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Abstract

Many disease risk loci identified in genome-wide association studies are present in non-cod-

ing regions of the genome. Previous studies have found enrichment of expression quantita-

tive trait loci (eQTLs) in disease risk loci, indicating that identifying causal variants for gene

expression is important for elucidating the genetic basis of not only gene expression but

also complex traits. However, detecting causal variants is challenging due to complex

genetic correlation among variants known as linkage disequilibrium (LD) and the presence

of multiple causal variants within a locus. Although several fine-mapping approaches have

been developed to overcome these challenges, they may produce large sets of putative

causal variants when true causal variants are in high LD with many non-causal variants. In

eQTL studies, there is an additional source of information that can be used to improve fine-

mapping called allelic imbalance (AIM) that measures imbalance in gene expression on two

chromosomes of a diploid organism. In this work, we develop a novel statistical method that

leverages both AIM and total expression data to detect causal variants that regulate gene

expression. We illustrate through simulations and application to 10 tissues of the Genotype-

Tissue Expression (GTEx) dataset that our method identifies the true causal variants with

higher specificity than an approach that uses only eQTL information. Across all tissues

and genes, our method achieves a median reduction rate of 11% in the number of putative

causal variants. We use chromatin state data from the Roadmap Epigenomics Consortium

to show that the putative causal variants identified by our method are enriched for active

regions of the genome, providing orthogonal support that our method identifies causal vari-

ants with increased specificity.
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Author summary

In recent years, many studies have identified genetic variants that are associated with

the expression of genes (eQTLs). While thousands of eQTLs have been identified, not all

associated variants cause changes in gene expression. This is in part due to the complex

patterns of genetic correlation in the human genome. If a region of the genome contains

many genetic variants that are highly correlated with each other, non-causal genetic var-

iants close to a causal variant are also correlated with gene expression. Statistical fine-

mapping is the process of identifying true causal variants from a set of candidate vari-

ants. In regions with high genetic correlation, previous fine-mapping methods may

not be able to differentiate causal variants from nearby variants. We propose a method

that utilizes a complementary source of information called allelic imbalance (AIM). We

show that by combining eQTL and AIM data, we can identify the true causal variants

more efficiently and substantially decrease the number of putative causal variants for

downstream analysis.

Introduction

Understanding the regulation of gene expression by genetic variants is essential for identifying

the biological mechanisms of gene expression and complex traits. In expression quantitative

trait loci (eQTL) studies, a statistical test is performed to find genetic variants that are signifi-

cantly correlated with gene expression (eQTLs). Identifying eQTLs is critical in genetic studies

not only because they influence gene expression but also because they are enriched in disease

risk loci [1–5]. In recent years, many studies have identified eQTLs in different organisms and

tissues [6–10].

Once eQTLs are identified, the next step is to isolate the causal variants that influence gene

expression. We define causal variants to be variants that are responsible for the observed peak

of association in a locus. Not all eQTLs are causal, and the process of identifying causal vari-

ants from several candidate variants is called fine-mapping. Fine-mapping in eQTL studies has

two main challenges. The first challenge is the complex linkage disequilibrium (LD) structure

present in the human genome. If a region of the genome contains many genetic variants that

are highly correlated (or “in high LD”) with each other, non-causal genetic variants close to a

causal variant appear to be correlated with gene expression [11–13]. The second challenge is

that there may be multiple causal variants in a region [14, 15], increasing the complexity of

fine-mapping algorithms. A few fine-mapping approaches have been developed to address

these challenges [16–22]. These methods attempt to calculate a posterior probability for

each variant and select a set of variants called a “causal set” that contains all causal variants

with high probability (e.g., 95%) while minimizing the number of variants in the causal set.

Although these previous methods are accurate in including all true causal variants in the causal

set, they may also include many non-causal variants in regions with high LD, which increases

the number of variants that need to be validated in downstream studies.

In addition to total expression, there is another source of information called allelic imbal-

ance (AIM) that we can utilize to identify genetic variants that regulate gene expression [23–

28]. A diploid individual has AIM for a specific gene if the amount of gene expression from

one chromosome is not equal to the amount of gene expression from the other chromosome

[29, 30]. Because causal variants for AIM change expression levels of a gene in an allele-specific

manner, they provide insight into the regulation of gene expression. This is different from

eQTL mapping using total expression, which identifies genetic variants associated with a
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significant difference in total expression. Thus, eQTL mapping and AIM analysis are comple-

mentary approaches to studying the genetic basis of gene expression, and combining these two

types of data may improve statistical fine-mapping.

We propose a method that combines both total expression and AIM data to improve fine-

mapping in eQTL studies. We first compute an eQTL summary statistic for total expression

and an AIM summary statistic for allelic imbalance. We then aggregate the two statistics

utilizing meta-analysis. The meta-analysis statistic is then incorporated into a fine-mapping

approach for GWAS called CAVIAR [18], which models multiple causal variants and takes

into account the LD structure among genetic variants. Our simulation results show that our

method identifies causal variants with the correct true positive rate or recall, and more impor-

tantly, it generates causal sets that are noticeably smaller than sets generated using only the

eQTL statistics. This means that our approach includes fewer non-casual variants, yielding

higher specificity. We apply our method to RNA-seq data from ten tissues in the Genotype-

Tissue Expression (GTEx) dataset [8, 10] and find that the causal set size is also reduced when

compared to an approach that only uses eQTL statistics. Since the true causal variants for gene

expression are unknown in most cases, we use orthogonal gene annotation and chromatin

state data from the Roadmap Epigenomics Consortium to show that the putative causal vari-

ants identified by our method are enriched for active regions of the genome. We also show

that variants that are predicted to be causal by using only eQTL statistics but not by our

approach are depleted for active regions of the genome, providing orthogonal support that our

method identifies causal variants with increased specificity.

Results

Method overview

The main goal of fine-mapping methods is to identify a small set of variants that include all

true causal variants with high probability. A naive approach would be to conduct an eQTL

mapping and to use these summary statistics as input to fine-mapping algorithms for GWAS

such as CAVIAR [18]. Our method improves this fine-mapping algorithm by including AIM

summary statistic data, which identifies variants associated with changes in AIM. This is differ-

ent from eQTL mapping, which identifies genetic variants associated with a significant differ-

ence in total expression. Thus, the AIM analysis may provide additional information on which

variants are causal, which is not captured in the eQTL mapping.

In terms of a statistic for each analysis, an eQTL mapping computes a statistic that measures

correlation between total expression levels of a gene and genotypes of a variant. On the other

hand, an AIM analysis computes a statistic that measures correlation between AIM status

(e.g., 0 for balanced expression and 1 for AIM) and heterozygous status of a variant (e.g., 0 for

homozygous genotype and 1 for heterozygous genotype). The AIM status can only be com-

puted in individuals with heterozygous variants in the coding region of the gene. Thus, only

individuals with heterozygous variants in the coding region are used to calculate the AIM sta-

tistic for a variant. We refer to the heterozygous coding variants used to call AIM as aiSNPs

and the variants tested for association as cis-regulatory variants or cis-eQTLs. While it is possi-

ble for nearby variants to have a trans-regulatory effect, we focus on cis-regulatory variants

that have a direct effect on the expression of the gene being tested [31, 32]. These variants are

more likely to have higher agreement between eQTL statistics and AIM statistics. For example,

in Fig 1A, individual 2 has a heterozygous genotype at the causal cis-regulatory variant and has

AIM for the gene, while other individuals with homozygous genotypes have balanced expres-

sion. The causal cis-regulatory variant has heterozygosity patterns that perfectly match the
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Fig 1. Integrating AIM and eQTL summary statistics improves fine-mapping of cis-regulatory variants. A) Individuals 1 and 3 have balanced

expression, and individual 2 has AIM. The first variant has a heterozygosity pattern across individuals that perfectly matches the AIM status across

individuals, making it more likely to regulate gene expression than other cis-regulatory variants shown. B and C) Manhattan plots for gene TPO

showing -log10 p-values for eQTL and meta-statistics summary statistics, respectively. The heatmaps below each plot show the pairwise correlations due

to LD. The blue points correspond to variants included in the causal set obtained using only eQTL summary statistics, and the red points correspond to

variants included in the causal set obtained using the meta-statistics.

https://doi.org/10.1371/journal.pgen.1008481.g001
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AIM patterns, and the AIM statistic for this variant is higher than any of the other non-causal

variants. We compute the AIM statistic as discussed in the Methods section.

Because our AIM statistic measures cis-regulatory strength of variants in a complementary

way to eQTL studies, it can be used to improve traditional eQTL fine-mapping studies. For

example, a certain gene may contain many highly correlated genetic variants with low p-values

using eQTL mapping, which makes it difficult to pinpoint causal variants. In Fig 1B, there are

50 significant eQTLs for gene TPO. While it is difficult to isolate the true causal variants using

total expression data alone, AIM statistics may provide more information on which of the 50

variants are more likely to be causal. Fig 1C shows the corresponding meta-analyzed summary

statistics (“meta-statistics”), which combine the eQTL and AIM summary statistics. There is a

block of variants on the right of the Manhattan plot that have substantially lower meta-statis-

tics than eQTL statistics. Using only the eQTL summary statistics we obtain a causal set of 44

variants. However, when we combine both eQTL and AIM information, we obtain a causal set

size of 27, which is a 39% reduction in set size. Hence, by combining eQTL and AIM statistics,

we can potentially deprioritize non-causal variants in high LD regions and detect the true

causal variants more accurately.

When performing fine-mapping with the meta-statistics, we assume that causal variants

in the eQTL mapping also cause changes in AIM status. This assumption is likely to be valid

under an additive model for genetic effects when the causal variant is a cis-regulatory variant.

Under these assumptions, an allele that increases the total expression level of a gene also causes

individuals with heterozygous genotypes to have different expression levels from each chromo-

some (AIM). With this assumption, we combine eQTL and AIM summary statistics of variants

in close proximity to a gene by performing meta-analysis on the two statistics. Meta-analysis is

a popular statistical approach that combines results of multiple studies to increase statistical

power. In GWAS, meta-analysis has discovered many associations that were not identified by

each individual study [33, 34]. We perform fixed effect meta-analysis between the AIM and

eQTL statistics to better identify causal cis-eQTLs that influence gene expression. We utilize

fixed effect meta-analysis, rather than random effects meta-analysis because we only have two

data sets. While random effects models could potentially be applied, these approaches are most

effective when there are more than two studies in consideration [35, 36]. While traditional

applications of fixed effect meta-analysis have the same phenotype and rely on independent

samples to achieve independence between the statistics, our framework uses two orthogonal

types of data: total expression and allelic imbalance [37, 38]. By using these two types of data,

we have an additional issue not present in traditional meta-analysis. Unlike traditional meta-

analysis, the dependent and independent variables for the two studies are different, and the

two statistics may have conflicting signs. This is not ideal because we want to fine-map variants

that have high likelihood to have cis-regulatory impact, regardless of sign. To address this, we

compute two forms of the meta-statistic (SM1 ¼ SAþSEffiffi
2
p and SM2 ¼ SA � SEffiffi

2
p ) for each gene to use as

input to our fine-mapping framework (Methods, S6 Fig).

To improve identification of causal variants from these statistics, we extend the previous

fine-mapping framework for GWAS called CAVIAR [18]. CAVIAR takes as input a set of

summary statistics for variants in a locus and a pairwise correlation matrix between these vari-

ants calculated from genotype data. Using this data, CAVIAR identifies a minimal subset of

variants that contains all causal variants with probability ρ. We refer to this set as the ρ causal

set, and this can be interpreted as a confidence interval on the set. We extend the CAVIAR

framework to incorporate both eQTL and AIM summary statistic data by utilizing fixed effect

meta-analysis. By integrating these two types of data, our method attempts to reduce the size

of the causal set, increasing specificity compared to the traditional CAVIAR approach that
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uses only total expression data. In practice, we apply our fine-mapping framework to two

forms of the meta-statistic for each gene and select the causal set that is smaller (Methods).

Meta-analysis achieves correct recall rate

We generate simulated data to assess the performance of our approach. In this simulation, we

use real genotypes from the whole blood tissue in the GTEx dataset that contains 325 samples.

For each gene, we identify the top 50 genetic variants with the highest eQTL statistics. We

use these top 50 genetic variants to calculate pairwise correlation matrices as described in the

Methods section. We then choose one causal variant randomly from the 50 variants and assign

an effect size to this variant such that we have 50% power to detect its association. Given this

effect size for the causal variant, we generate eQTL statistics for all variants by using their

genotype correlation (LD) to the causal variant and by assuming that the statistics follow a

multivariate normal distribution (MVN). Using the same effect size and implanted causal vari-

ant, we generate AIM statistics for all variants by using their heterozygosity correlation to the

causal variant and the same MVN assumption. We use fixed effect meta-analysis to combine

these simulated statistics into meta-statistics, which we use as input to our fine-mapping

framework. For comparison, we apply the CAVIAR framework using only the simulated

eQTL statistics. We also generate simulations where the number of causal variants is 2 and 3

and the power to detect a causal variant is 80%. We use 1,000 randomly chosen genes for these

simulations.

One important metric to measure the performance of fine-mapping approaches is deter-

mining how accurately they identify implanted causal variants. For this measure, we define

recall rate to be the proportion of genes in which all true causal variants are included in the

causal set generated from the fine-mapping approaches. Since our method and the original

CAVIAR method are designed to include all causal variants with 95% probability in the causal

sets, the recall rate should be close to 95%. For all combinations of power and number of causal

variants, simulation results show that our method achieves very similar recall rates compared

to the original CAVIAR method (S1 and S2 Tables) that has been shown to have well-cali-

brated recall rates compared to competing fine-mapping algorithms when there are multiple

causal variants [18]. These results demonstrate that our method also detects all true causal vari-

ants accurately even when there are several causal variants near a gene and when the power to

detect a causal variant is not very high.

Meta-analysis reduces the size of causal set

A naive approach to improve recall rate would be to include as many variants as possible in the

causal set. For instance, if we include all variants near a gene in the causal set, the recall rate

would always be 1, as the causal set is guaranteed to contain all causal variants. This, however,

would not be cost effective because downstream validation of these variants using functional

assays is often costly. Therefore, the size of the causal set needs to be minimized while retaining

high recall rate. While previous fine-mapping approaches such as CAVIAR attempt to mini-

mize the causal set size, they may not accurately differentiate between causal and non-causal

variants if they are in regions of high LD. Our method incorporates additional information

about causal variants, AIM statistics, into our fine-mapping framework to improve our ability

to determine whether variants are causal or not.

We compare the size of the causal set between our approach and the original CAVIAR

approach in the following manner. For each gene, we calculate the reduction rate as r = (NeQTL
− NMeta)/NeQTL where NMeta is the size of the causal set from our meta-analysis approach

and NeQTL is the size of the causal set from the original CAVIAR approach using only eQTL
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statistics. A positive reduction rate means our approach has the smaller causal set size than the

original CAVIAR approach, while a negative reduction rate means it has the larger causal set.

For each combination of power level and number of causal variants, we compute the median

reduction rate across all genes.

Using the same simulation data as in the previous recall rate simulation, we show that the

size of the causal set from our approach is noticeably smaller than that from the CAVIAR

approach that uses only eQTL statistics (Fig 2). The median reduction rate is 24%, 31%, and

27% when the number of causal variants is 1, 2, and 3, respectively at 50% power to detect

causal variants. At 80% power to detect causal variants, the median reduction rate is 27%, 31%,

and 29% when the number of causal variants is 1, 2, and 3, respectively. This result also shows

that we can achieve high reduction rates when there are multiple causal variants in a locus (Fig

2). This is advantageous because it is harder to predict causal variants when there are several

causal variants that may have high LD with other non-causal variants. By incorporating infor-

mation about causal variants for AIM, our framework is able to exclude non-causal variants

from the causal set, reducing the causal set size.

Different effect sizes yield modest decrease in reduction rate

As our method utilizes fixed effect meta-analysis to combine eQTL and AIM statistics, it

assumes that effect sizes in the eQTL studies and AIM studies are the same. To measure the

performance of our approach when this assumption is violated, we consider scenarios where

the true effect size in eQTL studies is not equal to that in AIM studies. Using the same 1000

randomly chosen genes from the previous simulations, we fix the effect size of eQTL causal

variants to 5.2 (50% power) and vary the effect size of AIM causal variants from 2.0 to 4.0. We

assume that AIM has smaller effect size than eQTL because in real data, incorrect mapping of

reads, inaccurate phasing, reads overlapping multiple intronic variants, or other technical

issues may deteriorate AIM signals and reduce our power to detect effect of AIM [39–41].

Although we decrease the effect size of the AIM summary statistics in these simulations, the

argument is symmetric, and decreasing the eQTL statistics would have similar results. We gen-

erate AIM summary statistics and eQTL summary statistics using the same simulation frame-

work as previously described.

We observe that the median reduction rate decreases as the fixed effect assumption is fur-

ther violated, which is expected (Fig 3). The results also show that as long as AIM effect sizes

are not prohibitively low compared to the eQTL effect sizes, our framework can yield a positive

reduction rate. For all numbers of causal variants, the reduction rate is positive when the AIM

Fig 2. Distribution of causal set sizes in simulations. The power to detect causal variants is 50% in all scenarios. “eQTL+AIM” shows the distribution

of causal set sizes using our approach that uses meta-statistics, while “eQTL” shows the distribution of causal set sizes using the naive approach that uses

eQTL statistics. We consider three scenarios where we have A) one causal variant, B) two causal variants, and C) three causal variants.

https://doi.org/10.1371/journal.pgen.1008481.g002
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effect size is greater than 2.0 (38% of eQTL effect size). In real data, although true effect sizes of

eQTL and AIM cis-regulatory variants are unknown, it is unlikely to observe such a large dis-

crepancy between the two association statistics. This also means that we expect slightly reduced

reduction rate in real data compared to those observed in simulation, as there may be some

genes in which effect sizes of eQTL and AIM are not exactly the same. As long as the difference

in effect sizes is not substantial, combining AIM and total expression information is still bene-

ficial and the number of putative causal variants can be decreased.

We observe that that the recall is generally high, although slightly lower in the most extreme

cases (S3 Table). It is possible that this reduced recall is due to the prior we set on the true effect

sizes. We compared our recall for these simulations with the recall obtained using an alterna-

tive approach used by PAINTOR 3.0, where the prior is estimated from the data using Empiri-

cal Bayes. This approach did not yield substantially better recall in the most extreme cases and

had notably worse performance when there were multiple causal variants (S4 Table). Never-

theless, both cases had high recall rate in most cases. Based on these results and prior work

[42], we expect that the prior does not substantially impact the final results, and the main effect

of unequal effect sizes is the decrease in efficiency of fine-mapping.

Meta-analysis improves fine-mapping in GTEx data

We then apply our approach to RNA-seq data from the GTEx Consortium [10]. We apply the

framework to ten randomly selected tissues, ranging in sample sizes from 101 to 491. Unlike

simulated data, real AIM data is not perfect, as it contains mapping errors and non-negligible

noises that may reduce AIM signals significantly for certain genes. In particular, we observe

Fig 3. Median reduction rate using simulated data with different effect sizes between eQTL and AIM statistics.

eQTL effect sizes are fixed at 5.2 (50% power), while AIM effect sizes range from 2.0 to 5.2. Median reduction rates are

shown for 1, 2, and 3 causal variants.

https://doi.org/10.1371/journal.pgen.1008481.g003
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that variants with small numbers of reads have low concordance of allelic ratios between vari-

ants used to call AIM (S1 Fig). Genes with low read counts may contain very low AIM statistics

for genetic variants even though those genetic variants have high eQTL statistics. As shown

in simulations, our method may not be accurate when the fixed effect assumption is violated.

Thus, we require individuals to have at least 20 reads mapped to each gene. While this require-

ment increases the quality of AIM calls for each individual, it may reduce the number of genes

for which this method can be applied (Table 1). We choose a conservative threshold for the

minimum number of reads that still allows us to apply this framework to a large number of

genes.

We set the recall rate of our method and the original CAVIAR approach to 95%, meaning

that both approaches generate causal sets that include all causal variants with 95% probability.

Our results in the GTEx dataset show that our approach is effective at identifying smaller

causal sets compared to the original CAVIAR approach, which only uses total expression. The

median reduction rate across all tissues and genes is 11%, and the median reduction rate across

genes for each tissue ranges from 9% to 11% (Table 1). We report the median reduction rate to

show that our method can provide some modest improvement in most cases, but in optimal

cases, our method can reduce the causal set size substantially (S3 Fig). Our method achieves

similar reduction rates for all tissues, even those with small sample sizes. Across tissues, the

reduction rate is positive for 80% of genes, which indicates that our approach is able to reduce

the size of the causal set for a majority of genes. This also implies that although the AIM data

can be more noisy than total expression data in some cases, it still provides valuable, comple-

mentary signal that can be used to improve fine-mapping. The distribution of causal set size

using the two sets of statistics is shown in Fig 4A.

In this analysis, we identify AIM status of each individual by binarizing the AIM data with

an empirically determined threshold that corresponds to two standard deviations from the

null allelic ratio of 0.5 (Methods; S2 Fig). We compare this binarization strategy with one in

which the AIM status is determined using a binomial test. When using the adipose subcutane-

ous data and the binomial binarization in our fine-mapping framework, we observe a slight

decrease in median reduction rate (from 11% to 7.2%). Furthermore, the number of genes for

which the fine-mapping can be applied decreases from 4023 to 420. This decrease is due to the

fact that applying a two-sided binomial test to binarize AIM status is a more stringent criteria

than using the empirically determined threshold. When using the binomial threshold, many

genes have no individuals with AIM. We are unable to calculate AIM summary statistics and

perform fine-mapping for these genes. Therefore, we recommend using the empirically deter-

mined threshold to binarize AIM status.

Table 1. Reduction rate for 10 GTEx tissues. Let �r be the median reduction rate,N be the sample size, and M be the

number of genes tested.

Tissue �r N M

Adipose Subcutaneous 0.11 385 4023

Artery Aorta 0.11 267 2842

Brain Caudate Basal Ganglia 0.11 144 1272

Brain Hippocampus 0.10 111 680

Heart Atrial Appendage 0.11 264 1907

Cells EBV-transformed Lymphocytes 0.09 117 470

Muscle Skeletal 0.11 491 3414

Thyroid 0.10 399 1470

Uterus 0.09 101 600

Whole Blood 0.11 369 3452

https://doi.org/10.1371/journal.pgen.1008481.t001
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To assess the consistency of the eQTL and AIM summary statistics, we perform colocaliza-

tion analysis between the two sets of statistics in the adipose subcutaneous tissue. Colocaliza-

tion determines whether a single variant is responsible for the observed patterns of signal in

two sets of summary statistics. We use colocalization to assess the agreement between the AIM

and eQTL statistics since only the causal variants must agree for our framework to improve

fine-mapping. In genes with some variants with high colocalization between the AIM and

eQTL statistics, our method can potentially prioritize the causal variants and deprioritize the

noncausal variants that are less likely to colocalize. We compute a colocalization posterior

probability (CLPP) for each variant using the eCAVIAR method [43]. The CLPP corresponds

to the amount of support for a variant being responsible for the associated signals in both stud-

ies. We observe a high Spearman correlation between the maximum CLPP for a gene and the

reduction rate (ρ = 0.31), which indicates a strong correlation between colocalization of causal

variants and fine-mapping performance. This also confirms that our method performs best

under a model of additive cis-regulatory effects where the causal variants between total expres-

sion and AIM are the same. For each gene, we select the variant with the largest CLPP and

determine whether it passes a colocalization threshold of 0.01, which is the threshold recom-

mended by the eCAVIAR method. Of the genes we analyzed, we identify 1331/4023 genes

with at least one variant meeting this colocalization threshold. These results imply that for

these genes, the effect sizes are similar between the causal variants for AIM and total expres-

sion. When we consider only the 1331 genes with at least one colocalized variant, we achieve a

slightly improved median reduction rate of 16%.

Variants in causal sets are enriched for active regions of the genome

We have shown statistically that our framework reduces the causal set size compared to the

method that only uses total expression data. To further validate whether the reduction in the

Fig 4. Integrating AIM and eQTL statistics improves specificity of fine-mapping in GTEx data. A) The distribution of causal set sizes from the

GTEx data for our approach using meta-statistics (“eQTL+AIM”) and the previous approach using only eQTL statistics (“eQTL”). B) Enrichment

for active regions of the genome was computed in a tissue-specific manner. For each tissue, the “meta causal variants” includes all variants in the

meta causal sets for all genes tested. The “eQTL only variants” includes all variants contained in the eQTL causal sets but excluded from the meta

causal sets. The x-axis shows the odds of being in an active region of the genome for the eQTL only causal variants, and the y-axis shows the odds of

being in an active region of the genome for the meta causal variants. Using a Fisher’s exact test, the odds are significantly greater for the meta causal

variants in all tissues. The tissue abbreviations are for Adipose Subcutaneous, Artery Aorta, Brain Caudate Basal Ganglia, Brain Hippocampus, Heart

Atrial Appendage, Cells EBV-transformed Lymphocytes, and Muscle Skeletal respectively.

https://doi.org/10.1371/journal.pgen.1008481.g004
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causal set size is biologically relevant, we use orthogonal data sets that have finer resolution

than typical LD blocks, such as gene annotations and chromatin state annotations. Since most

variants input into our fine-mapping framework are in active regions of the genome to begin

with, we test not only for enrichment in the meta causal set but also compared to the eQTL

causal set. This is a more stringent test that explicitly shows improvement in specificity.

The first annotation we examine is the distance to the transcription start site (TSS) of a

gene for causal variants. It has been observed that eQTLs with the strongest effect sizes are

highly enriched near the TSS [44]. This observation may be due to the fact that cis-regulatory

variants may potentially disrupt promoter or enhancer DNA regions, mediating a change in

gene expression. Therefore, we expect that true causal cis-regulatory variants will be closer to

the TSS than non-causal variants. We look at the distance to the TSS of variants in two causal

sets; 1) variants in the causal set from our meta-analysis framework based on AIM and eQTL

information (“meta causal set”), and 2) variants that are not present in our meta causal set, but

present in the causal set from the original approach that uses only eQTL information (“eQTL

only causal set”). We find that variants in the eQTL only causal set are significantly farther

from the TSS than variants in the meta causal set across all genes and tissues (Mann U Whit-

ney, p< 2.2e − 16, S4 Fig). This indicates that variants that are excluded from the meta causal

set but present in the causal set using eQTL information have weaker evidence of being true

causal variants than variants in the meta causal set. While the tendency to see variants falling

closer to the TSS could be explained by simply choosing variants with higher effect sizes, our

method does not merely choose variants with the highest effect sizes. We created an alternative

set of variants for each gene in the adipose subcutaneous tissue constructed from the top

eQTLs with the same size as the corresponding meta causal sets. We call these sets the TopN

sets. We then computed the number of variants in the causal set that were not present in the

TopN set. The majority of genes have multiple putative causal variants that are not in the

TopN sets (S5 Fig). Thus, our approach does not decrease the causal set size by simply discard-

ing weaker regulatory variants.

We also compute enrichment in chromatin states, which are combinatorial patterns of epi-

genetic marks that have been shown to be associated with distinct biological functions [45].

Causal variants are more likely to be within active chromatin states. We define active chroma-

tin states to be regions of the genome that are annotated as promoters, enhancers, transcribed

regions, open chromatin, or zinc finger genes by the ChromHMM software [46, 47]. All

other regions of the genome are labeled as non-active regions of the genome. We obtain these

annotations for 7 tissues that overlapped the Roadmap Epigenomics Project (Adipose Subcuta-

neous, Artery Aorta, Brain Caudate Basal Ganglia, Brain, Hippocampus, Heart Atrial Append-

age, Cells, EBV-transformed Lymphocytes, Muscle Skeletal) and overlap the variants for each

tissue with cell-type specific chromatin state annotations. We again compare variants in the

meta causal set with those in the eQTL only causal set, and perform a Fisher’s exact test, where

the null hypothesis is that variants in the two causal sets are equally likely to fall within active

regions of the genome. In these 7 tissues, we find that the variants in the meta causal set are sig-

nificantly enriched for active regions compared to those in the eQTL only causal set (Fig 4b, S5

Table). This enrichment for active regions of the genome in the meta causal set suggests that

using both AIM and total expression data increases the specificity of statistical fine-mapping.

In both the TSS and chromatin state analyses, we compare the meta causal set with the

eQTL only causal set to show that the variants excluded from the meta causal set are likely

non-causal. We also perform two additional comparisons. The first is a direct comparison

between the eQTL causal sets and the meta causal sets. These two sets of variants contain

many overlapping variants, and therefore, the differences are smaller than the previous com-

parison. Variants in the meta causal set are still significantly closer to the TSS than those in the
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eQTL causal set (Mann U Whitney, p< 2.2e − 16). Using the same chromatin state annota-

tions, we perform a Fisher’s exact test, where the null hypothesis is that variants in the meta

causal set and the eQTL causal set are equally likely to fall within an active region of the

genome. Across the 7 tissues, the variants in the meta causal set are more likely to fall in active

regions of the genome compared to those in the eQTL causal set, but this result is only signifi-

cant in 3 of the tissues due to substantial overlap of variants in the causal sets (S7 Table). The

second comparison is between the set of variants only found in the meta causal set (“meta only

causal set”) and the set of variants only found in the eQTL causal set (“eQTL only causal set”).

We expect that the variants found in the meta only causal set are more likely to be causal than

those in the eQTL only causal set, since the AIM information may provide evidence for addi-

tional causal variants that were not identified using only total expression information. Variants

in the meta only causal set are significantly closer to the TSS than those in the eQTL only

causal set (Mann U Whitney, p< 2.2e − 16). In the chromatin state analysis, the odds ratio

is greater than one in 6 out of 7 tissues, indicating that the variants in the meta only set are

slightly enriched for being in active regions of the genome in these tissues (S6 Table). However,

due to the small number of variants in the meta only set, this result is not significant in any of

the tissues. The small number of variants in the meta only causal sets also indicates that there

are relatively few cases where the meta analysis implicates a variant that was not previously

supported by the total expression data alone.

Comparisons with alternative AIM statistics and fine-mapping frameworks

Our method is unique in that it jointly models many variants within a single locus and out-

puts a minimal causal set that contains all causal variants with high probability. Other meth-

ods that combine total expression with AIM data to find cis-regulatory variants perform a

marginal test on each SNP and output a likelihood ratio statistic for each variant tested [37,

38, 48]. This is a distinct type of output from the causal sets obtained in our method. In

regions of high LD, these existing methods may identify many variants that are significantly

associated with gene expression. One way to obtain a minimal causal set from existing statis-

tics is to use these statistics as input to the CAVIAR fine-mapping framework. To test whether

existing likelihood ratio statistics can be used in our framework, we compute statistics for cis-

regulatory variants using RASQUAL and TReCASE, which jointly model total expression

using a negative binomial distribution and allelic imbalance using a beta binomial distribu-

tion [37]. These methods perform a likelihood ratio test for each cis-regulatory variant, which

outputs a chi-squared statistic. We call the statistics obtained from these joint likelihood-

based methods “joint statistics.” We compute joint statistics using the RASQUAL and TRe-

CASE methods for the 4023 genes we tested in the adipose subcutaneous tissue. We only

apply our fine-mapping framework to genes with joint chi-squared statistics for all variants

tested in our framework. This is necessary because the reduction rates cannot be compared if

the number of variants used as input is different between the methods. For RASQUAL, we

test 2831 genes that meet this requirement. For TReCASE, we also require that all genes have

a chi-squared statistic for the TReC (total expression) and ASE models, which leaves 649

genes (S1 Text). We convert the joint chi-squared statistics into z-scores, which we use as

input to the CAVIAR fine-mapping framework. When comparing the causal set sizes

obtained using the joint statistics to causal set sizes using only eQTL summary statistics,

RASQUAL and TReCASE have median reduction rates of 0% and -15%, respectively. This is

substantially lower than the median reduction rate of 11% using our method for the same sub-

sets of genes. For TReCASE, we performed an additional comparison with fine-mapping

using the TReC (eQTL) chi-squared statistic, which is output from the software. This
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comparison more directly highlights the change in fine-mapping when including AIM data,

rather than comparing the differences in statistics used as input. Using this second baseline,

TReCASE obtains a median reduction rate of 0%.

Although there is little work on fine-mapping using allelic imbalance data, there are many

alternative fine-mapping algorithms for GWAS data and eQTL data. Two alternative fine-

mapping frameworks that could be applied in this context are DAP-G and PAINTOR 3.0.

We apply these two fine-mapping frameworks to the 4023 genes we reported in the adipose

subcutaneous tissue. DAP-G has a similar methodology as CAVIAR but approximates the

posterior by only considering a subset of causal status configurations that contribute highly

to the posterior. DAP-G also has the option of inputting a prior probability for each variant.

This method can be utilized in a two-step fine-mapping approach. We apply the DAP-G

method to our AIM statistics to obtain a posterior probability for each variant. We then use

the posterior probabilities as a prior for fine-mapping the eQTL summary statistics using

DAP-G. This approach obtains a median reduction rate of 0%. However, the number of mod-

els used to approximate the posterior decreased on average by 96% compared to fine-map-

ping the eQTL summary statistics using DAP-G without a prior. Another fine-mapping

method that can be applied is PAINTOR 3.0, which was originally intended for fine-mapping

with multiple ancestries. PAINTOR 3.0 jointly models two sets of summary statistics, treating

each set as conditionally independent given the causal variants. While our approach should

theoretically be a close approximation of this joint model (Methods section), the median

reduction rate when jointly modeling the two statistics is -4.5%, indicating an increase in

causal set size.

Discussion

We developed a novel fine-mapping approach for eQTL studies that utilizes AIM informa-

tion from RNA-seq data. Based on the insight that causal variants for total gene expression

also influence gene expression in an allele-specific manner, we developed a new statistic that

aggregates AIM and eQTL statistics through fixed effect meta-analysis. We then incorpo-

rated the meta-analysis statistic into the fine-mapping algorithm for GWAS called CAVIAR,

which takes into account LD structure among variants and multiple causal variants in a

region. We used simulations to show that our approach achieves the correct recall rate and

reduces the causal set size considerably compared to the fine-mapping approach that uses

only eQTL statistics. We also showed through simulations that our method is effective at

reducing causal set size even when the fixed effect assumption is not met. When applying

our method to the GTEx data set, we observed a median reduction rate of 11% in causal set

size across the ten tissues studied. Furthermore, the variants included in the causal set from

our approach were enriched for active regions of the genome compared to those excluded

from the causal set. These results demonstrated that eQTL and AIM statistics may be inte-

grated to improve fine-mapping and to effectively reduce the number of variants tested in

downstream studies.

We also compared our approach to multiple alternative approaches to improve fine-map-

ping in the adipose subcutaneous tissue. We compared our meta-statistic to two alternative

statistics computed using the RASQUAL and TReCASE methods, which obtain median reduc-

tion rates of 0% and -15%, respectively. The difference between these two approaches and our

approach may be due to the increase in power observed when using RASQUAL and TReCASE

compared to a traditional eQTL association analysis. While increasing power is optimal for

increasing the number of significant associations, it may not improve our ability to differenti-

ate between causal variants and non-causal variants in LD. In fact, increasing the power may
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make more variants highly significant and increase the size of the causal sets. Another potential

explanation is that our binarization procedure is more robust to noisy AIM data. Although

our binarization procedure may result in a decrease in effect size, our fine-mapping method

relies more on the relative effect sizes between variants tested than the effect sizes of individual

variants. We also compared our method with alternative fine-mapping methods. DAP-G and

PAINTOR 3.0 yielded reduction rates of 0% and -4.5%, respectively. Although the DAP-G was

unable to use AIM data to reduce causal set size, using the AIM data to create a prior reduced

the number of causal sets considered when approximating the posterior. This indicates that

the AIM data was valuable for reducing the computational cost of performing fine-mapping.

The differences between our results and the PAINTOR 3.0 results may be in part due to the

fact that the PAINTOR framework does not model the uncertainty in the effect size as in

CAVIAR, which decreases its performance when external annotations are not used [42]. This

decrease in performance may be exacerbated when the effect size varies greatly across variants

or when the effect size is not estimated well in a locus.

One of the difficulties in identifying causal variants using AIM information is accurate

identification of AIM calls from RNA-seq data. Previous studies have shown that noise caused

by mapping errors, small numbers of reads, or inconsistencies between two variants used to

call AIM in one locus can impact our ability to accurately detect AIM [39–41]. These problem-

atic AIM calls can decrease signal substantially, and our simulations show that this adversely

affects the efficiency of our fine-mapping algorithm. Due to the low concordance in AIM calls

from heterozygous coding variants of the same gene, we developed a framework that binarizes

AIM status before computing an association statistic. Additionally, when binarizing AIM sta-

tus, we only use allele-specific reads from the heterozygous SNP with the most reads. These

steps make our statistic more robust to noisy data. However, this approach does not utilize all

the read data and may be less sensitive than alternative approaches that directly model the like-

lihood of read data.

Some additional limitations of our analysis of the GTEx data include the small number of

genes for which our method can be applied. Since we cannot compute a statistic when no indi-

viduals are labeled as having AIM, the genes for which we can compute a meta-statistic are a

subset of the genes with AIM data. The number of genes with sufficient data is especially low

in tissues where the sample size is low. Although the genes we do analyze have higher expres-

sion on average, there may be additional functionally relevant genes for which we cannot

apply our method. Another limitation is that we only use the top 50 eQTL variants as input to

our fine-mapping framework. This is due to computational limitations of our Bayesian fine-

mapping framework. Since we restrict our analysis to the top 50 eQTLs, it is possible for our

method to miss some causal variants. Our causal sets are only guaranteed to contain the causal

variants among the input with high probability. Fine-mapping complete regions with high LD

remains an active area of research (S1 Text). However, in some targeted fine-mapping analy-

ses, it may be possible to run our method for a larger number of variants.

One key advantage of our approach is that additional biological data does not need to

be collected. Researchers can perform AIM calling on existing RNA-seq data to apply our

approach. Hence, our approach enables more accurate detection of causal variants regulating

gene expression without the need for additional experiments. While fine-mapping using

other sources of data, such as epigenetic data and transcription factor binding data, may also

improve specificity, these types of data are costly to collect in many individuals. Due to the

number of existing RNA-seq data sets with a large number of individuals, combining allelic

imbalance data with total expression data is a cost-effective way to improve fine-mapping and

reduce the number of putative causal variants for followup studies.
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Methods

Overview of CAVIAR generative model

This section is a brief overview of the CAVIAR fine-mapping framework [18]. Let S = [s1, s2, � � �

sm] indicate the observed marginal statistics (e.g., z-scores) for a set of m variants, where si is the

observed marginal statistic of i-th variant. We assume the computed marginal statistics follow

an MVN distribution [18],

ðSjLÞ � N ðΣL;ΣÞ; ð1Þ

where S is the LD matrix between pairs of variants and Λ = [λ1, λ2, � � � λm] is a vector of the true

effect sizes [18]. Let C = [c1, c2, � � � cm] be a vector of zeros and ones that indicate the causal status

of each variant. We define the prior probability on Λ for a given C as:

ðLjCÞ � N ð0;ΣcÞ; ð2Þ

where Sc = σ2diag(C), and σ is a constant which indicates the variance of our prior over the true

effect sizes. Similar to prior studies, we set σ to 5.2 [18, 22, 49].

The likelihood of the statistics given the causal status (Eq 3) is also MVN, and we can use

this distribution to compute the joint likelihood of the marginal statistics given a causal status.

ðSjCÞ � N ð0;Σþ ΣΣcΣÞ; ð3Þ

Given a set of possible causal statuses C, the posterior probability of a causal status C� 2 C
can be expressed as PðC�jSÞ ¼ PðSjC�ÞPðC�ÞP

C2C
PðSjCÞPðCÞ

. Using this fine-mapping framework, we can com-

pute the posterior probability of a causal status. Unfortunately, considering all possible causal

sets is computationally intractable. To make this feasible, we assume that the maximum num-

ber of causal variants within a region is six [18, 22, 49]. We also use a greedy algorithm that

eliminates the need to consider all possible subsets. To identify the minimal ρ causal set, at

each iteration of the greedy algorithm, we select the variant that increases the total posterior

probability the most. Variants are added until the posterior probability of the causal set is at

least ρ fraction of the total posterior probability of the data.

Computing eQTL association statistics

The following is a general eQTL association framework. We use eQTL association

statistics computed by the GTEx Consortium [50] and details regarding the computation

of the statistics can be found on the GTEx Portal (https://gtexportal.org/home/

documentationPage#staticTextAnalysisMethods). Let Y be the normalized total expression

values for n individuals in a single gene, and let Xi be the normalized genotypes of variant i
for all individuals. Let Z be a matrix of covariates. Suppose Y = μ + βiXi + γZ + �, where μ is

the phenotypic mean in the population, βi is the effect size of variant i, γ is the effect size of

covariates, and �models environmental and measurement noise. We use the maximum

likelihood estimates m̂ ¼ 1

n 1TY and b̂i ¼ ðXT
i XiÞ

� 1XT
i Y . The error can be calculated as

�̂ ¼ Y � m̂1 � b̂ iXi � ĝZ, and the standard deviation is calculated as ŝ ¼

ffiffiffiffiffiffi
�̂T �̂
n� 2

q

. Using these,

the association statistic for variant i is calculated as sEi ¼
b̂ i
ŝ

ffiffiffi
n
p

.

We use the top 50 eQTL summary statistics for each gene as input to our framework.

Assuming that we have enough individuals, the marginal statistics have the same posterior

distribution used by CAVIAR (Eq 3). The distribution of the eQTL summary statistics given a
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causal status is as follows:

ðSEjCÞ � N ð0;ΣE þ ΣEΣcΣ
EÞ; ð4Þ

where SE is a vector of the observed marginal statistics for a gene and SE is the LD matrix

between pairs of variants in the eQTL study.

Computing AIM association statistics

Using phased genotype data, AIM status for a gene in an individual can be directly computed

from RNA-seq data by using heterozygous coding SNPs to map reads to one of the haplotypes.

If a gene has multiple heterozygous coding SNPs, we use only the SNP with the most reads to

avoid double counting reads overlapping multiple SNPs. The proportion of reads mapping to

each haplotype can be used as a proxy for relative contribution from each haplotype to total

expression. The genotype phasing and read mapping was performed by the GTEx Consortium

and accounts for genotyping error, reference bias, and other sources of technical variation

[41]. Let c1 and c2 indicate the number of reads supporting the first and second haplotype,

respectively. We calculate the allelic ratio (AR) for an individual as AR ¼ c1
c1þc2

. We consider an

individual to have AIM for a gene when the allelic ratio is less than .35 or greater than .65; oth-

erwise, we label the gene in the individual as having balanced expression. This threshold was

obtained by taking two standard deviations from the the null (AR = 0.5), where the standard

deviation is computed from the empirical distribution (S2 Fig). We compare this binarization

framework to one using a binomial test for each individual. If the allelic ratio for an individual

is significantly different from 0.5, the individual is labeled as having AIM. Otherwise, the indi-

vidual is labeled as having balanced expression. Both methods are valid binarization strategies.

However, using the empirical threshold yielded a larger reduction rate and allowed us to apply

our fine-mapping framework to more genes. This is because applying a two-sided binomial

test to binarize the allelic imbalance status across individuals typically generates higher p-val-

ues than a 0.05 significance threshold. For example, if an individual has 6 reads mapping to

one haplotype of a gene and 14 reads mapping to the other haplotype, the allelic ratio is 0.3.

Using the empirically determined threshold of .35, this individual has AIM. However, using a

binomial test, this individual is labelled as having balanced expression (p-value = .1153). When

using the binomial threshold, fewer individuals are labelled as having allelic imbalance, despite

displaying some imbalance between the two alleles. When none of the individuals are labelled

as having allelic imbalance for a gene, we are unable to calculate AIM summary statistics and

perform fine-mapping for that gene.

If an individual is heterozygous for a causal variant, we expect the expression from each

allele to be different. On the other hand, if an individual is homozygous for a causal variant, we

expect the expression for each allele to be comparable. AIM association statistics measure the

correlation between AIM status (e.g., 0 for balance expression and 1 for AIM) and heterozy-

gous status of a variant (e.g. 0 for homozygous genotype and 1 for heterozygous genotype).

The association statistics are calculated in a way similar to case and control GWAS associa-

tion statistics. Let n1 be the number of individuals with AIM in the study, and let n2 be the

number of individuals with balanced expression in the study. Let p1 be the proportion of indi-

viduals with AIM who are heterozygous for the SNP. Let p2 be the proportion of individuals

with balanced expression who are heterozygous for the SNP. The difference between these two

proportions is also normally distributed. Under the null hypothesis (p1 = p2), we have:

p̂1 � p̂2 � Nð0;
p1ð1 � p1Þ

n1

þ
p2ð1 � p2Þ

n2

Þ: ð5Þ
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Let p be the frequency of heterozygous individuals in the population. With the

simplifying assumption used in standard GWAS with unequal case and control size that
p1ð1� p1Þ

n1
þ

p2ð1� p2Þ

n2
�

pð1� pÞðn1þn2Þ

n1n2
, the null hypothesis becomes p̂1 � p̂2 � Nð0; pð1� pÞðn1þn2Þ

n1n2
Þ. We

set the AIM association statistic to be:

s ¼
ðp̂1 � p̂2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p̂ð1 � p̂Þ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1n2

ðn1 þ n2Þ

s

; ð6Þ

which follows the standard normal distribution. Software to compute the AIM summary statis-

tics from AIM count data is available at https://github.com/jzou1115/aim. We compute AIM

summary statistics for the top 50 eQTL summary statistics for each gene. We assume that the

AIM summary statistics follow MVN, and the marginal statistics have the same posterior dis-

tribution used by CAVIAR. We compute the heterozygosity matrix from genotype data for all

variants in that locus. Thus, similar to the posterior of CAVIAR (Eq 3) we have:

ðSAjCÞ � N ð0;ΣA þ ΣAΣcΣ
AÞ; ð7Þ

where SA is the observed marginal statistics for the gene we are interested and SA is the hetero-

zygosity matrix.

Utilizing fixed effect meta-analysis for joint analysis

We model the joint distribution of both eQTL and AIM summary statistics, assuming that the

statistics are conditionally independent given the true effect sizes. The posterior can be com-

puted as

SA

SE

�
�
�
�
�
C

 !

� N
0

0

 !

;
ΣA þ s2

aΣ
AΣcΣA 0

0 ΣE þ s2
eΣ

EΣcΣ
E

0

@

1

A

0

@

1

A; ð8Þ

An alternative approach is to do a fixed effect meta-analysis followed by fine-mapping. For

now we assume both studies have the same number of individuals. Thus, the computed com-

bined marginal statistics SM can be calculated as SM ¼ SAþSEffiffi
2
p . This combined statistic is the sum

of two Gaussian random variables. Therefore, the posterior can be expressed as

ðSMjCÞ � N 0;
1

2
ðΣE þ ΣAÞ þ

1

2
ðs2

aΣ
AΣcΣ

A þ s2

eΣ
EΣcΣ

EÞ

� �

ð9Þ

Our meta-analysis framework is an approximation for modeling the joint distribution of

AIM scores and eQTL scores. Since the likelihood ratio of the joint model follows the chi-

squared distribution with two degrees of freedom, the significance threshold for the joint

model for one variant is a circle. The significance threshold for each of the meta-statistics is a

set of parallel lines, making the combined meta-analysis significance threshold a square. A geo-

metric interpretation of the significant thresholds under the different models is shown in S6

Fig, and it is evident that the meta-analysis framework is a close approximation to using the

joint distribution.

Calculating pairwise correlation matrices

To calculate pairwise correlation matrices, we use genotype data from the whole blood tissue

in GTEx (Release v6, dbGaP Accession phs000424.v6.p1 available at: http://www.gtexportal.

org) that contains 325 samples. For each gene, we compute the eQTL statistic for every

Leveraging allelic imbalance to refine fine-mapping for eQTL studies

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008481 December 13, 2019 17 / 24

https://github.com/jzou1115/aim
http://www.gtexportal.org
http://www.gtexportal.org
https://doi.org/10.1371/journal.pgen.1008481


cis variant within 1MB from the transcription start site and identify the top 50 genetic vari-

ants with the highest eQTL statistics. We use these top 50 genetic variants to compute

the pairwise correlation matrices. For eQTL statistics, we calculated SE as the pairwise cor-

relation matrices between genotypes of individuals. For AIM statistics, we calculated SA as

the pairwise correlation between the heterozygosity calls of individuals. Since the statistics

are normally distributed, we calculated the meta-analysis correlation matrix as

ΣM ¼ 1

2
ðΣE þ ΣAÞ.

Generating simulated datasets

Given a genotype LD matrix (SE) and a heterozygosity LD matrix (SA) for a gene and a

vector C that indicates the causal status of each SNP (e.g., 0 when the variant is not causal

and 1 when the variant is causal), we can simulate the association statistics by sampling

SE� N(λcS
EC, SE) and SA� N(λcS

AC, SA), where λc is the non-centrality parameter (NCP).

We set λc such that we have the desired power. We first set the power level to 50% and 80%

for both AIM and eQTL statistics. Simulations at these power levels indicate that our fine-

mapping method is effective for the strongest eQTL loci. We then explore cases where the

power level is different between AIM and eQTL statistics and show that our method can also

reduce causal set size when the fixed effect assumption is broken. We calculate the simulated

statistics for the meta-analysis in two ways: 1) SM1 ¼ SAþSEffiffi
2
p and 2) SM2 ¼ SA � SEffiffi

2
p . We perform one

simulation for each gene in the GTEx data to observe a natural range of correlation between

variants. Simulations to generate SE, SA, SM1, and SM2 were performed for up to three causal

variants.

Application to GTEx data

Genotype data was collected using Illumina OMNI 5M SNP Arrays. To increase eQTL discov-

ery power, genotypes were imputed from the 1000 Genomes Project Phase I version 3 refer-

ence panel using the IMPUTE2 software [51]. To measure the total expression level of each

gene, RNA-seq data was aligned to hg19 using Tophat v1.4.1 [52] and gene-level expression

quantification was performed using RNA-SeQC [53] according to the GTEx protocol [8].

Reads were assigned to each allele of an individual using personalized genomes and the official

GTEx protocol described in [41].

To reduce the affect of noise in AIM calls, we require individuals to have at least 20 reads

mapped to each gene. The read threshold is directly proportional to the quality of AIM calls

for each individual (S1 Fig). However, using a higher read threshold decreases the number of

individuals that can be used for the analysis, which decreases the quality of our results. We

found a read threshold of 20 maximizes the reduction rate in the real data. We apply this

framework to genes with at least one significant eQTL identified in the GTEx data set and at

least one individual with a heterozygous variant in the coding region. The significant eQTL

requirement restricts the set of genes tested to those likely to be regulated by cis-regulatory var-

iants. The heterozygous variant in the coding region is used to call AIM. For each gene, we

selected the top 50 variants that have the highest eQTL statistics. We calculate the meta-statis-

tics and heterozygosity matrix for these variants, which we use as input to our fine-mapping

framework. Since it is possible for AIM and eQTL summary statistics to be in different direc-

tions in the real data, we calculate two meta-statistics, SM1 ¼ SAþSEffiffi
2
p and SM2 ¼ SA � SEffiffi

2
p . We perform

fine-mapping using each set of meta-analysis statistics separately. As a post-processing step,

we choose the smallest causal set.
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Fine-mapping with TReCASE and RASQUAL statistics

To assess whether existing statistics, such as likelihood ratio statistics, can be used in our fine-

mapping framework, we computed TReCASE and RASQUAL statistics [37, 38]. We used

BAM files processed by the GTEx Consortium for ASE analysis as input to these programs [8].

For the TReCASE analysis, we performed an additional QC step using the prepareBam func-

tion of the asSeq software package, as suggested by the documentation. For both analysis, we

used the default settings to compute the chi-squared statistics.

We used these statistics as input to the CAVIAR fine-mapping framework. For each

method, we attempted to compute chi-squared statistics for 4023 genes in the adipose subcuta-

neous tissue reported in our results. We only performed fine-mapping in genes that converged

and obtained joint statistics for all cis-eQTLs tested in our framework. In order to fit our mod-

el’s assumptions, we transformed the chi-squared statistics into z-scores by taking the square

root. Since our method is sensitive to the direction of effect sizes, we used the sign from the

eQTL summary statistic together with the magnitude obtained from the chi-squared statistic.

This modification was necessary for our framework since the LD matrix allows for variants to

be negatively correlated. We used these modified statistics along with the previously computed

LD matrices and heterozygosity matrices as input to our framework and calculated the reduc-

tion in causal set size for each gene relative to an approach that only uses eQTL statistics. For

TReCASE, we peformed an additional comparison to the reduction rate relative to the causal

set obtained using the TReC (eQTL) chi-squared statistics for the variants.

Supporting information

S1 Text. Supplementary methods.

(DOCX)

S1 Fig. Higher read count thresholds yield higher concordance between AIM measure-

ments. We calculated the correlation between allelic ratios obtained by pairs of SNPs within

the same gene for each individual in the adipose subcutaneous tissue (Read threshold = 0). We

then recomputed the correlations using a range of read thresholds. As the read threshold is

increased, the correlation improves. However, increasing the read threshold also reduces the

number of individuals that can be included in the analysis. Due to this trade off, in our analysis

of the real data, we use a read threshold of 20.

(TIF)

S2 Fig. Distribution of allelic ratios across all samples and genes in the adipose subcutane-

ous tissue. The allelic ratio (AR) was calculated for SNPs in the adipose subcutaneous tissue.

The distribution of AR is approximately normal. We calculated the empirical standard

deviation of this distribution and created thresholds two standard deviations from the null

(AR = 0.5). Individuals with AR< 0.35 or AR> 0.65 were labeled as having AIM. Others were

labeled as having balanced expression. Although this empirical threshold is less stringent than

using a binomial test, in practice, this method yields higher reduction in causal set size than an

approach using a binomial test to binarize AIM status.

(TIF)

S3 Fig. Distribution of reduction rate. While the median reduction rate across all genes and

all tissues is 0.11, there are some genes that have substantially higher reduction rate in set size

when using our approach. Only 16004/20130 genes with reduction rate greater than zero are

shown.

(TIF)
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S4 Fig. Enrichment of putative causal variants for being near transcription start sites

(TSS). For each tissue, the “meta causal variants” includes all variants in the meta causal sets

for all genes tested. The “excluded variants” includes all variants contained in the eQTL causal

sets but excluded from the meta causal sets. The meta causal variants (red) are on average

closer to the TSS than the excluded variants (blue).

(TIF)

S5 Fig. Comparison of causal sets with top eQTL sets. We constructed sets of the top eQTLs

for each gene with the same size as the meta causal sets. We call these sets of variants the TopN

sets. We then computed the number of variants in the causal set that were not present in the

TopN set for each gene. The distribution of the number of putative causal variants that are

not in the TopN sets is shown below. This implies that our fine-mapping framework does not

merely discard large blocks of variants with weaker regulatory effect sizes.

(TIF)

S6 Fig. Meta-analysis is a close approximation for joint analysis. The significance threshold

for a joint analysis of one variant is a circle. In our framework, we calculate two meta-statistics

(SM1 and SM2) and apply our method using each statistic separately. In a test for one variant,

the significance threshold for each meta-statistic is a set of parallel lines, and the combination

of these two sets of parallel lines forms a square. Therefore, our framework is a close approxi-

mation to using the joint distribution.

(TIFF)

S1 Table. Recall rates for eQTL method.

(XLSX)

S2 Table. Recall rates for eQTL + AIM method.

(XLSX)

S3 Table. Recall rates with unequal effect sizes. eQTL effect sizes are fixed to 5.2 (50%

power), while AIM effect sizes vary from 0 to 4.

(XLSX)

S4 Table. Recall rates with unequal effect sizes using estimated prior from PAINTOR 3.0.

eQTL effect sizes are fixed to 5.2 (50% power), while AIM effect sizes vary from 0 to 4.

(XLSX)

S5 Table. Enrichment of variants in meta causal sets for active regions of the genome rela-

tive to variants only in eQTL causal sets. Enrichment for active regions of the genome was

computed in a tissue-specific manner. For each tissue, the “meta causal variants” includes all

variants in the meta causal sets for all genes tested. The “eQTL only variants” includes all vari-

ants contained in the eQTL causal sets but excluded from the meta causal sets. “Meta Odds”

column contains the odds of a variant in the meta causal variants being in an active region,

and the “eQTL Only Odds” column contains the odds of a variant in the excluded variants

being in an active region. The “Odds Ratio” column contains the ratio of “Meta Odds” and

“eQTL Only Odds”. The p-value for the odds ratio was calculated using Fisher’s exact test. The

odds ratios are highly significant in all tissues.

(XLSX)

S6 Table. Enrichment of variants only in meta causal sets for active regions of the genome

relative to variants only in eQTL causal sets. Enrichment for active regions of the genome

was computed in a tissue-specific manner. For each tissue, the “meta only variants” includes

all variants contained in the meta causal sets that are excluded from the eQTL causal sets. The
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“eQTL only variants” includes all variants contained in the eQTL causal sets but excluded

from the meta causal sets. “Meta Only Odds” column contains the odds of a variant in the

meta only causal variants being in an active region, and the “eQTL Only Odds” column con-

tains the odds of a variant in the eQTL only variants being in an active region. The “Odds

Ratio” column contains the ratio of “Meta Only Odds” and “eQTL Only Odds”. The p-value

for the odds ratio was calculated using Fisher’s exact test. The odds ratio is greater than one in

6/7 tissues, indicating that the variants in the meta only set are slightly enriched for being in

active regions of the genome in these tissues. However, this result is not significant due to the

small number of variants in the meta only set.

(XLSX)

S7 Table. Enrichment of variants in meta causal sets for active regions of the genome rela-

tive to variants in eQTL causal sets. Enrichment for active regions of the genome was com-

puted in a tissue-specific manner. For each tissue, the “meta variants” includes all variants

contained in the meta causal sets, and the “eQTL variants” includes all variants contained in

the eQTL causal sets. “Meta Odds” column contains the odds of a variant in the meta causal

variants being in an active region, and the “eQTL Odds” column contains the odds of a variant

in the eQTL variants being in an active region. The “Odds Ratio” column contains the ratio of

“Meta Odds” and “eQTL Odds”. The p-value for the odds ratio was calculated using Fisher’s

exact test. The odds ratio is greater than one in all tissues, indicating that the variants in the

meta only set are slightly enriched for being in active regions of the genome in these tissues.

Due to the high overlap between the two sets, this result is only significant in 3/7 tissues.

(XLSX)
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