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Abstract

Malfunction of pre-mRNA processing factors are linked to several human diseases including

cancer and neurodegeneration. Here we report the identification of a de novo heterozygous

missense mutation in the SNRPE gene (c.65T>C (p.Phe22Ser)) in a patient with non-syn-

dromal primary (congenital) microcephaly and intellectual disability. SNRPE encodes SmE,

a basal component of pre-mRNA processing U snRNPs. We show that the microcephaly-

linked SmE variant is unable to interact with the SMN complex and as a consequence fails

to assemble into U snRNPs. This results in widespread mRNA splicing alterations in fibro-

blast cells derived from this patient. Similar alterations were observed in HEK293 cells upon

SmE depletion that could be rescued by the expression of wild type but not mutant SmE.

Importantly, the depletion of SmE in zebrafish causes aberrant mRNA splicing alterations

and reduced brain size, reminiscent of the patient microcephaly phenotype. We identify the

EMX2 mRNA, which encodes a protein required for proper brain development, as a major

mis-spliced down stream target. Together, our study links defects in the SNRPE gene to

microcephaly and suggests that alterations of cellular splicing of specific mRNAs such as

EMX2 results in the neurological phenotype of the disease.

Author summary

In higher eukaryotes, the protein coding genes are first transcribed as precursor mRNAs

(pre-mRNAs) and further processed by the spliceosome to form the mature mRNA for
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translation. Malfunction of pre-mRNA processing factors are linked to several human dis-

eases including cancer and neurodegeneration. Here we report the identification of a de
novo heterozygous missense mutation in the SNRPE/SmE gene in a patient with non-syn-

dromal primary (congenital) microcephaly and intellectual disability. The effect of identi-

fied de novo mutation on SNRPE/SmE was characterized in vitro. The zebrafish was used

as in vivo model to further dissect the physiological consequence and pathomechanism.

Finally, the EMX2 gene was identified as one of the major down stream target genes

responsible for the phenotype. Our study links defects in the SNRPE/SmE gene to micro-

cephaly and provides the new pathogenic mechanism for microcephaly.

Introduction

In higher eukaryotes, the vast majority of protein-coding genes are transcribed as precursors

(pre-mRNA) containing non-coding intronic and coding exonic sequences. These pre-

mRNAs need to be extensively processed by splicing to generate the mature mRNA with an

open reading frame. Splicing is mediated by macromolecular machines termed spliceosomes,

which consist of five different small nuclear ribonucleoprotein (snRNP) subunits and a large

number of additional protein cofactors [1–4]. The major spliceosome, containing U1, U2, U4,

U5 and U6 snRNPs, is responsible for splicing of almost 99% of human pre-mRNAs whereas

the minor spliceosome is required to excise a special class of very rare (ATAC) introns from

certain mRNAs [5]. To generate mRNA variants with different coding potential, the splice

sites (SSs) within pre-mRNAs are differentially utilized through alternative splicing (AS). This

process occurs in >95% of human multi-exon genes, thus leading to a large increase of protein

diversity [6–9]. The decision of AS is regulated through the cooperative interplay between cis-
elements, including constitutive splicing elements (such as 5’ SSs, branch point (BP), polypyri-

midine tract (PPT) and 3’ SSs) and optional cis-regulatory elements (exonic and intronic

splicing enhancer/silencer called ESE, ESS, ISE, ISS), and trans-acting factors, such as core

splicing machinery and splicing regulators (SR proteins and heterogenous ribonucleoproteins

(hnRNPs)) [9–11]. It has been shown that AS plays critical roles in the specification of cell

fates [12], tissue types [6,9], developmental process [13], sex determination [14] and stimula-

tion response [15].

Due to the important role in regulation of gene expression and protein diversity, mRNA

splicing is particularly sensitive to mutations and its dysregulation could lead to human dis-

eases [16,17]. The most common type of mutations leading to aberrant splicing, are cis-acting

mutations located in either constitutive splicing elements (5’ SS, 3’ SS and BP) or cis-regulatory

elements (ESE, ESS, ISE and ISS) modulating spliceosome assembly [16]. For instance, ESE,

ESS and 5’ SS mutations in the exon 10 of the MAPT gene, encoding the microtubule-associ-

ated protein Tau, have been identified as the cause of frontotemporal dementia with parkin-

sonism linked to chromosome 17 (FTDP-17) [18].

In addition to mutations affecting cis-elements, mutations in trans-acting splicing factors

are also implicated in a set of human diseases. Since defects in these factors typically affect the

splicing machinery as a whole, they affect the processing of many transcripts and hence often

cause more complex etiologies than mutations in cis elements. An interesting example of this

class are mutations in several protein components of U4/U6.U5 tri-small nuclear ribonucleo-

protein (tri-snRNP) such as pre-mRNA processing factor 3 (PRPF3) [19], PRPF4 [20], PRPF6

[21], PRPF8 [22], PRPF31 [23,24] and SNRNP200 (also called BRR2) [25], that cause the auto-

somal dominant eye disease retinitis pigmentosa (adRP) [26]. In addition, mutations
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preventing the production of functional SMN protein cause spinal muscular atrophy (SMA)

[27]. This protein is part of the SMN complex, which mediates the assembly of spliceosomal

U snRNPs and hence determines the abundance of active spliceosomes. Although the SMN

protein is ubiquitously expressed, the effect of SMN deficiency on the repertoire of snRNAs

and aberrant splicing shows tissue specific dependence in a SMA mouse model [28]. In addi-

tion, mutations within SmB/B’ and SmE have been reported to be linked to cerebro-costo-

mandibular syndrome (CCMS) [29,30] and hypotrichosis simplex (HS) [31], respectively.

Although these mutations are identified as the genetic cause of these diseases, the disease etiol-

ogies are still unknown. Importantly, mutations in RNU4ATAC have been shown to affect the

formation of minor spliceosome and cause Taybi-Linder syndrome/microcephalic osteodys-

plastic primordial dwarfism type 1 (TALS/MOPD1) [32,33], illustrating that not only malfunc-

tioning of proteins but also of U snRNAs can cause disease.

Using whole exome sequencing, we report here a de novo heterozygous missense mutation

within the SNRPE/SmE gene from a patient with non-syndromal primary (congenital) micro-

cephaly and intellectual disability. This mutation generates a protein product that fails to inter-

act with the SMN-complex and thus cannot become properly assembled into spliceosomal

U snRNPs. Our results further reveal that the mutation in SmE causes aberrant mRNA splicing

in both human cell lines (fibroblast and HEK293) and zebrafish. Furthermore, specific deple-

tion of endogenous SmE protein in zebrafish causes similar brain defect as in the patient. Of

note, we find that one of the affected transcripts in the zebrafish model encodes for the protein

EMX2, which is required for proper early brain development. Our study suggest that the iden-

tified missense mutation in SNRPE disturbs appropriate spatiotemporal gene expression in the

brain through aberrant mRNA splicing, which is likely to cause the microcephaly phenotype.

Results

Identification of a missense mutation within SNRPE/SmE in a

microcephaly patient

To identify the molecular genetic basis of a patient afflicted with non-syndromal microcephaly

in a two-generation pedigree, whole exome sequencing (WES) was performed for the patient

and its unaffected parents (Fig 1A). On average, 180 million reads were obtained for each indi-

vidual and more than 90 fold coverage of exome were achieved for each individual. A de novo
heterozygous missense mutation (c.65T>C (p.Phe22Ser)) was identified in the second exon of

the SNRPE/SmE gene from the patient (Fig 1B). This gene and in particular the mutated resi-

due is highly conserved among different species including zebrafish and the more distant yeast

S. pombe (Fig 1C). It encodes the SNRPE/SmE protein [34], which constitutes a basal compo-

nent of spliceosome. This factor, together with six additional Sm proteins termed SmB/B’,

SmD1, SmD2, SmD3, SmF and SmG, form the common Sm core of spliceosomal U snRNPs.

This raised the possibility that the pathological mutation in SmE affects U snRNP biogenesis

and/or splicing.

Impaired binding of SmE mutant to the SMN complex causes defects in Sm

core assembly

We first investigated whether the identified missense mutation in SmE affects its incorporation

into U snRNPs. Incorporation of newly translated SmE starts with the formation of the hetero-

trimeric complex composed of SmE, SmF and SmG [35]. Subsequently, this heterooligomer

is transferred onto the PRMT5 complex, which assembles together with SmD1/D2 and the

assembly chaperone pICln a closed ring termed the 6S complex [36,37]. The next step of U
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snRNP biogenesis is dependent on the SMN complex, consisting of SMN, Gemins 2–8 and

UNRIP [38]. This unit catalyzes the release of pICln from the 6S complex and the transfer of

Sm proteins onto the U snRNA [36,37]. After hypermethylation of the m7G cap to m2,2,7
3G

(m3G/TMG) cap, the assembled U snRNPs are imported into the nucleus and after further

maturation in Cajal bodies (CBs), targeted to splicing speckles [39,40].

To follow the path of SmE into U snRNPs, FLAG-tagged wild type or mutant proteins were

overexpressed in HEK293 cells. The tagged proteins were then immunoprecipitated using

anti-FLAG antibodies and co-precipitated factors indicative for defined U snRNP biogenesis

intermediates were detected by western blotting (Fig 2A and 2C). Interestingly, no significant

change in the interaction of mutant SmE with either SmF, SmD1 or pICln was observed when

compared to the wild type protein. This suggests that the pathogenic missense mutation did

not interfere with the early phase of U snRNP biogenesis, including formation of SmE/F/G

heterooligomer and the 6S complex at the PRMT5 complex. However, only the wild type but

not the mutant SmE protein interacted efficiently with SmD3 as well as the SMN complex (Fig

2A and 2C), suggesting that the SmE mutant was defective in the transfer from the PRMT5

complex onto the SMN complex, which is in turn a pre-requisite for the subsequent loading

onto U snRNA. In agreement with this notion, 3’-end labeling of the RNA co-precipitated

with the SmE-FLAG immunoprecipitations revealed that only wild type SmE was able to effi-

ciently interact with U snRNAs (Fig 2B and 2C). Together these data show that the mutant

SmE is unable to be incorporated into U snRNPs (Fig 2B, quantification in Fig 2C).

Fig 1. Identification of potential causative mutation by whole exome sequencing. (A), Family pedigree. Filled symbol indicates individual

suffering from non-syndromal primary microcephaly and intellectual disability. (B), Traditional Sanger sequencing validated the identified

SNRPE/SmE mutation (c.65T>C (p.Phe22Ser)). The red box labels the de novo heterozygous mutation. (C), Alignment of SNRPE/SmE protein

sequences across different species. The red rectangle indicates the mutated residue.

https://doi.org/10.1371/journal.pgen.1008460.g001
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Since the interaction of mutant SmE with the SMN complex is affected, we used the previ-

ously published structure of the 8S U snRNP assembly intermediate (Gemin2-SMNΔC bound

to 6S, PDB entry 4V98) [37], to in silico model the effect of the mutation. As evident from

structural data of Gemin2 in association with Sm proteins, Phe22 of SmE is part of a binding

Fig 2. The missense mutation impairs the biogenesis of spliceosomal U snRNPs during Sm core assembly. (A-E), The NSM mutation in

SmE impairs its interaction with U snRNP assembly machinery and incorporation into U snRNPs. (A), Anti-FLAG immunoprecipitation after

transient transfection in HEK293T cells and western blotting analysis for co-precipitated U snRNP intermediates. Mock immunoprecipitations

were performed with untransfected lysates. (B), 3’-end labeling of co-precipitated RNA and autoradiography. RNA immunoprecipitated using

the H20 antibody against m3G/m7G cap of U snRNAs was used as reference. (C), Quantification of the data shown in A and B from two

independent biological replicates, with black bars representing wild type and gray bars representing mutant SmE. (D), Predicted structural

model for interference of the SmE mutation in its interaction with Gemin2, based on the PDB structure 4V98. (E), Immunoprecipitation using

antibodies specific to Sm proteins, SMN, pICn and U snRNA cap, with lysates from HEK293T cells transfected with dual expression plasmid

encoding 2A-tagged mutant SmE and HA-tagged wild type SmE and western blotting to analyze the integration of the wild type and mutant

SmE into U snRNP biogenesis pathway.

https://doi.org/10.1371/journal.pgen.1008460.g002

A missense mutation in SNRPE linked to microcephaly

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008460 October 31, 2019 5 / 23

https://doi.org/10.1371/journal.pgen.1008460.g002
https://doi.org/10.1371/journal.pgen.1008460


module that interacts with Pro49 and Tyr52 of Gemin2 (Fig 2D). The identified SmE mutation

(c.65T>C) changes the polarity of the amino acid residue from hydrophobic (Phe) to hydro-

philic (Ser), which is incompatible with the detected mode of interaction.

To recapitulate the disease condition where both wild type and mutant SmE are expressed

within the cell, we co-expressed HA-tagged wild type SmE and 2A-tagged mutant SmE in

HEK293 cells from a dual expression plasmid and tested how they are processed by the U

snRNP assembly pipeline (Fig 2E). The dual expression construct was designed with a post-

translational self-cleaving 2A tag between the mutant and wild type SmE (Fig 2E), giving raise

to equal amounts of exogenous 2A-tagged mutant and HA-tagged wild type SmE in each

transfected cell. We then performed immunoprecipitations using antibodies specific to endog-

enous U snRNPs (Y12 which predominantly immunoprecipitates U snRNPs and not Sm inter-

mediates), pICln and SMN. As expected, while the wild type SmE was able to efficiently

interact with the U snRNP assembly machinery and hence was incorporated into U snRNPs,

the mutant was not enriched in any of the immunoprecipitations (note that due to the pres-

ence of the highly abundant endogenous Sm protein pool, the efficiency of immunoprecipita-

tion of the tagged proteins was low as compared to those shown in Fig 2A–2C).

We also performed immunostaining of HeLa cells transiently transfected with either the

FLAG-tagged wild type or mutant SmE and studied the co-localization of the exogenously

expressed SmE to the CBs (the subnuclear structures for U snRNPs maturation) and to U

snRNPs [41]. As expected, the wild type SmE co-localized to CBs as confirmed by a strong co-

localization with the CB marker protein coilin (Fig 3A, top panel) and were also efficiently tar-

geted to nuclear speckles as can be seen with co-localization with SmD3 (Fig 3B, top panel).

However, in keeping with our immunoprecipitation results, the SmE mutant was localized to

the cytoplasm, at times even forming very small foci, or non-specifically dispersed in the

nucleus (Fig 3A and 3B, middle panel), showing that the mutant fails to be incorporated into

U snRNPs. We conclude that the non-specific nuclear distribution of SmE results from excess

of overexpressed exogenous SmE that likely diffuses into the nucleus in the absence of cognate

interactors. Together, these results demonstrate that the mutation (c.65T>C(p.Phe22Ser)) in

SmE impairs its incorporation into U snRNPs due to its inability to interact with the SMN

complex. The early assembly phase, however, appears to be unaffected by this mutation.

The SNRPE/SmE deficiency results in reduced levels of U snRNPs in

patient

Taking into account our biochemical data, we hypothesized that the U snRNP levels in the

patient are likely reduced. To this end, we first performed immunostaining and confocal

microscopy analysis of control primary fibroblasts and patient fibroblast (S1A and S1B Fig).

We found a clear difference in the distribution of U snRNAs (m3G/m7G cap) in patient cells.

While in control fibroblasts U snRNAs were found predominantly within the nuclei (S1A Fig,

top panel), there was a marked increase in U snRNAs in the cytoplasm of the patient fibro-

blasts (S1A Fig, bottom panel). Additionally, levels of Sm proteins in the nuclei of patient

fibroblasts was down-regulated (S1A and S1B Fig). CBs are however absent in control as well

as patient fibroblasts (S1A and S1B Fig) since CBs are known to be absent in primary cells

[42]. Since free U snRNAs that are not assembled into U snRNPs are prone to degradation

[43], we proposed that the decrease in U snRNP assembly might result in a reduction in the

total U snRNA pool within the patient fibroblasts. We analyzed the U snRNA transcript levels

in patient and control fibroblasts using qRT-PCR and the SmE expression level in fibroblasts

by RT-qPCR and Western blotting (S1C and S1D Fig). Interestingly, among the U snRNAs

tested, we found a clear reduction in the U1 snRNA abundance and a modest decrease in U2
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and U4 snRNAs in patient fibroblasts (S1C Fig). We then performed anti-Sm immunoprecipi-

tation from control and patient cells and analyzed the co-precipitated RNA by 3’-end labeling

(S1E and S1F Fig). We found a distinct difference in the amount of co-precipitated U snRNAs,

with the U1 snRNA levels being the most affected. We conclude that the effects are enhanced

specifically in the case of U1 snRNP since the U1–70K protein is known to interact with SMN

complex to increase U1 snRNP assembly in cells [44] and thus the strongest effect would be

observed for the most abundantly assembled U snRNP.

Fig 3. NSM mutation causes mis-localization of the SNRPE/SmE protein. (A-B), Indirect immunofluorescence and

confocal microscopy of HeLa cells transfected with either FLAG-tagged wild type or mutant SmE (WT/Mut) or left

untransfected (negative control). Empty white arrowheads indicate localization pattern observed and filled white

arrowheads indicate zoomed in region shown in the overly inset. (A), Top panel shows clear co-localization of wild

type SmE (green) and coilin (magenta) in CBs and middle panel shows most of the mutant SmE (green) distributed in

the cytoplasm with a minor fraction in the nucleus and co-localizing with coilin (magenta) in CBs. (B), While wild type

SmE (green, top panel) co-localizes with SmD3 (magenta) in CBs and splicing speckles, the mutant SmE (green,

middle panel) is predominantly cytoplasmic with marginal co-localization with SmD3 in CBs or in nuclear speckles.

https://doi.org/10.1371/journal.pgen.1008460.g003
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The SNRPE/SmE deficiency causes widespread splicing alterations

The results above suggest that the identified mutation (c.65T>C (p.Phe22Ser)) in SmE leads to

reduced levels of Sm-class snRNPs. As these are the major trans-acting factors in pre-mRNA

processing, we next asked whether the mutant SmE impacts on the splicing profile of cells. To

address this, the RNA was extracted from fibroblast cells derived from the patient and three

healthy individuals, and subjected to RNA sequencing. Indeed we observed tremendous

altered splicing events between the patient cell and controls, with intron retention (RI) being

the most frequently impacted splicing event. As shown in Fig 4A, more than 2084 introns

showed significantly increased intron retention (p< 0.001, fdr < 0.05, ΔPercentage of Intron

Retention (ΔPIR: mutant—control) > 0.1) in the patient cells while only less than 112 introns

showed significant decreased retention (p< 0.001, fdr< 0.05, ΔPIR< -0.1). Intron retention

often introduces premature termination codon (PTC) into the affected mRNAs, which triggers

nonsense mediated decay (NMD) and potentially also other mRNA decay pathways. We there-

fore examined the changes in the expression levels of transcripts displaying increased intron

retention. Consistent with our assumption, these transcripts show significantly decreased

expression between the patient and control comparing to those genes without any introns with

increased retention (Mann-Whitney test, p = 8.8e-44) (Fig 4B).

To check whether the splicing defects observed in the patient fibroblast cells could be res-

cued by the presence of exogenous wild type SmE protein, we exogenously overexpressed wild

type SmE in the patient fibroblast cells and performed the RNA-seq. In total, more than 350

million reads were obtained for triplicate experiments and around 93% of them could be

uniquely mapped to human reference genome. Given that the splicing defect observed in the

patient fibroblast cells was predominantly manifested as increased intron retention, we

focused our analysis here on intron retention. By applying the same approach as described

above, we firstly compared between the patient fibroblast cells with exogenous wild type SmE

and those without. As shown in S2 Fig, after overexpression of wild type SmE (S2A Fig), 2201

introns were less retained while only 414 introns were more retained (S2B Fig). Moreover,

when we compared the patient fibroblast cells with exogenous wild type SmE to fibroblast cells

from healthy control, as shown in S2C Fig, much less splicing changes were detected and the

direction of changes was more symmetric, in contrast to the comparison between the patient

and healthy control fibroblast cells (Fig 4A). To further evaluate the rescue efficiency, we plot-

ted the splicing changes in two comparisons, i.e. healthy control vs patient (X axis), and patient

with overexpressing SmE vs patient without SmE overexpression (Y axis) (S2D Fig). Among

2084 significant aberrant splicing events that were detected in the patient (Fig 4A), 1130 of

them were significantly rescued (S2D Fig). These results, together demonstrated that overex-

pression of wild type SmE in patient fibroblasts could indeed reduce the predominant splicing

defect, i.e. intron retention, observed in the patient fibroblast cells.

To further analyze the functionality of mutant SmE in mRNA splicing and gene expression,

the expression level of endogenous SmE was knocked down (KD) by siRNA targeting the 3’

UTR region in HEK293 cell, resulting in reduction of the expression level of SmE by approxi-

mately 80% (S3 Fig). Within this background, either wild type or mutant SmE was expressed

and RNA was then prepared for mRNA sequencing. In total, more than 30 million high quality

reads were obtained for each sample and around 93% of them could be uniquely aligned to the

human reference genome (hg19). Among 11670 expressed genes (average RPKM>1), 1060

showed significant alterations in the KD group as compared to the control (BH-adjusted P

value < 0.01, |log2 fold change| > 1). Importantly, these dramatic changes in the gene expres-

sion profile could be reversed by overexpression of wild type SmE, whereas the mutant was

much less effective (Fig 4C). A same pattern was also observed for the alteration of mRNA
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Fig 4. The identified mutation impairs the functionality of SNRPE/SmE in mRNA splicing. (A), The mRNA splicing

in patient derived fibroblast cells is impaired. MA plot shows the intron retention was dramatically increased in patient

derived fibroblast cells. X axis: the sum of log2 transformed splicing in and splicing out reads number for each intron. Y

axis: difference in percentage of intron retention (PIR) between fibroblast derived from the patient (mutant) and healthy

control. (B), The intron retention leads to decreased gene expression. Backgrounds are those genes without any intron

showing significantly increased retention. (C), Heatmap illustrating expression of 11670 protein coding genes (average

RPKM>1) in HEK293 cells among different experimental conditions. Control, control siRNA; KD, SmE siRNA; KD

+WT, SmE siRNA+wild type SmE; KD+Mut, SmE siRNA+mutant SmE. (D), Number of aberrant splicing events

induced by SNRPE/SmE knockdown (KD) comparing with control. RI, retained intron; SE, skipped exon; MXE,

mutually exclusive exon; ASS, alternative splice site. (E), Numbers of aberrant splicing events in KD, KD+Mut and KD

+WT comparing to control. (F), The intron retention leads to decreased gene expression. Backgrounds are those genes

without any intron showing significant increased retention.

https://doi.org/10.1371/journal.pgen.1008460.g004
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splicing: the massive aberrant splicing defect caused by SmE deficiency could be dramatically

reduced by overexpression of wild type, but not mutant SmE (Fig 4D and 4E). As already

observed in the patient-derived fibroblasts, mRNA transcripts with increased intron retention

were often down-regulated in KD HEK293 cells. Taken together, these results reveal that the

identified mutation impairs the functionality of SmE protein leading to extensive abnormal

gene expression and aberrant mRNA splicing.

Furthermore, to examine whether the retained introns, either in the patient fibroblast cells

or in HEK293 cells upon SmE knockdown, shared any characteristics, we analyzed 136 fea-

tures using the method as described by Braunschweig et al. [45]. As shown in S4 Fig, the fea-

tures that are sensitive to SmE dysfunction in both the patient fibroblast cells and HEK293, are

quite similar, with the GC content is the most significant one.

The SmE deficiency disturbs brain development of zebrafish

To explore the functional consequence of the identified SmE defect in vivo, we used zebrafish

as a model to dissect the effect of SmE deficiency on animal development. By injecting a mor-

pholino (E-MO) targeting the translation initiation site of zebrafish SmE (zSmE) into fertilized

zebrafish embryos at 1-cell stage, the endogenous zSmE levels were decreased after 48h injec-

tion (S5 Fig). To analyze the impact of zSmE on head development, the head size of embryos

injected with E-MO or a control morpholino (CO-MO) was measured after 48 hours post fer-

tilization. The head size of zebrafish injected with E-MO was significantly decreased (25%

reduction) compared to CO-MO injected embryos (Fig 5A and 5B). This phenotype is unlikely

to be the consequence of a general developmental delay, since the swim bladder and pigmenta-

tion of morphants were phenotypically normal. Although we observed a statistically significant

difference in the body length between E-MO and CO-MO, the magnitude of the change is

only marginal (Fig 5A and 5B).

To validate that this phenotype is caused by reduced zSmE, rescue experiments were per-

formed. The E-MO was co-injected with in vitro transcribed mRNA encoding 2A-mCherry

coupled with wild type zSmE (zSmE(WT)-2A-mCherry) lacking the binding site for E-MO.

Importantly, the co-injection of E-MO and zSmE(WT)-2A-mCherry could successfully

rescue the head-size phenotype. Therefore, the observed phenotype in E-MO injected zebra-

fish is specifically caused by depletion of zSmE (Fig 5A and 5B). However, co-injection of

E-MO and the in vitro transcribed mutant zSmE mRNA (zSmE (Mut)-2A-mCherry) failed to

rescue the defect (Fig 5A and 5B). Furthermore, overexpression of either wild type or mutant

zSmE (WT or Mut)-2A-mCherry alone did not show any phenotype (Fig 5A and 5B). Thus,

SmE is required for proper brain development in zebrafish and its deficiency causes a patient-

like phenotype.

Molecular mechanisms underlying zebrafish phenotypic changes induced

by SmE deficiency

The results in the patient-derived fibroblasts and in the HEK293 cells revealed that, when car-

rying the identified mutation, SmE fails to enter the biogenesis pathway of spliceosomal U

snRNP, resulting in aberrant mRNA splicing and alteration of the gene expression program.

We hence investigated whether the head phenotype in zebrafish is likewise caused by splicing

defects culminating in aberrant gene expression patterns. To explore this, RNA from the head

and tail regions of untreated zebrafish controls were compared with RNA from the same

region isolated from morpholino-injected zebrafish (CO-MO, E-MO alone, and E-MO+WT

as well as E-MO+Mut combinations were analyzed). In total, ~680 million reads were obtained

and 92.3% of them could be uniquely aligned to the zebrafish reference genome (danRer10).
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Fig 5. The SNPRE/SmE deficiency interferes with zebrafish brain development. (A), Measurement of zebrafish head size across

different experimental conditions. CO-MO, control morpholino; E-MO, SmE morpholino. The morpholino and/or in vitro transcribed

RNA are injected into embryo at 1-cell stage. Yellow line marked the region for quantification. (B), Quantification of zebrafish head size.

Left, head size; middle, body length; right, head size normalized by body length. UN, un-injected; CO-MO, control morpholino; E-MO,

SmE morpholino; WT, Wide type SmE gene in vitro transcript; Mut, mutant SmE gene in vitro transcript; The UN is normalized to 1.
� P<0.05; �� P<0.01. (C), PCA analysis of the expression of 16067 protein coding genes (RPKM> 1) in zebrafish head and tail samples

under different conditions. (D), Numbers of differentially expressed genes comparing to CO-MO. (E), Proportion of DEGs in 14

significant enriched dysregulated GO terms (biologic process, E-MO versus CO-MO, BH-adjusted p< 0.001). (F), Overlap of enriched

dysregulated KEGG pathways (E-MO versus CO-MO, BH-adjusted p< 0.001) between zebrafish head and tail samples. G, Numbers of

aberrant splicing events comparing to CO-MO.

https://doi.org/10.1371/journal.pgen.1008460.g005
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As expected, zebrafish head and tail have distinct expression profiles as evident from their

divergent transcript profiles (Fig 5C). In addition, the overall PCA clusters of embryos injected

with E-MO and E-MO+Mut significantly differed from untreated and CO-MO injected sam-

ples, while the rescue E-MO+WT represented an intermediate state between these two groups

in both head and tail (Fig 5C).

By comparing each fish treatment to the CO-MO control, thousands of differentially

expressed genes (DEG) were identified in each comparison (Fig 5D). To test whether these

alterations are a direct consequence of zSmE deficiency, we next attempted to rescue the

wild type transcriptome by the co-expression of zSmE variants. Indeed, upon co-expression of

wild type zSmE the number of DEG was drastically reduced, while DEG numbers in fish co-

expressing mutant zSmE was comparable to the zSmE knockdown (Fig 5D). Of note, the num-

ber of DEGs in the tail of E-MO zebrafish was much lower than that in the head (Fig 5D), sug-

gesting that the latter was more sensitive to zSmE deficiency.

Consistent with the observed phenotypic changes in zSmE deficient fish, down-regulated

DEGs in head are enriched for factors implicated in head development, central nervous system

development and cell fate commitment (Fig 5E). Importantly, the proportion of DEGs cluster-

ing in these GO terms was dramatically reduced by co-expressing of wild type zSmE but not

its pathogenic mutant (Fig 5E). The KEGG pathway analysis showed that the zSmE knock-

down affected some pathways such as the Notch signaling pathway in both head and tail (Fig

5F). In contrast, other pathways such as apoptosis were only activated in zebrafish head by

E-MO (Fig 5F) and may explain the death of neurons and reduced brain size. Not only alter-

ations in gene expression but also aberrant splicing induced by zSmE deficiency could be res-

cued by expressing wild type but not mutant zSmE (Fig 5G). Interestingly, the introns more

retained due to zSmE deficiency shared similar features as those due to SmE dysfunction in

the patient fibroblast and HEK293 cells (S4 Fig). Taken together, these results suggest that the

small brain size caused by zSmE deficiency is, likely, a consequence of altered gene expression

and aberrant splicing.

The EMX2 aberrant splicing is a target of defects in constitutive splicing

machinery and causes the microcephaly phenotype

Our RNA-seq data raised the possibility that the phenotype of zSmE deficient zebrafish might

be a consequence of disturbed transcription factor networks controlling neuron differentiation

as well as apoptosis (Fig 5E and 5F).

EMX genes (also known as empty spiracles homeobox) are vertebrate cognates of Drosoph-
ila head gap gene, empty spiracles (ems). EMX2, a homeobox-containing transcription factor,

plays critical roles in controlling patterning and proliferation of dorsal telencephalic progeni-

tors [46,47]. Yoshida et al. [48] reported that Emx2 defective mice lose the dentate gyrus and

display greatly reduced hippocampus and medial limbic cortex size. Emx2 has also been associ-

ated with the diseases of schizencephaly [49]. Importantly, our zSmE deficient zebrafish dis-

played reduced gene expression of the Emx2 gene (log2 fold change = -2.42, BH-adjusted

p = 1.28e-55) and increased intron retention in EMX2 mRNA (ΔPIR = 0.39, p = 9.6e-5,

fdr< 0.05) (Fig 6A and 6B).

This effect is strictly dependent on zSmE deficiency, as both intron retention and gene

expression change can be partially rescued by WT but less well by mutant zSmE (Fig 6A and

6B). Due to the critical role of EMX2 in controlling patterning and proliferation of dorsal tel-

encephalic progenitors, we explored whether alterations of the EMX2 transcript is causative

for the zebrafish phenotype. For this, we tried to rescue the head size phenotype in zSmE

depleted zebrafish by co-injection of in vitro transcribed EMX2 transcripts. Indeed, the co-

A missense mutation in SNRPE linked to microcephaly

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008460 October 31, 2019 12 / 23

https://doi.org/10.1371/journal.pgen.1008460


injection of EMX2 in vitro transcript with E-MO can partially rescue the brain defect (Fig 6C

and 6D). Of note, we observed only a partial rescue, which is likely due to the fact that zSmE

deficiency also affects the splicing of many other functional relevant genes. Furthermore,

application of EMX2 mRNA alone shows no phenotype (Fig 6C and 6D). These results reveal

that EMX2, as a downstream target, might act as a key factor as its splicing defects further

amplifies the consequence caused by zSmE deficiency.

Discussion

In higher eukaryotes, the specific morphology and physiological capacities of different cell

types is achieved through coordinated precise spatio-temporal expression of lineage specific

genes. Alternative splicing (AS), through differential selection of alternative splice sites in pre-

mRNA, is not only used to increase the coding capacity of the genome, but also extensively

applied to guide the developmental regulation [7]. Defects of mRNA splicing are frequently

related to human disease [17,50,51].

Here, we demonstrate that a heterozygous missense mutation (c.65T>C (p.Phe22Ser)) in

SNRPE/SmE gene causes aberrant mRNA splicing and abnormal gene expression, leading to a

severe brain defect through SNRPE/SmE deficiency (Figs 4 and 5). Saltzman et al. [52] previ-

ously showed that the SmB/B’ protein, another basal component of the spliceosome, self-

Fig 6. The brain defect caused by SNPRE/SmE deficiency can be partially rescued by transcription factor EMX2.

(A), The expression of EMX2 gene is specifically disturbed in head of zebrafish after zSmE deficiency. (B), The zSmE

deficiency leads to increased intron retention of EMX2. (C), The head defect caused by zSmE deficiency can be

partially rescued by transcription factor EMX2. The morpholino and/or in vitro transcribed RNA is injected into

embryo at 1-cell stage. Yellow line marked the region for quantification. (D), Quantification of zebrafish head size.

Left, head size; middle, body length; right, head size normalized by body length. UN, un-injected; CO-MO, control

morpholino; E-MO, SmE morpholino, EMX2, EMX2 gene in vitro transcript. The UN is normalized to 1. � P<0.05;
�� P<0.01.

https://doi.org/10.1371/journal.pgen.1008460.g006
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regulates its expression by inclusion of a highly conserved cassette exon to regulate alternative

splicing through affecting the availability of spliceosomal U snRNPs. Although the SmE pro-

tein is also a basal component of spliceosome, the effect of SNRPE/SmE on mRNA splicing

and its physiological role has never been investigated. Our results revealed that, similar to

down-regulation of core spliceosomal proteins [53,54], the SNRPE/SmE (c.65T>C (p.Phe22-

Ser)) mutation impairs the biogenesis of spliceosomal U snRNPs (Figs 2 and 3), leading to

aberrant mRNA splicing in in vitro HEK293 cells (Fig 4) and in vivo zebrafish samples (Fig 5).

In zebrafish, the specific depletion of endogenous SNPRE/SmE mediated by translation initia-

tion blocking morpholino, leads to decreased head size (Fig 5A and 5B), which successfully

recapitulate the patient phenotype. Similar phenomena were also observed in previous studies

[53,54]. Bezzi et al. [54] showed that conditional knockout of PRMT5 in the central nervous

system (CNS) of mice leads to smaller brain, early postnatal death and aberrant mRNA

splicing. As a type II arginine methyltransferase [55], PRMT5 acts together with pICln and

WDR77/WD40 to symmetrically methylate the arginine residues in SmB/B’, SmD1 and SmD3

proteins to increase their affinity to SMN complex for promoting the spliceosomal U snRNPs

assembly [38,56]. Jia et al. [53] reported that mutation of a U2 snRNA gene in mice causes the

global disruption of alternative splicing and neurodegeneration. In U2 mutant mice, the size

of the cerebellum decreases through progressive neuron loss. No matter whether cells face a

conditional knockout of PRMT5 or a depletion of U2 snRNA or SNRPE/SmE, the direct con-

sequence is the reduced availability of spliceosomal U snRNPs. The CNS, as the most complex

structure, has the highest degree of alternative splicing to keep the diversity of transcriptome

and proteome to guide correct developmental fates [57,58]. Therefore, it is reasonable to

assume that the CNS is most sensitive to aberrant mRNA splicing and similar phenotypes can

be observed under these conditions.

Among the different classes of alternative splicing (AS) events, intron retention (IR) is the

least studied and usually regarded as the consequence of mis-splicing. However, an increasing

number of studies have shown that regulated IR is widely used as a physiological mechanism

to functionally tune the transcriptomes [59–61]. Wong et al. [60] showed that, during granulo-

cyte differentiation, IR coupled with NMD is applied as an energetically favorable way to pre-

cisely control gene expression. Yap et al. [59] demonstrated that IR is applied to coordinated

regulation of neuronal steady-state mRNA levels to guide the neuron differentiation. There-

fore, aberrant IR can be related to diseases as Bezzi et al. [54] and Jia et al. [53] reported that

the homeostasis of IR is disrupted after PRMT5 depletion or U2 snRNA mutation. IR is also

observed as the most abundant aberrant splicing type in the patient-derived fibroblast cells,

SNRPE/SmE depleted HEK293 cells and zebrafish zSmE knockdown head samples (Figs 4 and

5). Molecular analysis demonstrates that the extent of aberrant IR is negatively correlated with

gene expression, which might be mediated through NMD or nuclear sequestration (Fig 4B and

4F). Further KEGG pathway and GO term analyses of expression modulated genes in zebrafish

head with SNRPE/SmE deficiency show that the p53 signaling pathway is enriched in the up-

regulated genes whereas the down-regulated genes are significantly enriched in neuron devel-

opment (Fig 5E and 5F). The up-regulation of p53 signaling pathway was also reported by Jia

et al. [53] and Bezzi et al. [54] and considered to contribute to neuronal death. Therefore, like

with the PRMT5 depletion or U2 snRNA mutation, the p53 signaling pathway activation

might contribute similarly to the SNRPE/SmE deficiency phenotype.

Among those down-regulated genes related to neuron differentiation and brain develop-

ment, LHX5 promotes the forebrain development through inhibiting Wnt signaling [62].

LHX2 and LHX9 guide the neuronal differentiation and compartmentalization in the caudal

forebrain through regulating Wnt signaling [63]. EMX2 functions in the development of dor-

sal telencephalon, the EMX2 mutant shows defect of dentate gyrus and significantly reduced

A missense mutation in SNRPE linked to microcephaly

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008460 October 31, 2019 14 / 23

https://doi.org/10.1371/journal.pgen.1008460


size of the hippocampus and medial limbic cortex [48,64]. Due to the phenotype similarity

between EMX2 mutant and SNRPE/SmE mutant, it is tempting to speculate that the pheno-

type of SNRPE/SmE mutant might be mediated through disrupting the expression of tran-

scription factors responsible for early brain development, such as EMX2. The result that

injection of an in vitro generated transcript encoding EMX2 can partially rescue the phenotype

of reduced SNRPE/SmE (Fig 6), is consistent with this hypothesis. The data are consistent with

the idea that during early development, the SNRPE/SmE deficiency disturbs the brain develop-

ment through interfering with the splicing of transcription factors, which are responsible for

guiding the early brain development.

In addition to the mutation we reported in this study, Pasternack et al. demonstrated that

the mutations of SNRPE/SmE (c.1A>G (p.M1?) and c.133G>A (p.G45S)) can cause the auto-

somal-dominant hypotrichosis simplex [31]. These mutations affect the solubility of proteins,

however, the soluble part can still efficiently integrate into functional spliceosomal U snRNPs.

Moreover, Weiss et al. identified a dominant mutation (c.153T>A (p.E51D)) in SmE from a

hypogonadism mouse strain [65]. Due to the different position of mutations, the effect of

mutations on the functionality of SNRPE might be very different. As the basal component of

spliceosomal U snRNPs, the consequence of such different effects from different mutations

could be further magnified through altered mRNA splicing and stability, especially the splic-

ing/expression of different transcription factors.

Finally, although we identified the SNRPE mutation (c.65T>C (p.Phe22Ser)) from only one

patient, the biochemical and zebrafish data provide strong evidence to link this mutation to

the microcephaly phenotype manifested in this patient. Therefore, this study expands on our

understanding of the effects of core spliceosomal machinery defects on early brain develop-

ment, and provides insight into the etiology of microcephaly.

Material and methods

Ethics statement

The study and use of human samples were approved by the Charité Ethics Committee (EA1/

212/08), and the patient’s parents provided written informed consent. For the animal research,

all experiments in the manuscript were performed with embryos of less than 5 days of age.

According to German and EU rule, those experiments need to only to be approved by the local

government and not considered to be animal experiments that need special permission. Zebra-

fish (Danio rerio) were bred and maintained as preciously established [66]. All experimental

procedures were performed according to the guidelines of the German animal welfare law and

approved by the local government (Government of Lower Franconia; Tierschugtzgesetz §11,

Abs. 1, Nr. 1 husbandry permit number 568/300-1870/13). All zebrafish experiments have

been performed at embryonic stage prior to independent feeding. Used zebrafish strains: TL

(Tüpfel long fin; leot1/lofdt2; ZFIN ID: ZDB-GENO-990623-2).

Exome sequencing

All family members were subjected to exome sequencing. In brief, DNA was extracted from

the patient and parents’ blood samples. According to the manufacture’s protocol, the genomic

DNA was enriched by Agilent Human All Exon V4 Kit (Agilent Technologies, Santa Clara,

CA, USA). The whole exome libraries were subjected to Illumina HiSeq2000 system for 100

cycles single end sequencing. After sequencing, the data analysis for exome sequencing was

performed as described before by Fröhler et al. [67].
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Cell lines and antibodies

Fibroblasts from the forearm of the patient and age-matched control were established accord-

ing to a standard protocol and cultured in DMEM with 4.5g/l D-glucose and pyruvate (Invi-

trogen, Darmstadt, Germany) supplemented with 15% fetal bovine serum (FBS) and 1%

penicillin-streptomycin.

SmE lentiviral overexpression plasmid was constructed by replacing the Cas9 cassette on

lentiCas9-Blast (Addgene, #52962) with the SmE sequence followed by HA-tag, T2A and

mCherry cassettes. For each virus package, HEK293T cells (3×105) were seeded in one well of

6-well plate, and were transfected with plasmid after 24 hours. For the transfection, 10.5ul PEI

(1μg/μl, Polysciences, #23966–2) and 3.5μg total plasmid (1μg lentiviral plasmid, 1.5μg pMD2.

G (Addgene, #12259), and 1μg psPAX2 (Addgene, #12260) were added to the 200μl Opti-

MEM (Thermo, #31985075). After 20 minutes, the mix was added to the cells. 12 hours after

transfection, the medium was replaced by the fresh medium. After 48 hours, the supernatant

were collected, and clarified by centrifugation (2000g), and filtrated through a 0.45μm filter

(Millex, #SLHV033RB). The transduction was done by incubating the viral particles contain-

ing supernatant with the patient fibroblast cells overnight in the presence of polybrene (8 μg/

μl, Sigma, H9268).

Stable HEK293 T-Rex Flp-In cell lines, inducibly expressing the HA-tagged wild type or

mutant SmE protein were constructed and maintained as previously described [68]. For tran-

sient transfection, HeLa and HEK293T cells were cultured in DMEM media supplemented

with 10% FBS.

The following antibodies were used in this study: anti-SMN (clone 7B10; purified from

hybridoma supernatant) [69], rabbit anti-pICln [36], mouse anti-m3G/m7G cap (H-20, a kind

gift from Prof. R. Lührmann) [70], mouse anti-Sm (Y12, a kind gift from Prof. J.A. Steitz) [71],

rabbit anti-coilin (H-300, Santa Cruz Biotechnology, sc-32860), rabbit anti-SmD3 (Pierce,

PA5–26288), rabbit anti-SmD1 (Pierce, PA5–12459), rabbit anti-SmF (Abcam, ab66895),

mouse anti-FLAG (Sigma, F1804 and F3165) and anti-HA (Covance). For western blotting, we

used secondary goat antibodies conjugated with horse raddish peroxidase; anti-mouse (Sigma,

A4416) and anti-rabbit (Sigma, A6154). For indirect immunostaining we used Cy5-conjugated

goat secondary antibody (red channel), anti-rabbit IgG (Jackson ImmunoResearch Laborato-

ries, 111-175-144) and Alexa488-conjugated goat secondary antibody (green channel), anti-

mouse (Thermo Scientific, A11017).

Immunoprecipitation (IP) of proteins and RNA-protein complexes from

stable cell lines or transient transfections, 3’-end labeling of RNA

HEK293T cells were seeded in 150mm cell culture dishes and transfected at 80% confluency

using Mirus Transit-X2 system as per manufacturer’s protocol for immunoprecipitations with

20μg of SmE wild type or mutant construct or dual-expression plasmid or left untransfected

for mock immunoprecipitations. Lysate were prepared 48 hours after transient transfection or

after 24 hours of induction of stable cell lines with 100ng/ml doxycycline.

All IP experiments were performed as previously described [43]. Briefly, the cells were

homogenized in lysis buffer (50mM HEPES pH7.5, 150mM NaCl, 2.5mM MgCl2, 1% NP-40

substitute, RNasin and proteinase inhibitors) and insoluble debris was removed by centrifuga-

tion. The supernatant was then collected, concentration estimated using Bradford assay and

incubated with Protein-G Dynabeads (Thermo Scientific) coupled with corresponding anti-

bodies or with anti-FLAG agarose M2 affinity gel (Sigma) for 3h at 4˚C. After incubation, the

beads were washed three times with ice-cold wash buffer (50mM HEPES pH7.5, 300mM

NaCl, 2.5mM MgCl2) and once with 1×PBS with 2.5mM MgCl2. The immunoprecipitate was
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subsequently dissociated from the beads using 1×Lämmli SDS dye, separated on a SDS-PAGE

and analyzed by western blotting or directly treated with TRIzol (Thermo Scientific) for RNA

extractions as per manufacturer’s protocol. The precipitated RNA was resuspended in nuclease

free water and incubated with 32P-pCp and T4 RNA ligase in an overnight reaction at 4˚C.

The RNA was precipitated after Phenol-chloroform extraction and separated on 8% polyacryl-

amide-Urea denaturing gel and exposed for autoradiography.

Immunostaining and confocal microcopy

For immunostaining, HeLa cells were grown on coverslips and transfected with FLAG-tagged

wild type or mutant SmE constructs respectively at 70% confluency using Mirus Transit-X2 or

left un-transfected (control). After 48 hours of transfection, the coverslips were processed for

immunostaining. Control primary human fibroblasts and patient fibroblast were seeded on

coverslips and grown to 70% confluency before immunostaining. The cells were washed and

fixed with 4% para-formaldehyde and permeabilized with 0.2% Triton X-100 in 1×PBS and

blocked with 10% FCS. Primary and secondary antibodies were diluted in 2% FBS. After pri-

mary and secondary antibody binding and washes, the coverslips were mounted using Mowiol

4–88 mounting medium. Confocal imaging was carried out using Leica SP5 confocal micro-

scope with photomultiplier and the images were processed using ImageJ software.

Injection and analysis of zebrafish embryos

The zebrafish (Danio rerio) embryos were maintained and harvested as previous described

[66]. The translation-blocking morpholino against zebrafish SmE was designed and obtained

from Gene tools (SmE MO: 5’-TGTCCTTGTCCTCTGTACGCCATTC-3’) targeting the

translation initiation site. Control morpholino was a scrambled nucleotide sequence provided

by Gene tools (5’-TGTCGTTCTGCTCTCTACCCCATTC -3’). 1nl of morpholino solution

(final concentration 20nM) was injected into zebrafish embryos at the 1–2 cell stage. For RNA

rescue and over-expression experiments, in vitro transcribed RNA (final concentration of

150pg) encoding the CDS of zebrafish SmE with/without point mutation was fused with

mCherry and separated from each other by 2A-tag. To avoid the targeting by SmE morpho-

lino, synonymous codons were used to substitute the 4th-7th amino acid positions. The coding

sequence was changed from AGAGGACAAGGA to CGTGGCCAGGGT. To quantify the

phenotype, the images of embryos were taken at 48 hours post fertilization (hpf), and the size

of the heads and length of the body were quantified. All experiments were repeated for three

times and the significance of the morphant phenotype was determined by Student’s t-test.

RNA sequencing

Total RNAs were extracted from the patient derived fibroblast cells, HEK293 cell lines, zebra-

fish heads and tails using TRIzol reagent (Life Technologies) following manufacturer’s instruc-

tion. Stranded mRNA sequencing libraries were prepared with 500 ng total RNA according to

manufacturer’s protocol (Illumina). The libraries were subjected to Illumina HiSeq 2000 sys-

tem for 100 cycles single end sequencing.

RNA-seq data analysis

All RNA-seq reads were aligned to a reference genome (human: hg19; zebrafish: danRer10) by

using STAR with transcriptome annotation (human: Gencode v18; zebrafish: ensemble 82).

HTseq-Count was further utilized to calculate gene expression by counting uniquely mapped

reads within each gene. DEseq2 was then applied to identify differentially expressed genes
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between different conditions. Based on transcriptome annotation, splicing events including

alternative splicing sites (ASS), skipped exon (SE), retained intron (RI) and mutually exclusive

exons (MXE) were constructed. Especially for SE and RI, all middle exons and introns were

considered potentially to be skipped or retained. Using reads aligned to exon-exon junction

and exon-intron boundaries, expression of each splicing event was quantified and further

compared between each two different conditions. We used a rank-product based method as

described in a previous study [67], to estimate significance (p< 0.001, fdr< 0.05 were defined

as significant) by checking consistence among different biological replicates. For zebrafish

RNA-seq data analysis, we examined GO and KEGG pathway enrichment (BH-adjusted P

value < 0.001) for genes, which were differentially expressed (BH-adjusted P value < 0.001,

|log2 fold change| > 2, RPKM > 1) between E-MO and Control-MO, using WEB-based Gene

SeT AnaLysis Toolkit (WebGestalt). In brief, we estimated significance of the overrepresenta-

tion of up and down regulated genes in each GO term and KEGG pathway, comparing with

background genes respectively (all expressed genes, i.e. RPKM> 1). Next, in each significant

enriched GO-term, proportions of differentially expressed genes among all genes in the GO

term across different comparisons, including E-MO versus Control-MO, E-MO+WT versus

Control-MO, and E-MO+MT versus Control-MO, were estimated separately. For enriched

KEGG pathways, we also checked the overlap between the results from head and tail RNA-seq

data.

Supporting information

S1 Text. Support information-Clinical information of the patient.

(DOCX)

S1 Fig. U snRNP levels are reduced in the patient due to the SmE mutation. (A-B), Indirect

immunofluorescence and confocal microscopy of control and patient fibroblasts. Empty

white arrowheads indicate localization pattern observed and filled white arrowheads indicate

zoomed in region shown in the overlay inset. (A), Co-staining with DAPI (blue), m3G/m7G

cap of U snRNA (green) and SmD1 (magenta). Control fibroblasts (top panel) show abundant

U snRNPs in nuclear speckles and both SmD1 and U snRNAs are predominantly absent

from the cytoplasm. In patient fibroblasts (bottom panel) though there is an excellent co-loca-

lizaiton of U snRNAs and SmD1, there is a decrease in their nuclear abundance and there is an

increase in their cytoplasmic localization. (B), Indirect immunofluorescence and confocal

microscopy of DAPI (blue), symmetrically dimethylated (sDMA)-Sm proteins (green) and

coilin (magenta). In comparison to the control fibroblasts (top panel), the patient cells (bottom

panel) have reduced Sm proteins in the nucleus and an increased cytoplasmic retention. Coilin

foci is not present in the images as primary cells lacks CBs. (C), Quantitative real-time PCR

analysis of snRNAs and SmE in control (black bars) and patient (gray bars) fibroblasts from

two independent biological replicates. (D), The SmE protein expression level in patient and

control fibroblasts was checked by western blotting. The tubulin was used as loading control.

(E), Immunoprecipitation of Sm proteins from control and patient fibroblasts (bottom panel,

western blotting) and autoradiography (top panel) after 3’-end labeling of coprecipitated RNA.

Mock indicates immunoprecipitation control without any antibody coupled to the beads. (F),

Quantification of autoradiography in E; control in black and patient in gray, from two inde-

pendent biological replicates.

(TIF)

S2 Fig. The impaired mRNA splicing in patient fibroblasts can be rescued by overexpres-

sion wild type SmE protein. (A), Wild type SmE protein was successfully overexpressed in the
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patient fibroblast cells. The expression level was estimated based on RNA-seq data. (B), The

MA plot compares the intron retention in the patient fibroblast cells with to those without

overexpression of wild type SmE protein; X axis, log2 transformed the product of splicing in

and splicing out reads number for each intron; Y axis, difference in percentage of intron reten-

tion (PIR) between the patient fibroblast cells with overexpression of wild type SmE protein

(OE) and those without (mutant). (C), The MA plot compares the intron retention between

the patient fibroblast cells with overexpression of wild type SmE to fibroblast cells from healthy

control (control). (D), The scatter plot illustrates the PIR changes between healthy control vs

mutant (X axis) and OE vs mutant (Y axis).

(TIF)

S3 Fig. The endogenous SmE can be successfully knocked down by siRNA. Western blot

analysis shows that the endogenous SmE can be specifically depleted by SmE siRNA, targeting

to the 3’ UTR region, and the exogenous HA-tagged SmE protein can be efficiently induced.

The β-tubulin is used as loading control.

(TIF)

S4 Fig. The KS-statistics for the 18 most representative features among 136 features across

different comparisons. The features were compared between group 1 and group 2 (left panel);

between group 3 and group 4 (middle panel); between group 5 and group 6 (right panel). The

GC content is the most significantly enriched feature among all the three comparisons. Group

1: introns with increased retention in the patient fibroblast cells vs healthy control fibroblast

cells (adjusted p< 0.05, delta PIR> 0.1); Group 2: introns without increased retention in the

patient fibroblast cells vs healthy control fibroblast (delta PIR< 0.05, p> 0.05), this group

serves as background for group 1; Group 3: introns with increased retention in HEK293 upon

SmE knockdown vs control HEK293 (adjusted p< 0.05, delta PIR> 0.1); Group 4: introns

without increased retention in HEK293 upon SmE knockdown vs control HEK293 (delta

PIR< 0.05, p> 0.05), this group serves as background for group 3; Group 5: introns with

increased retention in zebrafish upon SmE knockdown vs control (adjusted p< 0.05, delta

PIR> 0.1); Group 6: introns without increased retention in zebrafish upon SmE knockdown

vs control (delta PIR< 0.05, p> 0.05), this group serves as background for group 5.

(TIF)

S5 Fig. The endogenous SmE in zebrafish can be successfully knocked down by SmE mor-

pholino. Western blot analysis shows that the endogenous zSmE can be specifically depleted

by SmE morpholino, targeting to the translation initiation site. The β-tubulin is used as load-

ing control. UN, un-injection; CO-MO, control morpholino; E-MO, SmE morpholino.

(TIF)
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