-taxon distance tree, SNPs under selection specific to one population

are detected as those that result in longer than expected branch lengths (large allele frequency

differentiation). To generate the tree, for each site, the full distance matrix of pairwise FST is

computed. A three taxa tree is unrooted and has only one possible topology, so simple algebra

allows the calculation of each branch length in the tree. Extreme outliers in the distribution of

PBS are considered candidates of positive selection.

We introduce Population Branch Statistic neighbour-joining (PBSnj) as a simple method to

calculate population specific branch lengths when more than three taxa are being analysed.

We note that related Methods have recently appeared in the literature [82, 83]. Full details are

in S4 Appendix, but in brief, using the full matrix of pairwise FST, FST values are transformed

to units of drift time as ln (1-FST) [8]. For fixed differences this transformation is mathemati-

cally undefined i.e. ln (0), and FST = 1 is replaced with the next largest observed FST value for a

given population pair. Then the Neighbor-Joining algorithm [84] is used to infer the tree

topology and calculate branch lengths. This overcomes errors in the inferred length of external

branches due to misspecification of a fixed tree topology. To enable a binning scheme of PBSnj

values that is comparable between subspecies, these scores are further normalised to be on the

0–1 scale.

FST for PBSnj was calculated using the estimator described in [85] because there are unequal

sample sizes for the subspecies, and the classical Weir and Cockerham estimator can be biased

with unequal sample sizes [85]. To calculate genic enrichments along the PBSnj distribution

we bin SNPs in PBSnj bins 0.2 units wide. As for δ analyses, we use the 200 kb weighted block

jack-knife to estimate confidence and significance levels. We provide a source code file, written

in R, to calculate PBSnj (“PBSnj_function.R”), see Data availability.

Model of Chimpanzee demographic history

The most detailed exploration of chimpanzee demography comes from the work of de Manuel

et. al. (2016). This paper describes the 58 chimpanzee full genome sequences we use here, and

estimation of their inferred demographic model. As this paper took a primary interest in inves-

tigating chimpanzee-bonobo post speciation gene flow, and to reduce the number of parame-

ters to be estimated, models were inferred using either Nigeria-Cameroon or western

chimpanzees, but not both. Thus, de Manuel et. al. (2016) provides “bonobo, eastern, central,

Nigeria-Cameroon” and “bonobo, eastern, central, western” models. These are referred to,

respectively, as ‘becn’ and ‘becw’ models below.

For this investigation we use a merged demographic history. To begin the construction of

this model, we recognised that there is little gene flow involving western chimpanzees in the

‘becw’ model, but that gene flow events are a key determinant of patterns of chimpanzee

genetic diversity and differentiation in the ‘becn’ model. We therefore used the ‘becn’ model as

a scaffold to which parameters relating to western chimpanzees (bottlenecks, expansions and

Ne estimates) from the ‘becw’ model are “grafted” in, to create a merged ‘becnw’ model. To

make sure that the Ne of western chimpanzees was appropriately scaled, all Nes 1000 ya past-

wards for western chimpanzees specified in the ‘becw’ model were normalized by multiplying
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by the ratio of the inferred Nes of central chimpanzees specified from 1000 ya pastwards in the

‘becn’ and ‘becw’ models: scaled western Ne = western Ne
� 3.66914400056 / 4.3158739382.

Present western Ne was normalised by the ratio of the present central Ne: scaled western Ne =

western Ne
� 0.3092 / 0.30865.

Initially, we used the split time of the western and Nigeria-Cameroon lineages of 250ky

reported by de Manuel et. al. which was estimated from sequence divergence data, but this

gave a bad fit to FST values, being substantially lower than observed (S23 Table). We addressed

this by increasing the western/Nigeria-Cameroon divergence time in proportion to the ratio of

model:observed western/Nigeria-Cameroon FST. i.e. FSTObserved / FSTModel = timeX /

250kya => timeX = FSTObserved / FSTModel x 250kya. We adjust the observed FST by -0.008

–to capture the average difference between model versus observed FST values for central/east-

ern/Nigeria-Cameroon chimpanzees. This simple calculation results in an adjusted time of

267kya for the western/Nigeria-Cameroon split. FST values for this new model show a much

better fit to observed values (S23 Table), and it is this model that we use for all subsequent

modelling of genic enrichments and the effects of background selection.

To determine model fit above, we calculated all pairwise average FST values for the simu-

lated data and compared them to the empirical FST estimates. For each scenario, we simulated

1,000,000 2kb fragments (2 Gb of sequence).

All simulations of neutral diversity and background selection were performed with msms
[86], and following de Manuel et. al. assuming a mutation rate of 1.2e-8 and recombination

rate 0.96e-8, with the following command line:

msms 116 1 -t 0.96048 -r 0.768384 2001 -I 5 0 38 36 20 22 0 -n 1 0.0742 -n 2 0.3181 -n 3

0.3092 -n 4 0.0386 -n 5 0.08114434 -m 1 2 0 -m 1 3 0 -m 1 4 0 -m 2 1 0 -m 2 3 1.8181960943074

-m 2 4 0 -m 3 1 0 -m 3 2 2.02290154800773 -m 3 4 0 -m 4 1 0 -m 4 2 0 -m 4 3 0 -m 5 1 0 -m 1 5

0 -m 5 2 0 -m 2 5 0 -m 5 3 0 -m 3 5 0 -m 4 5 0 -m 5 4 0 -en 0.001 1 1.83290809268 -en 0.001 2

1.161030985567 -en 0.001 3 3.66914400056 -en 0.001 4 1.23640124358 -en 0.001 5 0.9132505

-em 0.020875 1 2 0 -em 0.020875 1 3 0 -em 0.020875 1 4 0 -em 0.020875 2 1 0 -em 0.020875 2 3

1.8181960943074 -em 0.020875 2 4 1.12888460726286 -em 0.020875 3 1 0 -em 0.020875 3 2

2.02290154800773 -em 0.020875 3 4 0.514005225416364 -em 0.020875 4 1 0 -em 0.020875 4 2

0.61034918826118 -em 0.020875 4 3 2.77081002950074 -em 0.042025 1 2 0 -em 0.042025 1 3

0.0447270935214584 -em 0.042025 1 4 0.00204350937063846 -em 0.042025 2 1 0 -em 0.042025

2 3 1.8181960943074 -em 0.042025 2 4 1.12888460726286 -em 0.042025 3 1 0.03408929414

39601 -em 0.042025 3 2 2.02290154800773 -em 0.042025 3 4 0.514005225416364 -em 0.042025

4 1 0.00878072013784504 -em 0.042025 4 2 0.61034918826118 -em 0.042025 4 3 2.77081002

950074 -en 0.104325 2 0.0402577179646081 -en 0.104325 3 0.192594746352967 -en 0.106325 3

8.73162876459514 -ej 0.106325 2 3 -em 0.106325 1 2 0 -em 0.106325 1 3 0.0177338314347154

-em 0.106325 1 4 0.00204350937063846 -em 0.106325 2 1 0 -em 0.106325 2 3 0 -em 0.106325 2

4 0 -em 0.106325 3 1 0.00723425109237692 -em 0.106325 3 2 0 -em 0.106325 3 4 0.1938557

14034029 -em 0.106325 4 1 0.00878072013784504 -em 0.106325 4 2 0 -em 0.106325 4 3

0.00771007640703268 -en 0.21195 5 0.1223036 -en 0.214175 5 0.194964 -en 0.267475 4

1.23640124358 -en 0.267475 5 0.194964 -ej 0.2675 5 4 -en 0.41955 1 0.158405393915496 -en

0.42155 1 0.299481445247702 -en 0.473075 4 0.0306317427630759 -en 0.475075 4 2.79429

564470655 -en 0.480625 4 0.0872103733618782 -em 0.480625 1 2 0 -em 0.480625 1 3 0.0177

338314347154 -em 0.480625 1 4 0.00204350937063846 -em 0.480625 2 1 0 -em 0.480625 2 3 0

-em 0.480625 2 4 0 -em 0.480625 3 1 0.00723425109237692 -em 0.480625 3 2 0 -em 0.480625 3

4 0.193855714034029 -em 0.480625 4 1 0.00878072013784504 -em 0.480625 4 2 0 -em

0.480625 4 3 0.00771007640703268 -en 0.482625 3 1.66920782430592 -ej 0.482625 4 3 -em

0.482625 1 2 0 -em 0.482625 1 3 0.241282075772286 -em 0.482625 1 4 0 -em 0.482625 2 1 0

-em 0.482625 2 3 0 -em 0.482625 2 4 0 -em 0.482625 3 1 0.0101771164248256 -em 0.482625 3
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2 0 -em 0.482625 3 4 0 -em 0.482625 4 1 0 -em 0.482625 4 2 0 -em 0.482625 4 3 0 -en 1.5988 3

0.00336130452736601 -en 1.6008 3 1.47105091660349 -ej 1.6008 1 3 -em 1.6008 1 2 0 -em

1.6008 1 3 0 -em 1.6008 1 4 0 -em 1.6008 2 1 0 -em 1.6008 2 3 0 -em 1.6008 2 4 0 -em 1.6008 3

1 0 -em 1.6008 3 2 0 -em 1.6008 3 4 0 -em 1.6008 4 1 0 -em 1.6008 4 2 0 -em 1.6008 4 3 0

As a further assessment of the fit of the model, we plotted the observed and simulated site

frequency spectrum (SFS), S9 Fig. In general, the model fit is good, being poorest for singletons

(too high) and high frequency derived sites (too low). This is likely due to effects of selection

on the genome, which is not incorporated into the neutral demographic model. We note too,

that this model was computed using only the allele counts from regions of the genome under

weak/no selection as inferred from GERP scores, further explaining the reduced fit at these

two site classes.

Simulations of chimpanzee genetic data under neutrality and background selection.

We used msms to perform coalescent simulations of chimpanzee demography. To simulate

the effects of background selection (BGS) we modified the estimates of effective population

size (Ne) from the demographic model by multiplying them by a scaling factor, which repre-

sents the B score or effective reduction in Ne due to BGS. 0.8, for example, reduces the Ne and

hence expected neutral diversity to 80% the level seen for neutral sites unlinked to regions

under purifying selection [11]. To capture the possible variance in B across the genome, we

sampled from the estimates of B for the human genome inferred by McVicker et. al. [34]

downloaded from: http://www.phrap.org/software_dir/mcvicker_dir/bkgd.tar.gz. The coordi-

nates for this file are for human reference genome assembly version hg18, and we used the

coordinates of all annotated autosomal protein coding genes for hg18, +- 2kb, downloaded

from ensembl.

McVicker et. al. estimated that autosomal diversity levels were reduced by ~ 20 per cent

[34]. The mean B for genic regions is 0.75 and for non-genic regions B is 0.85, resulting in an

average ratio (or effective genic B) of ~ 0.88, implying that diversity in genic regions should be

reduced 12 per cent compared to non-genic regions. To shift this average B and explore the fit

to the genomic data, we added a fixed constant to all genic B values, so that we could simulate

BGS with different genome average B in the range 0.88–0.93, in 0.01 increments, in order to

ascertain which average B best fit the observed δ genic enrichments. B scores were constrained

to a maximum value of one, see S8 Fig for the distribution of non-genic and genic B scores.

For non-genic regions and for each average B, we simulated 10 million 2.0 kb loci. After pro-

cessing and calculating allele frequencies, we performed δ and PBSnj genic enrichments as

described previously. To estimate a BGS strength that best matched the observed δ genic

enrichments, we performed a simple sum of squared differences, summed for each δ genic

enrichment bin for each pairwise comparison.

We also report results from simulations utilising a single genome average B value for all

genic sites. We simulated non-genic regions with B = 1, and genic regions with different cho-

sen strengths of BGS. We used B in the range 1–0.8, incremented by 0.025, with additional

0.0125 increments between 0.9–0.85. For neutral regions and for each B we simulated 25 mil-

lion 2.0 kb loci. These serve a useful comparison to the simulations generated using McVicker

derived B values.

Estimating the number of extra eastern chimpanzee adaptive events

We use the structure of the block jack-knife to estimate the number of adaptive events that are

needed to result in the PBSnj eastern tail genic enrichment being greater than that of central

chimpanzees or generated by BGS. Recall that to estimate the error variance on the genic

enrichment in each bin of PBSnj, we divided the genome into non-overlapping 200 kb blocks.
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For each block we have the number of genic and non-genic SNPs per bin of the PBSnj distribu-

tion. For eastern chimps, there are 3528 genic SNPs contained within 832 blocks (i.e. 166 MB)

in the PBSnj rhs tail i.e. with a PBSnj scaled length > = 0.8. NB: the majority of SNPs in this

bin are not fixed, so we are not assuming that these are completed sweeps.

Of these, there are 448 blocks containing only 1 SNP i.e. 54% of blocks, 81 blocks with 10 or

more outlier genic SNPs. i.e. 10% of blocks, with a block maximum count of 117 genic SNPs

(S7A Fig).

We rank blocks by the number of genic SNPs that are outliers. Iterating over this sorted list

we remove blocks and recalculate the enrichment for genic SNPs. We define matching as the

number of iterations required to reduce the tail bin genic enrichment to below a magnitude

less than the upper 95% confidence limit or the point estimate of the central PBSnj tail genic

enrichment. We chose to order by the number of eastern tail genic SNPs as this results in a

monotonically decreasing genic enrichment with each block being removed.

Measures of conservation and effects on gene regulation

We used phastCons [40] to infer highly conserved sites. We used the 20 mammalian multiz

alignment to the human genome hg38, downloaded from UCSC (http://hgdownload.cse.ucsc.

edu/goldenPath/hg38/multiz20way/maf/). To reduce the chance that polymorphism in chim-

panzees affects inference of conservation, we removed both the chimp and bonobo reference

genomes form these alignments. We estimated the phylogenetic models from fourfold degen-

erate (non-conserved model) and codon first position sites (conserved model). We then pre-

dicted base conservation scores and conserved fragments using the following options:—target-

coverage 0.25—expected-length 30. Resultant conserved elements covered 69.24% of the

human exome, or an enrichment of 17.27. We note that although we attempted to remove the

Pan branch from our estimates, it is impossible to completely avoid the use of these genomes,

for example, when converting predicted conserved elements from hg38 to pantro2.1.4. These

results have been deposited on Dryad (see Data availability).

We used regulomeDB [39] to identify putatively regulatory role of genomic sites. Due to

the close phylogenetical relationship between chimpanzees and humans, we argue that in lieu

of any functional data for chimpanzees, inferred function from homologous positions in the

human genome is a useful proxy for function in the chimpanzee genome. To obtain regulo-

meDB information for variable chimpanzee positions we used liftover to map SNP coordinates

from pantro2.1.4 to hg19, keeping positions that reciprocally mapped to homologous chromo-

somes. Alan Boyle then kindly provided regulomeDB annotations for these positions. In regu-

lomeDB, lower scores reflect higher confidence in regulatory function. We modified scores on

the basis that scores 1a-f are given for positions that are human eQTLs, which we do not use as

they refer to the specific allele change in humans rather than to the function of the site. With-

out eQTLS, scores 1a-c and 2a-c reflect the same biochemical signatures and location within

transcription factor motifs. Thus, we combine these scores in to a new “high confident” regula-

tory function category. Our “non-regulatory” category includes positions with regulomeDB

scores of 6 or 7, which have no evidence of being regulatory. We did not use sites with interme-

diate scores.

Gene set enrichment analyses

We used GOWINDA [87] to test for enrichments in Gene Ontology (GO) categories, which

corrects for clustering and gene length biases. We used either GO categories or custom gene

lists as candidate gene sets. GO categories for humans were obtained from the GO consortium

[41, 42], while gene sets were manually created from published sets of Viral Interaction
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Proteins [4] and a set of genes that are differentially expressed in CD4 cells after SIV infection

in the natural SIV host vervet monkey but not in that non-natural host macaque [43, 44, 54].

GOWINDA has an input file format which enables flexible usage of nonstandard gene sets.

Genes are defined in a gtf file. We created a gtf from the ENSMBLE gene definitions, but

restricted these to genes with clear 1–1 orthologs with humans. Our gtf file contained 16,198 of

17,530 protein coding genes. This gene set has been deposited on Dryad (see Data availability).

Additional inputs are the PBSnj tail SNP set, and the background SNP set (of which the candi-

dates are a subset). For all gene set enrichments, the background SNPs set was the full

genome-wide set of genic variants for which PBSnj could be calculated.

GOWINDA was designed to reduce false positives that result from gene length bias (the

probability of randomly containing an outlier SNP increases with gene length) and clustering

of genes (such as paralogs) that share function. It achieves this by using resampling of back-

ground SNPs, which is the genome wide set of SNPs considered in a test. We use the—mode

gene switch. In this case, background SNPs are randomly sampled until the number of overlap-

ping genes matches the total number of genes overlapping the PBSnj tail SNP set. Empirical p-
values are estimated for each GO category, as the proportion of resamples which contain the

same or greater number of genes than the PBSnj tail SNP set, per GO category (for each ran-

dom background sample a pseudo p-value per GO category is also likewise calculated). FDR at

each p-value, p, is then estimated as the number of observed p-values less than or equal to p,

Robs, divided by the total number of resamples with a p-value less than p Rexp i.e. FDR = Robs /

Rexp.

It is important to note that only genic background SNPs that are within the candidate set of

genes (e.g. genes with GO definitions) are used in the random sampling. For the GO enrich-

ment, after filtering for gene sets with at least 3 genes, the GO definition file contains defini-

tions for 15649 genes, and 95% of genic background SNPs are used for resampling. This is

important, as therefore GOWINDA cannot be used to directly test for enrichment in a single

or small set of candidate gene sets. Providing one category, for example, would reduce the

background SNP set to only those background SNPs in the genes in that category. Resampling

can only ever return the same number of genes in this case. Thus, for VIPs and for the SIV

gene set, we included an additional category, which is the full set of genes in the gtf file (“all

gene set”). This has no effect on empirical p-value estimation. Its effect on FDR correction is

limited as Robs is unchanged. For a candidate p-value, the all gene set will not be lower or equal

to it unless the candidate p-value is itself 1. Thus Robs is unchanged. The effect on Rexp is hard

to determine, but for small empirical p-values should be proportionately small.

There are 98 VIP gene sets in [4], reduced to 53 when filtered for those containing at least 3

genes. For these and for the GO categories we used an FDR< 0.1 as a cut-off when discussing

significant categories. There is only one SIV response genes set, so we only report the empirical

p-value and treat p-value< 0.05 as significant. Note that this procedure does not allow the cal-

culation of an FDR for the SIV set, nor over the family of tests (SIV gene set enrichment in all

four subspecies) but we tested a strong a priori expectation that given the eastern PBSnj tail

genes are enriched for viral immunity genes, this would be due to vervet SIV response genes.

However, to estimate such an FDR, we used a resampling scheme: For each gene in the

genome, we assign a weight, which is the proportion of SNPs in that gene compared to the

genome as a whole. This is to correct for gene length bias. We make the intersect of all the SIV

genes in each PBSnj tail. We then do weighted resampling from all genes in the genome to cre-

ate sets of genes as large as the intersect set, and calculate an empirical p-value for each subspe-

cies, as defined above. These empirical p-values are highly similar to those provided by

GOWINDA, suggesting that our weighting scheme effectively controls for gene length bias.
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We then calculate the FDR for each empirical p-value, with Rexp summed over all four

subspecies.

Natural Host SIV responsive genes underpin the eastern PBSnj tail genic

enrichment

We wanted to test if selection on natural host SIV responsive genes could be the reason that

eastern chimpanzees exhibit the strongest signal of genetic adaptation. Our simple test is to

hypothetically propose that if selection had not acted on the natural host SIV responsive genes

then those genes would not contribute a SNP to the PBSnj eastern genic tail. Thus, we removed

the genic tail SNPs from the 118 genes that are natural host SIV responsive and have SNPs in

the outlier bin of the eastern PBS scores. However, we don’t remove the genic SNPs within

these genes that are in any of the other subspecies. This means we will affect the eastern genic

enrichment, but not the enrichment of other subspecies. We argue that this answers the ques-

tion “what would the eastern genic enrichment be if selection had not acted on these genes in

eastern chimpanzees”.

Statistics

To test enrichment in phastCons scores and regulomeDB scores we use random resampling

tests. For a candidate set of SNPs sized n, we randomly draw the same number of genic SNPs.

For phastCons and regulomeDB we calculate the proportion of SNPs in a category.

For all resampling tests, p-values are estimated as 1 + n resamples > = observed (or < =

observed as appropriate) / 1 + n resamples. Adding 1 to both the numerator and denominator

ensures that resampling p-values do not equal 0, which is a downward biased estimate given

finite resampling.

To test if the proportion of VIP category genes that were also vervet SIV responsive genes

differed from null expectations, we used a binomial test of the proportion of VIP genes that

were also SIV responsive compared to the null expectation, which is the proportion of all

genes that are SIV responsive.
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S6 Appendix. Estimating the strength of background selection required to explain PBSnj

tail genic enrichments in chimpanzees.

(DOCX)

S7 Appendix. Demography and the evidence of positive selection in central chimpanzees.

(DOCX)

S1 Fig. Genic enrichment in bins of signed difference in derived allele frequency (δ), for

human populations from the 1000 Genomes Phase III. a, X-axis: δ is computed as the differ-

ence in derived allele frequency, for each pair of populations. Tail bins (the last bin in either

end of δ) contain those SNPs with the largest allele frequency differences. Numbers are of the

genic SNPs in each tail bin. Y-axis: genic enrichment in each δ bin, computed as described in

Methods. Shading represents the 95% CI (i.e. alpha = 0.05 for a two-tailed test) estimated by

200kb weighted block jackknife, b, The asymmetry of the genic enrichments in the δ tails is

measured by taking their log2 ratio, thus 0 indicates a symmetric enrichment (equal enrich-

ment in both δ tails). Dot = observed asymmetry, with size indicating the relative sample size

(10, 20, 91 individuals). Horizontal lines represent confidence intervals estimated by 200kb

weighted block jackknife (light = 95%, black = 99%, i.e. alpha = 0.05 or 0.01 for a two-tailed

test).

(PDF)

S2 Fig. Mean genic recombination rates across bins of signed difference in derived allele

frequency (δ). X axes: Binned δ, the difference in derived allele frequency, for each pair of

populations. Y-axes: columns one and three: genic enrichment in each δ bin; columns two and

four: mean genic recombination rate for each δ bin. Columns one and two: observed data. Col-

umns three and four: analysis restricted to sites with recombination rate< 0.5 cM/Mb. Shad-

ing represents the 95% CI (i.e. alpha = 0.05 for a two-tailed test) estimated by 200kb weighted

block jackknife. Light grey horizontal line represents: columns one and three expected genic

enrichment; columns two and four, mean genic recombination rate.

(PDF)

S3 Fig. Genic enrichment in bins of signed difference in derived allele frequency (δ) com-

pared to BGS simulations using genome average B. A, X-axis: δ is computed as the difference

in derived allele frequency, for each pair of chimpanzee subspecies. Tail bins (the last bin in

either end of δ) contain those SNPs with the largest allele frequency differences. Numbers are

of the genic SNPs in each tail bin. Y-axis: genic enrichment in each δ bin (Methods). B, Genic

enrichment eastern and central chimpanzee δ, plotted separately due to a different Y-axis

limit. NC = Nigeria-Cameroon. The asterisk shows significance of the asymmetry in the genic

enrichment (� = 0.01). Shading represents the 95% CI (i.e. alpha = 0.05 for a two-tailed test)

estimated by 200kb weighted block jackknife. Grey dashed lines represent simulations under

increasing levels of background selection that best match different aspects of the data: lightest

to darkest shades: B = 0.925 (excluding δ tail bins), 0.888 (all δ bins), and 0.863 (only δ tail

bins).

(PDF)

S4 Fig. The effect of background selection on patterns of neutral diversity in chimpanzees.

a, Diversity levels at neutral sites as a function of the distance to the nearest gene. We calcu-

lated scale diversity (pi / divergence to macaque) in bins of distance to genic regions. We then

rescaled scaled diversity for each subspecies so that the diversity was in the range 0–1. b, To

further explore the effects of BGS on chimpanzee genomes we checked the correlation of den-

sity of functional sites with neutral diversity (pi). We used windows 500kb spaced at least 1MB
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apart in the genome. Here, rho is the spearman rank partial correlation between windowed

diversity and density of functional sites per window, controlling for recombination rate (the

average rate per window). Each dot represents a bootstrap replicate (random sample of 500 kb

windows). We calculated the partial rho for each bootstrap. Box plots show the median and

interquartile ranges of the bootstrap replicates.

(PNG)

S5 Fig. Stronger eastern BGS does not result in observed levels of δ tail bin genic enrich-

ment asymmetry. The asymmetry of the genic enrichments in the δ tails is measured by taking

their log2 ratio, thus 0 indicates a symmetric enrichment (equal enrichment in both δ tails).

We created coalescent simulations in which the strength of BGS was greater in eastern chim-

panzees than other subspecies. For eastern chimpanzees we chose a fixed B = 0.825, as this B

provided the best fit the eastern δ tail genic enrichment. All other subspecies had the same B,

in the range of 0.900–0.850. A larger difference in B between subspecies results in a slight

increase in asymmetry, but none of the simulated differences in BGS result in the observed

asymmetry. Point = observed asymmetry. Horizontal lines represent confidence intervals esti-

mated by 200kb weighted block jackknife (light = 95%, black = 99%, i.e. alpha = 0.05 or 0.01

for a two-tailed test). Grey vertical marks represent the δ tail asymmetry in simulations, under

increasing levels of difference in background selection between eastern and other chimpan-

zees: lightest to darkest shades: All Beastern = 0.825; Bothers = 0.850, 0.863, 0.850, 0.888, 0.900.

(PDF)

S6 Fig. Mean genic recombination rates across bins of PBSnj. X axes: Binned PBSnj, for

each subspecies. Y-axes: columns one and three: genic enrichment in each PBSnj bin; columns

two and four: mean genic recombination rate for each PBSnj bin. Columns one and two:

observed data. Columns three and four: analysis restricted to sites with recombination

rate< 0.5 cM/Mb. Shading represents the 95% CI (i.e. alpha = 0.05 for a two-tailed test) esti-

mated by 200kb weighted block jackknife. Light grey horizontal line represents: columns one

and three expected genic enrichment; columns two and four, mean genic recombination rate.

(PDF)

S7 Fig. Number of adaptive events in eastern chimpanzees. a, Most 200kb blocks contain

few PBSnj eastern outlier SNPs, but there is an extended right hand tail. b, we ranked blocks

by the number of PBSnj eastern tail SNPs, then iteratively removed outlier genic SNPs. This

results in a monotonically decreasing genic enrichment, and the removal of eight blocks is

required to reduce the genic enrichment of the PBSnj eastern tail to overlap the 95% CI of the

PBSnj central tail, and 19 blocks to reduce it below the level of the point estimate of the central

PBSnj tail. We could alternatively order the windows by the total number of outlier SNPs i.e.

without regard to genic vs. non-genic. Doing so increases our estimated range of sweeps to

15–26. But we note that the genic enrichment does monotonically decrease with block removal

(c). This is partly due to the arbitrary nature of the definition of genic, as it implies that there

are some 200 kb blocks that have more non-genic than genic outlier SNPs contained within

them, and this may very well change if the definition of genic was changed from transcription

start and end sites +- 2kb. (d) Lastly, we randomly shuffled the removal order of the 200-kb

blocks. We did so for 1000 random shuffles of the block order (A single random shuffle is

shown). We find that the median number of blocks (i.e. sweeps) across random shuffles is 165

to match the upper 95% CI of the central chimpanzee estimate (middle 90% quantile range

114–221; min = 78, max = 278) increased to 273 to match the central chimpanzee point esti-

mate of genic enrichment (middle 90% quantile range 214–329; min = 162, max = 381). Such a

procedure is likely an overestimate, as most of the removal steps are those removing 1 to 9
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genic outlier SNPs (panel a), resulting in minimal reduction of the genic enrichment.

(PDF)

S8 Fig. Number of sweeps in the chromosome 3 chemokine receptor cluster of central

chimpanzees. X axis: position along chromosome 3 (Mb). Plotted in the upper panel are the

PBSnj central scores in the region encompassing CCR3, CCR9, and CXCR6. An independent

cluster of high PBSnj scores is associated with each candidate gene. Each point represents one

PBSnj score, colour has an alpha = 30% to reduce over plotting. Haplotypes are plotted in the

central panel. Yellow ticks are derived alleles, blue are ancestral, while white is space so that

each tick aligns with PBSnj scores. Inspection indicates that there is a degree of haplotype

scrambling between each of the candidate genes. Lastly, we depict the genes in this region in

the lower panel.

(PNG)

S9 Fig. Observed and Simulated Site Frequency Spectra. We plot the Site Frequency Spec-

trum (SFS) for each chimpanzee subspecies. X axes: derived allele count. Y axes: proportion.

Black: observed. Green: simulated. Simulated counts come from 25 million 2kb loci simulated

with msms, using the chimpanzee demography specified in Methods.

(PDF)

S10 Fig. The genome wide distribution of B values. Violin plots are used to visualise the dis-

tribution of B values for non-genic and genic sites from McVicker, designated non-genic an

“0.88” respectively. B = 0.88 is the average B ratio of genic / non-genic B values. We added

fixed constants to all genic B values to modify the genome average B, in 0.01 steps from 0.99–

0.93.

(PDF)

S11 Fig. Deriving the PBSnj statistic. a, PBS is just a simple arithmetic function of pairwise

FST values for a group of three taxa or populations. b, The configuration or choice of popula-

tions determines the information content of PBS. In each panel are the spearman’s rho correla-

tions between different PBS configurations, and between PBS and our new statistic PBSnj for a

simple four population model (described in Appendix 4). In each case Pop A is the focal popu-

lation. PBSABC and PBSABD are highly correlated but not identical indicating that incorporat-

ing both Pops C and D would refine the identification of Pop A specific differentiated variants.

PBSnjA, which utilises information from all four populations is more highly correlated with

both PBSABC and PBSABD than they are with each other. Alpha = 10% for plotted points to

reduce over saturation. c, For each statistic, we plot the site frequency spectrum (SFS) for each

of the four populations for sites identified as outliers in Pop A. PBSnj clearly finds those sites

differentiated in Pop A, and better than either PBSABC and PBSABD. In the standard PBS, the

SFS in the species not included in the PBS configuration has a more uniform distribution, indi-

cating that some sites identified as PBS frequency outliers in Pop A are not true population

specific outliers.

(PNG)

S12 Fig. Effect of reduced Ne on PBSnj genic enrichments. In a simple four population

model, we modelled genic regions as those with a B = 0.9. In population 2, we simulated four

effective population size ratios (1, 0.9, 0.5, 0.1). Ne ratios of 0.5 and 0.1 result in a reduced

genic enrichment given the same strength of background selection. X-axes: PBS scaled to take

values in the range 0–1, per subspecies. Y-axes: Genic enrichment.

(PDF)
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S13 Fig. Scaled PBSnj bin genic enrichment for all chimpanzee subspecies. PBS scaled to

take values in the range 0–1. Y-axes: Genic enrichment computed as described in Fig 2. Shad-

ing represents the 95% CI (i.e. alpha = 0.05 for a two-tailed test) estimated by 200kb weighted

block jackknife. B: log2 ratio of the eastern versus western, Nigeria-Cameroon and central

PBSnj tails (PBS> = 0.8) genic enrichment. A,B Grey dashed (A) or vertical (B) lines represent

the PBSnj genic enrichment in simulations, under increasing levels of background selection

that best match different aspects of δ, as described in Figs 2 and 3: lightest to darkest shades:

B = 0.93 (excluding δ tail bins), 0.92 (all δ bins), and 0.88 (unmodified genic B values form

McVicker).

(PDF)
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S6 Table. Model-based reduction of neutral diversity in chimpanzee subspecies. Models

are tested for their ability to explain diversity as a function of distance to functional sites.
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53. Boué V, Locatelli S, Boucher F, Ayouba A, Butel C, Esteban A, et al. High rate of simian immunodefi-

ciency virus (SIV) infections in wild chimpanzees in northeastern Gabon. Viruses. 2015; 7(9):4997–

5015. https://doi.org/10.3390/v7092855 PMID: 26389939

54. Svardal H, Jasinska AJ, Apetrei C, Coppola G, Huang Y, Schmitt CA, et al. Ancient hybridization and

strong adaptation to viruses across African vervet monkey populations. Nature Genetics. 2017; 49

(12):1705–13. https://doi.org/10.1038/ng.3980 PMID: 29083404

55. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host

defense and immunity. Annu Rev Immunol. 2014; 32:659–702. Epub 2014/03/25. https://doi.org/10.

1146/annurev-immunol-032713-120145 PMID: 24655300.

56. Ma W, Bryce PJ, Humbles AA, Laouini D, Yalcindag A, Alenius H, et al. CCR3 is essential for skin eosin-

ophilia and airway hyperresponsiveness in a murine model of allergic skin inflammation. J Clin Invest.

2002; 109(5):621–8. Epub 2002/03/06. https://doi.org/10.1172/JCI14097 PMID: 11877470; PubMed

Central PMCID: PMC150891.

Chimpanzee subspecies genetic adaptation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008485 November 25, 2019 30 / 32

https://doi.org/10.1371/journal.pbio.1002112
https://doi.org/10.1371/journal.pbio.1002112
http://www.ncbi.nlm.nih.gov/pubmed/25859758
https://doi.org/10.1101/gr.137323.112
https://doi.org/10.1101/gr.137323.112
http://www.ncbi.nlm.nih.gov/pubmed/22955989
https://doi.org/10.1101/gr.3715005
http://www.ncbi.nlm.nih.gov/pubmed/16024819
https://doi.org/10.1038/75556
http://www.ncbi.nlm.nih.gov/pubmed/10802651
https://doi.org/10.1093/nar/gkw1108
http://www.ncbi.nlm.nih.gov/pubmed/27899567
https://doi.org/10.1371/journal.ppat.1004241
https://doi.org/10.1371/journal.ppat.1004241
http://www.ncbi.nlm.nih.gov/pubmed/24991927
https://doi.org/10.1172/JCI40093
http://www.ncbi.nlm.nih.gov/pubmed/19959873
https://doi.org/10.1091/mbc.E15-03-0136
http://www.ncbi.nlm.nih.gov/pubmed/25995375
https://doi.org/10.1146/annurev-virology-031413-085505
http://www.ncbi.nlm.nih.gov/pubmed/26958719
https://doi.org/10.1002/wrna.1162
http://www.ncbi.nlm.nih.gov/pubmed/23554219
https://doi.org/10.1126/science.295.5554.465
http://www.ncbi.nlm.nih.gov/pubmed/11799233
https://doi.org/10.1128/JVI.77.13.7545-7562.2003
http://www.ncbi.nlm.nih.gov/pubmed/12805455
https://doi.org/10.1128/JVI.79.2.1312-1319.2005
http://www.ncbi.nlm.nih.gov/pubmed/15613358
https://doi.org/10.3390/v7092855
http://www.ncbi.nlm.nih.gov/pubmed/26389939
https://doi.org/10.1038/ng.3980
http://www.ncbi.nlm.nih.gov/pubmed/29083404
https://doi.org/10.1146/annurev-immunol-032713-120145
https://doi.org/10.1146/annurev-immunol-032713-120145
http://www.ncbi.nlm.nih.gov/pubmed/24655300
https://doi.org/10.1172/JCI14097
http://www.ncbi.nlm.nih.gov/pubmed/11877470
https://doi.org/10.1371/journal.pgen.1008485


57. Uehara S, Grinberg A, Farber JM, Love PE. A role for CCR9 in T lymphocyte development and migra-

tion. J Immunol. 2002; 168(6):2811–9. Epub 2002/03/09. https://doi.org/10.4049/jimmunol.168.6.2811

PMID: 11884450.

58. Berger EA. HIV entry and tropism: the chemokine receptor connection. AIDS. 1997; 11 Suppl A:S3–16.

Epub 1997/01/01. PMID: 9451961.

59. Moore JP, Kitchen SG, Pugach P, Zack JA. The CCR5 and CXCR4 coreceptors—central to under-

standing the transmission and pathogenesis of human immunodeficiency virus type 1 infection. AIDS

Res Hum Retroviruses. 2004; 20(1):111–26. Epub 2004/03/06. https://doi.org/10.1089/

088922204322749567 PMID: 15000703.

60. Nedellec R, Coetzer M, Shimizu N, Hoshino H, Polonis VR, Morris L, et al. Virus entry via the alternative

coreceptors CCR3 and FPRL1 differs by human immunodeficiency virus type 1 subtype. Journal of

Viral Entry. 2010; 4(1):33–. https://doi.org/10.1128/JVI.00780-09 PMID: 19553323

61. Gorry PR, Dunfee RL, Mefford ME, Kunstman K, Morgan T, Moore JP, et al. Changes in the V3 region

of gp120 contribute to unusually broad coreceptor usage of an HIV-1 isolate from a CCR5 Delta32 het-

erozygote. Virology. 2007; 362(1):163–78. Epub 2007/01/24. https://doi.org/10.1016/j.virol.2006.11.

025 PMID: 17239419; PubMed Central PMCID: PMC1973138.

62. Bron R, Klasse PJ, Wilkinson D, Clapham PR, Pelchen-Matthews A, Power C, et al. Promiscuous use

of CC and CXC chemokine receptors in cell-to-cell fusion mediated by a human immunodeficiency virus

type 2 envelope protein. J Virol. 1997; 71(11):8405–15. Epub 1997/10/29. PMID: 9343197; PubMed

Central PMCID: PMC192303.

63. Willey SJ, Reeves JD, Hudson R, Miyake K, Dejucq N, Schols D, et al. Identification of a subset of

human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus strains able

to exploit an alternative coreceptor on untransformed human brain and lymphoid cells. J Virol. 2003; 77

(11):6138–52. Epub 2003/05/14. https://doi.org/10.1128/JVI.77.11.6138-6152.2003 PMID: 12743271;

PubMed Central PMCID: PMC155019.

64. Elliott STC, Wetzel KS, Francella N, Bryan S, Romero DC, Riddick NE, et al. Dualtropic CXCR6/CCR5

Simian Immunodeficiency Virus (SIV) Infection of Sooty Mangabey Primary Lymphocytes: Distinct Cor-

eceptor Use in Natural versus Pathogenic Hosts of SIV. 2015. https://doi.org/10.1128/JVI.01236-15

PMID: 26109719

65. Wetzel KS, Yi Y, Elliott STC, Romero D, Jacquelin B, Hahn BH, et al. CXCR6-Mediated Simian Immu-

nodeficiency Virus SIVagmSab Entry into Sabaeus African Green Monkey Lymphocytes Implicates

Widespread Use of Non-CCR5 Pathways in Natural Host Infections. J Virol. 912017.

66. Wetzel KS, Yi Y, Yadav A, Bauer AM, Bello EA, Romero DC, et al. Loss of CXCR6 coreceptor usage

characterizes pathogenic lentiviruses. PLoS Pathog. 2018; 14(4):e1007003. Epub 2018/04/17. https://

doi.org/10.1371/journal.ppat.1007003 PMID: 29659623; PubMed Central PMCID: PMC5919676.

67. Steen A, Thiele S, Guo D, Hansen LS, Frimurer TM, Rosenkilde MM. Biased and Constitutive Signaling

in the CC-chemokine Receptor CCR5 by Manipulating the Interface between Transmembrane Helices

6 and 7*. J Biol Chem. 2882013. p. 12511–21.

68. Hermisson J, Pennings PS. Soft sweeps and beyond: understanding the patterns and probabilities of

selection footprints under rapid adaptation. Methods in Ecology and Evolution. 2017; 8(6):700–16.

https://doi.org/10.1111/2041-210x.12808 WOS:000402919100005.

69. Pritchard JK, Pickrell JK, Coop G. The Genetics of Human Adaptation: Hard Sweeps, Soft Sweeps, and

Polygenic Adaptation. Current Biology. 2010; 20(4):R208–R15. https://doi.org/10.1016/j.cub.2009.11.

055 PMID: 20178769

70. Sadler AJ, Williams BRG. Interferon-inducible antiviral effectors. Nat Rev Immunol. 2008; 8(7):559–68.

https://doi.org/10.1038/nri2314 PMID: 18575461; PubMed Central PMCID: PMC2522268.

71. Andrés AM, Dennis MY, Kretzschmar WW, Cannons JL, Lee-Lin SQ, Hurle B, et al. Balancing selection

maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation.

PLoS Genetics. 2010; 6(10):1–13. https://doi.org/10.1371/journal.pgen.1001157 PMID: 20976248

72. Hearn A, York IA, Rock KL. The Specificity of Trimming of MHC Class I-Presented Peptides in the

Endoplasmic Reticulum1. J Immunol. 2009; 183(9):5526–36. https://doi.org/10.4049/jimmunol.

0803663 PMID: 19828632; PubMed Central PMCID: PMC2855122.

73. Harris LD, Tabb B, Sodora DL, Paiardini M, Klatt NR, Douek DC, et al. Downregulation of robust acute

type I interferon responses distinguishes nonpathogenic simian immunodeficiency virus (SIV) infection

of natural hosts from pathogenic SIV infection of rhesus macaques. J Virol. 2010; 84(15):7886–91.

Epub 2010/05/21. https://doi.org/10.1128/JVI.02612-09 PMID: 20484518; PubMed Central PMCID:

PMC2897601.

74. Rotger M, Dalmau J, Rauch A, McLaren P, Bosinger SE, Martinez R, et al. Comparative transcriptomics

of extreme phenotypes of human HIV-1 infection and SIV infection in sooty mangabey and rhesus

Chimpanzee subspecies genetic adaptation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008485 November 25, 2019 31 / 32

https://doi.org/10.4049/jimmunol.168.6.2811
http://www.ncbi.nlm.nih.gov/pubmed/11884450
http://www.ncbi.nlm.nih.gov/pubmed/9451961
https://doi.org/10.1089/088922204322749567
https://doi.org/10.1089/088922204322749567
http://www.ncbi.nlm.nih.gov/pubmed/15000703
https://doi.org/10.1128/JVI.00780-09
http://www.ncbi.nlm.nih.gov/pubmed/19553323
https://doi.org/10.1016/j.virol.2006.11.025
https://doi.org/10.1016/j.virol.2006.11.025
http://www.ncbi.nlm.nih.gov/pubmed/17239419
http://www.ncbi.nlm.nih.gov/pubmed/9343197
https://doi.org/10.1128/JVI.77.11.6138-6152.2003
http://www.ncbi.nlm.nih.gov/pubmed/12743271
https://doi.org/10.1128/JVI.01236-15
http://www.ncbi.nlm.nih.gov/pubmed/26109719
https://doi.org/10.1371/journal.ppat.1007003
https://doi.org/10.1371/journal.ppat.1007003
http://www.ncbi.nlm.nih.gov/pubmed/29659623
https://doi.org/10.1111/2041-210x.12808
https://doi.org/10.1016/j.cub.2009.11.055
https://doi.org/10.1016/j.cub.2009.11.055
http://www.ncbi.nlm.nih.gov/pubmed/20178769
https://doi.org/10.1038/nri2314
http://www.ncbi.nlm.nih.gov/pubmed/18575461
https://doi.org/10.1371/journal.pgen.1001157
http://www.ncbi.nlm.nih.gov/pubmed/20976248
https://doi.org/10.4049/jimmunol.0803663
https://doi.org/10.4049/jimmunol.0803663
http://www.ncbi.nlm.nih.gov/pubmed/19828632
https://doi.org/10.1128/JVI.02612-09
http://www.ncbi.nlm.nih.gov/pubmed/20484518
https://doi.org/10.1371/journal.pgen.1008485


macaque. Journal of Clinical Investigation. 2011; 121(6):2391–400. https://doi.org/10.1172/JCI45235

PMID: 21555857

75. Utay NS, Douek DC. Interferons and HIV Infection: The Good, the Bad, and the Ugly. Pathog Immun.

2016; 1(1):107–16. Epub 2016/08/09. https://doi.org/10.20411/pai.v1i1.125 PMID: 27500281; PubMed

Central PMCID: PMC4972494.

76. Friedman J, Cho WK, Chu CK, Keedy KS, Archin NM, Margolis DM, et al. Epigenetic Silencing of HIV-1

by the Histone H3 Lysine 27 Methyltransferase Enhancer of Zeste 2!. J Virol. 852011. p. 9078–89.

77. Khan S, Iqbal M, Tariq M, Baig SM, Abbas W. Epigenetic regulation of HIV-1 latency: focus on poly-

comb group (PcG) proteins. Clinical Epigenetics. 2018; 10(1):14–. https://doi.org/10.1186/s13148-018-

0441-z PMID: 29441145

78. Pickrell JK, Berisa T, Liu JZ, Ségurel L, Tung JY, Hinds DA. Detection and interpretation of shared

genetic influences on 42 human traits. Nature Genetics. 2016; 48(7):709–17. https://doi.org/10.1038/

ng.3570 PMID: 27182965

79. Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for

whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007; 81

(5):1084–97. Epub 2007/10/10. https://doi.org/10.1086/521987 PubMed Central PMCID:

PMC2265661. PMID: 17924348

80. Reich D, Thangaraj K, Patterson N, Price AL, Singh L. Reconstructing Indian population history. Nature.

2009; 461(7263):489–94. Epub 2009/09/26. https://doi.org/10.1038/nature08365 PMID: 19779445;

PubMed Central PMCID: PMC2842210.

81. Busing FMTA, Meijer E, Leeden RVDJS, Computing. Delete-m Jackknife for Unequal m. 1999; 9(1):3–

8. https://doi.org/10.1023/a:1008800423698

82. Cheng X, Xu C, DeGiorgio M. Fast and robust detection of ancestral selective sweeps. Mol Ecol. 2017;

26(24):6871–91. Epub 2017/11/08. https://doi.org/10.1111/mec.14416 PMID: 29113018.

83. Racimo F, Berg JJ, Pickrell JK. Detecting polygenic adaptation in admixture graphs. Genetics. 2018;

208(4):1565–84. https://doi.org/10.1534/genetics.117.300489 PMID: 29348143

84. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol

Biol Evol. 1987; 4(4):406–25. Epub 1987/07/01. https://doi.org/10.1093/oxfordjournals.molbev.

a040454 PMID: 3447015.

85. Bhatia G, Patterson N, Sankararaman S, Price AL. Estimating and interpreting FST: the impact of rare

variants. Genome Res. 2013; 23(9):1514–21. Epub 2013/07/19. https://doi.org/10.1101/gr.154831.113

PMID: 23861382; PubMed Central PMCID: PMC3759727.

86. Ewing G, Hermisson J. MSMS: a coalescent simulation program including recombination, demographic

structure and selection at a single locus. Bioinformatics. 2010; 26(16):2064–5. Epub 2010/07/02.

https://doi.org/10.1093/bioinformatics/btq322 PMID: 20591904; PubMed Central PMCID:

PMC2916717.

87. Kofler R, Schlötterer C. Gowinda: Unbiased analysis of gene set enrichment for genome-wide associa-

tion studies. Bioinformatics. 2012; 28(15):2084–5. https://doi.org/10.1093/bioinformatics/bts315 PMID:

22635606

88. https://commons.wikimedia.org/wiki/File:Blank_Map-Africa.svg

Chimpanzee subspecies genetic adaptation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008485 November 25, 2019 32 / 32

https://doi.org/10.1172/JCI45235
http://www.ncbi.nlm.nih.gov/pubmed/21555857
https://doi.org/10.20411/pai.v1i1.125
http://www.ncbi.nlm.nih.gov/pubmed/27500281
https://doi.org/10.1186/s13148-018-0441-z
https://doi.org/10.1186/s13148-018-0441-z
http://www.ncbi.nlm.nih.gov/pubmed/29441145
https://doi.org/10.1038/ng.3570
https://doi.org/10.1038/ng.3570
http://www.ncbi.nlm.nih.gov/pubmed/27182965
https://doi.org/10.1086/521987
http://www.ncbi.nlm.nih.gov/pubmed/17924348
https://doi.org/10.1038/nature08365
http://www.ncbi.nlm.nih.gov/pubmed/19779445
https://doi.org/10.1023/a:1008800423698
https://doi.org/10.1111/mec.14416
http://www.ncbi.nlm.nih.gov/pubmed/29113018
https://doi.org/10.1534/genetics.117.300489
http://www.ncbi.nlm.nih.gov/pubmed/29348143
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1093/oxfordjournals.molbev.a040454
http://www.ncbi.nlm.nih.gov/pubmed/3447015
https://doi.org/10.1101/gr.154831.113
http://www.ncbi.nlm.nih.gov/pubmed/23861382
https://doi.org/10.1093/bioinformatics/btq322
http://www.ncbi.nlm.nih.gov/pubmed/20591904
https://doi.org/10.1093/bioinformatics/bts315
http://www.ncbi.nlm.nih.gov/pubmed/22635606
https://commons.wikimedia.org/wiki/File:Blank_Map-Africa.svg
https://doi.org/10.1371/journal.pgen.1008485

