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Abstract

Somatic mutations in protein-coding regions can generate ‘neoantigens’ causing developing

cancers to be eliminated by the immune system. Quantitative estimates of the strength of

this counterselection phenomenon have been lacking. We quantified the extent to which

somatic mutations are depleted in peptides that are predicted to be displayed by major histo-

compatibility complex (MHC) class I proteins. The extent of this depletion depended on

expression level of the neoantigenic gene, and on whether the patient had one or two MHC-

encoding alleles that can display the peptide, suggesting MHC-encoding alleles are incom-

pletely dominant. This study provides an initial quantitative understanding of counter-selec-

tion of identifiable subclasses of neoantigenic somatic variation.

Author summary

Cancer immunotherapy and personalized cancer vaccines depend on clearance of cancer

and pre-cancer cells by the immune system. However, little is known about the strength

of this phenomenon as it acts on the cell populations which give rise to tumors. Here we

provide an initial quantitative estimate of the fraction of neo-antigen-containing cells

in this population that are cleared by the MHC class I-dependent immune system. The

impacts of both neo-antigenic gene expression and the number of neo-antigen-displaying

MHC alleles on this clearance phenomenon were examined. A more complete under-

standing of immune clearance of neoantigenic cells and how this phenomenon varies

between patients and cancers, has the potential to guide immunotherapy and cancer

vaccines.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008227 July 25, 2019 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Yang F, Kim D-K, Nakagawa H, Hayashi S,

Imoto S, Stein L, et al. (2019) Quantifying immune-

based counterselection of somatic mutations.

PLoS Genet 15(7): e1008227. https://doi.org/

10.1371/journal.pgen.1008227

Editor: Peter McKinnon, St Jude Children’s

Research Hospital, UNITED STATES

Received: December 11, 2018

Accepted: June 4, 2019

Published: July 25, 2019

Copyright: © 2019 Yang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: PCAWG patient HLA

types are provided in S3 Table. TCGA missense

mutation data and TCGA RNAseq expression data

are available via the Broad Institute TCGA Genome

Data Analysis Center (2016) as “Analysis-ready

standardized TCGA data from Broad GDAC

Firehose 2016_01_28 run Broad Institute of MIT

and Harvard (Dataset. https://doi.org/10.7908/

C11G0KM9)”. Protein sequence data are publicly

available via Ensembl BioMart (Release 89). TCGA

patient HLA types are available via Broad Institute’s

Firehose (Authorization Domain: TCGA-dbGaP-

Authorized).

http://orcid.org/0000-0002-1623-0738
http://orcid.org/0000-0002-6628-649X
https://doi.org/10.1371/journal.pgen.1008227
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008227&domain=pdf&date_stamp=2019-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008227&domain=pdf&date_stamp=2019-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008227&domain=pdf&date_stamp=2019-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008227&domain=pdf&date_stamp=2019-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008227&domain=pdf&date_stamp=2019-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008227&domain=pdf&date_stamp=2019-07-25
https://doi.org/10.1371/journal.pgen.1008227
https://doi.org/10.1371/journal.pgen.1008227
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7908/C11G0KM9
https://doi.org/10.7908/C11G0KM9


Introduction

In every human cell, proteins are constantly being degraded into component peptides, and a

subset of this pool of peptides are displayed on MHC class I receptor proteins (encoded by

human leukocyte antigen or HLA genes). As somatic mutations arise, some cause differences

in MHC-displayed peptides, producing antigens that can be differentially recognized by T cells

and lead to the specific destruction of tumor cells by the immune system [1]. In addition to the

production and display of ‘non-self’ peptides that can arise directly from mutation, genetic

and epigenetic alterations can cause tumor cells to express many proteins more highly [2].

Together, these changes mean that cancer cells have an altered repertoire of proteins and

therefore of tumor antigens.

Tumor antigens can be classified into two categories: tumor-associated self-antigens (which

may also be displayed by non-cancer cell types) and antigens derived from tumor-specific

mutant proteins. The latter class of tumor-specific ‘neo-antigenic’ mutations are ideal targets

for cancer immunotherapy, because neo-antigens that can potentially be recognized by the

mature T-cell repertoire are less likely to be found in healthy cells/tissues [3]. It has been

reported that neo-antigens are likely to be more immunogenic, presumably due to the T-cell

maturation process in which T-cells capable of high-avidity recognition of self-antigens are

eliminated [4]. Immuno-therapy approaches exploiting neo-antigenicity, however, have been

hampered by the fact that every tumor possesses a unique set of mutations that must first be

identified [5]. Moreover, individual patients can differ dramatically in their immune systems,

based on HLA type and other allelic variation in immune genes, as well their unique repertoire

of mature immune cells. Thus, personalized immuno-therapy could positively benefit the

patient during cancer treatment [6–8]. After recognition, the process of tumor-cell killing by

T-cells may release more tumor neo-antigens in a potentially therapeutic virtuous cycle [9].

In principle, any coding mutation has the potential to generate a mutant peptide that can

be presented by MHC class I molecules and subsequently recognized by cytotoxic T cells.

However, a crucial challenge for the personalized treatment approach is determining the

MHC-binding potential of non-self peptides that arise from somatic tumor mutations, and

determining which among them are most likely to be potent neo-antigens in a given cancer

type, and given the patients repertoire of HLA alleles that encode different MHC class I

receptors.

To improve our understanding of neo-antigenicity in cancer, we conducted several analyses

of somatic mutations and the ability of corresponding mutant peptides to be displayed by

MHC class I receptors across different cancer types. More specifically, we quantified the

impact of predicted antigenicity on the spectrum of tumor missense somatic mutations. We

expected to find that somatic mutations would be less frequent in MHC-displayed peptides,

presumably because the immune system is more likely to have eliminated cells bearing these

mutations. Other groups have identified depletion of predicted-displayed mutations based

on patient HLA-A genotypes [10], without quantifying the extent of depletion. Other work

reported that predicted-MHC-displayed mutations were depleted in colorectal and clear

cell renal cancer [11]. However, this phenomenon was not explored in detail, e.g., it did not

consider patient genotypes at all HLA loci or consider expression levels of the displayed

peptide.

Here, we quantified the extent to which somatic mutations are significantly depleted in pep-

tides that are predicted to be displayed by MHC class I proteins (without considering patient

HLA type). We further characterized the dependence of this depletion on the inferred expres-

sion level of each peptide. Next, we refined the preceding analyses by considering individual

patient HLA alleles. Finally, we extended this analysis by relating depletion of somatic
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mutations to the number of HLA alleles predicted to display peptides bearing that mutation.

Thus, we quantitatively estimated the ‘neoantigenicity’ of different classes of somatic variants

in individual patients.

Results

Depletion of mutations within expressed predicted MHC-binding peptides

As somatic mutations arise, we should expect that the more immunogenic mutations are more

likely to be counter-selected due to clearance of the mutant cell by the immune system, and

therefore depleted from observed tumor genomes. To formally test this hypothesis and to

begin to quantify the expected depletion effect, we examined somatic cancer mutations in

human cancer samples, beginning with data from the Pan-cancer Analysis of Whole Genomes

(PCAWG) study [12].

The immunogenicity of a protein-coding mutation depends in part on whether or not it

yields a mutant peptide that is displayed by a MHC class I protein receptor. MHC class I bind-

ing peptides were predicted using the NetMHC server [13, 14]. In total, we examined 121,258

missense somatic mutations from 2,834 PCAWG patients for whom HLA type had been

assigned [15]. Those mutations were distributed across more than 10,700 genes. Missense

somatic mutations from PCAWG were separated into two groups: either falling within or out-

side of predicted MHC binding peptides. For an initial analysis, we modeled all MHC class I

alleles with available display predictions as being present in each patient (we revisit this issue

later).

Because a mutant protein must be expressed in order to yield a displayed peptide, we also

examined the dependence of missense variant depletion on gene expression levels. More spe-

cifically, we analyzed the relationship between the missense mutation density within MHC-

binding peptides and the expression level of the corresponding protein in the appropriate

cancer type (see Methods). Then, for mutations both within and outside of MHC binding pep-

tides, we calculated the mutation density for five classes of peptide: those that were undetecta-

bly expressed and those in each of four gene expression quantiles (Methods).

As expected, we found that mutation density and expression level are negatively correlated,

and that the average mutation density within MHC binding peptides is lower than that of

MHC binding peptides for expressed peptides (Fig 1; ratio of mutation density within MHC-

displayed peptides to that outside displayed peptides = 0.94; Fisher’s exact test, P-value < 2.2e
-16). As a control, we further compared the mutation density within and out of MHC binding

peptides in undetectably-expressed genes. Our results indicated that there was no significant

depletion of missense somatic mutations within MHC binding peptides that are not detectably

expressed (Fig 1; odds ratio = 1.01, P-value = 0.65). Although the odds ratio was near 1 for

non-expressed proteins, as one might naively expect, we note that the sequence specificity of

specific MHC class I receptor alleles can lead to HLA-allele-dependent amino acid (and there-

fore nucleotide-level) sequence biases in the peptides displayed, which could in turn yield

sequence-dependent differences in mutation density. To account for this, we performed a cor-

rection by dividing the mutation density ratio of expressed proteins by that of non-expressed

proteins. Although in this case the corrected mutational density ratio was 0.93/1.01, which is

still 0.93, it did make a difference for other results below.

Thus, our analysis of PCAWG data confirmed the expected phenomenon that somatic

mutations are depleted within expressed MHC-displayed peptides. Quantifying the MHC-dis-

play-dependent depletion effect in non-expressed peptides served as a crucial negative control

for sequence biases of peptides displayed by particular HLA alleles.

Estimating somatic coding variant counterselection
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Depletion of mutations within predicted patient-displayed MHC-binding

peptides

For a mutant protein to yield a peptide that is displayed by a given allele of the MHC class I

receptor, that allele must of course be present in the cells of that patient. Because the analyses

above were based on a hypothetical (and unrealistic) patient who bears all 12 of the common

HLA alleles for which display predictions are available, the depletion effect sizes estimated

above are likely to be conservatively small. Indeed, individual patients can differ dramatically

in their immune systems, in part due to allelic variation in HLA genes. Therefore, we sought to

characterize the mutation depletion phenomenon using, for each somatic variant, only peptide

display predictions for the subset of HLA alleles carried by the patient in which that somatic

variant was detected.

Re-examining the PCAWG data, there were 12,552 genes in which at least one variant was

predicted to be neo-antigenic, e.g., presented by the MHC class I protein of the patient carry-

ing this mutated gene. For these genes, we again examined the tendency for depletion of

mutations within MHC binding peptides relative to non-MHC binding peptides, now taking

patient HLA type into account. Within expressed proteins, the ratio of mutation density within

predicted-displayed MHC binding peptides to that outside predicted-displayed peptides was

0.82 (Fisher’s exact test, P-value < 2.2e -16). Within non-expressed proteins, the corresponding

ratio was 0.98 (Fisher’s exact test, P-value = 0.19), yielding a corrected mutational density ratio

for expressed proteins of 0.83 (0.82/0.98).

Our analysis showed that missense mutations tend to be counter-selected within MHC

binding peptides, both in an idealized patient with unknown HLA type, and when accounting

for HLA type in each specific patient sample. In each case, the phenomenon depended on

Fig 1. MHC-display-dependent mutation densities for genes with different expression levels. Blue bars are the

mutation density within the predicted MHC binding peptides. Red bars are the mutation density out of the predicted

MHC binding peptides. Mutations were separated into five categories based on the expression levels of their genes.

https://doi.org/10.1371/journal.pgen.1008227.g001
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expression level of the gene encoding that peptide (Fig 2). In all subsequent analyses, we con-

sidered only peptides expressed according to RNA-Seq analysis of the appropriately-matched

cancer type.

Dependence of depletion on the number of mutation-displaying alleles

In the above analysis, we only considered for each peptide whether or not the patient carried

an HLA allele predicted to display that peptide but did not consider how many copies of the

displaying allele were present in that patient. However, peptides for which two copies of the

displaying HLA alleles were present could be more efficiently displayed. (This could be due

either to increased expression of the displaying allele by increased gene dosage, or a decreased

chance that the displaying allele would be silenced where the phenomenon of mono-allelic

expression occurs [16]). We assessed this hypothesis further by testing, for patient samples

where ‘likely-displayed’ mutations were found, whether the number of alleles that can display

the MHC binding peptides was associated with the extent of mutation depletion.

Missense variants from the 2,834 PCAWG patient samples were separated into three types

(Fig 3). “D0,” where the patient has zero HLA class I alleles that are predicted to display the

mutant peptide; “D1”, where only one HLA class I allele type can display the peptide, i.e., the

Fig 2. MHC-display-dependent mutation densities for genes with different expression levels, considering each patient’s HLA type. Blue bars are

the mutation density within the predicted patient-displayed MHC binding peptides. Red bars are the mutation density out of the patient-displayed

predicted MHC binding peptides. Mutations were separated into five categories based on the expression levels of their genes.

https://doi.org/10.1371/journal.pgen.1008227.g002
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patient is heterozygous at the relevant HLA locus and the patient has only one HLA allele that

can display the peptide; and “D2”, where two HLA class I alleles are predicted to display the

peptide. These two alleles can either be two copies of the same MHC allele (i.e., the patient is

homozygous for a displaying allele) or be two different alleles (i.e., the patient is heterozygous

with alleles that are both predicted to display the peptide).

For both D1 and D2 mutations, we found that the mutation density within patient-dis-

played MHC binding peptides is lower than that observed outside of MHC binding peptides

of the same protein. For expressed MHC binding peptides of type D1, the ratio of mutation

density within displayed peptides to that outside of displayed peptides was 0.91 (Fisher’s exact

test, P-value = 1.96e -7). This ratio for non-expressed peptides was 0.99 (Fisher’s exact test, P-

value = 0.39), yielding a corrected mutational density ratio of 0.92 (0.91/0.99) for expressed D1

peptides.

For expressed displayed peptides of type D2, the ratio was 0.79 (Fisher’s exact test, P-

value = 9.73e-9). The corresponding ratio in non-expressed displayed peptides D2 that can be

displayed by two distinct HLA alleles is 1.02 (Fisher’s exact test, P-value = 0.64). Thus, a cor-

rected mutational density ratio 0.77 (0.79/1.02) was observed for expressed D2 peptides dis-

played by two HLA alleles. Thus, we find that the depletion for mutations in MHC-displayed

peptides is stronger if the patient has more alleles predicted to display a mutant peptide (Fig

4), and therefore that HLA alleles are incompletely dominant.

Validation of mutation depletion phenomena in an independent dataset

We repeated the above analyses using the missense somatic mutations detected from 5,213

patient samples provided by the TCGA project [17], examining the distribution pattern of

676,171 missense mutations detected in more than 10,800 genes. Analysis of this TCGA data

confirmed the tendency of depletion of mutations within MHC binding peptides relative to

non-MHC binding peptides, both with and without considering patient HLA types (S1 Fig).

Considering only patient-displayed MHC binding peptides, the corrected mutational

density ratio was 0.54 (with 95% confidence interval of 0.539–0.545 estimated by bootstrap

Fig 3. Three types of MHC binding peptides based on patient HLA allele types.

https://doi.org/10.1371/journal.pgen.1008227.g003
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resampling; S2 Fig). Our analysis of the TCGA data confirmed that mutations displayed by

two display-enabling HLA alleles (mutations of type “D2”) were more strongly depleted than

mutations displayed by a single display-enabling allele (S2 Fig), further supporting the conclu-

sion that HLA alleles are incompletely dominant.

To address concerns that the depletion phenomenon stems from a bias in the spectrum or

rate of mutation for expressed genes, we also analyzed 1,048,575 synonymous mutations in

5,134 samples. We did not find depletion of synonymous mutations within patient-displayed

MHC binding peptides (S3 Fig). Within expressed proteins, the ratio of synonymous mutation

density within predicted-displayed MHC binding peptides to that outside predicted-displayed

peptides was 1.05 (Fisher’s exact test, P-value = 0.99). Within non-expressed proteins, the cor-

responding ratio was 1.03 (Fisher’s exact test, P-value = 0.78), yielding a corrected mutational

density ratio for expressed proteins of 1.01 (1.05/1.03). The 95% confidence interval of the cor-

rected mutational density ratio for synonymous variants was 1.00 to 1.01 (based on bootstrap

resampling 500 times; S2 Fig). That we observed no depletion of synonymous mutations in

patient displayed MHC binding peptides is consistent with the hypothesis that the depletion

phenomenon arises from a selection that depends on expression of the mutant protein.

We next repeated our analysis by considering different cancer types separately. Here, we

chose the six different types for which the most samples were available: breast cancer (BRCA,

973 samples), thyroid cancer (THCA, 386 samples), skin cutaneous melanoma (SKCM, 341

samples), prostate adenocarcinoma (PRAD, 329 samples), gastric adenocarcinoma (STAD,

275 samples) and uterine corpus endometrial carcinoma (UCEC, 240 samples (see S2 Table).

Significant depletion of predicted-displayed mutations had (without considering patient HLA

type or peptide expression) been found previously for BRCA and STAD [11]. We also included

adenomatous colorectal cancer (COAD, 60 samples), because Rooney et al. noted significant

depletion for this cancer type. Considering patient HLA genotypes and proteins in the 75–

100%ile of expression level, we could confirm the trend of depletion of mutations in MHC-

binding peptides for BRCA, STAD and COAD. We also found depletion for THCA, which

had not been previously reported. Although we could not confirm depletion of mutations in

Fig 4. MHC-display-dependent mutation densities for genes with different expression levels, considering the number of displaying HLA alleles.

Average mutation density in peptides predicted to be displayed by one or two of the 12 common HLA-A or HLA-B allele types. A. Mutation density in

peptides predicted to be displayed in patients by only one HLA allele. B. Mutation density in peptides predicted to be displayed in patients with two

displaying HLA alleles.

https://doi.org/10.1371/journal.pgen.1008227.g004
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UCEC, SKCM and PRAD for genes at 75%-100% expression percentile, depletion was seen for

UCEC and SKCM at other expression percentiles (S4 Fig).

As a negative control, we performed the same analysis for synonymous mutation density

within predicted-displayed MHC binding peptides relative to that outside predicted-displayed

peptides. The depletion ratios, which did not vary greatly from unity for any of the seven can-

cer types, were as follows: COAD, 0.97; BRCA, 0.96; THCA, 0.94; STAD, 0.96; UCEC, 0.99;

SKCM, 0.95; and PRAD, 1.00. For non-expressed genes, the corresponding results were:

COAD, 1.04; BRCA, 1.01; THCA, 1.03; STAD, 0.98; UCEC, 1.02; SKCM, 0.97; and PRAD,

1.00. Only for BRCA were there enough samples to separate mutations into the three catego-

ries, D0, D1 and D2, although even for BRCA only 8–10 mutations fell into the D2 category.

Still, the increased depletion that had been seen for D2 vs D1 and D0 when considering all can-

cer types together could be confirmed for BRCA (S5 Fig).

Discussion

In this study, we examined signatures of immune selection pressure on the distribution of

somatic mutations, quantifying the extent to which somatic mutations are significantly

depleted in peptides that are predicted to be displayed by MHC class I proteins, and character-

izing the dependence of this depletion on expression level. We also examined whether the

extent of immune selection pressure on somatic mutations depends on whether there are one

or two HLA alleles that can display the peptide. It is important to note that peptides, whether

displayed by class I MHC receptors or not, are subject to other forms of purifying selection.

This could be due to essentiality of encoded functions or immunogenicity arising by mecha-

nisms other than MHC class I display (e.g., MHC class II display [18]). Forms of purifying

selection that are independent of class I MHC display should tend to lower mutational density

in both displayed and non-displayed peptides. Although this phenomenon is expected to

shrink the observed absolute difference in mutational density between displayed and non-dis-

played peptides, it should not affect the relative difference.

Only expressed MHC binding peptides that can be displayed by at least one patient HLA

allele are immunogenic in terms of class I MHC display. In our analysis using the PCAWG

dataset, we found mutation densities to be similar for mutations within or out of the pre-

dicted MHC binding peptides when the gene was not expressed (Fig 1). That proteins must

be expressed to be antigenic is one explanation for the fact that many “likely-displayed”

mutations were nevertheless observed in a tumor. We also note that, although expression lev-

els were obtained from tumors of matched type, they were generally not taken from precisely

the same tumors for which we had somatic missense variant data. Thus, an explanation for

presence of a likely-displayed mutation in an apparently-expressed gene is that this gene is

not actually expressed in the specific tumor sample in which it appears. This could be due to

differences in environment, germline or somatic genetic background, or epigenetic escape

by silencing.

More refined estimates of the depletion effect in future studies might come from using

expression data from a specific patient tumor sample. We also noticed that at the 75-100th per-

centile of gene expression level, there are only weak or even no differences between nonsynon-

ymous and synonymous mutation density for several comparisons. It has been reported that

dN/dS diminishes in more highly expressed genes, presumably due to a tendency towards

heightened purifying selection for the function of highly expressed proteins in cancers [19,

20]. Our data is consistent with this phenomenon, considering only peptides that are not pre-

dicted to be displayed by MHC. Although it stands to reason that MHC display would provide

additional purifying selection, and indeed we see this for several comparisons, our statistical

Estimating somatic coding variant counterselection
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power to detect significant differences must necessarily decrease where there is reduced muta-

tional density in non-displayed peptides.

We note that the terms “in MHC binding peptides” and “out of MHC binding peptides”

were applied based on whether or not peptides were predicted to be displayed by at least one

of the 12 common HLA-A or HLA-B allele types. We expect to observe depletion of somatic

mutations out of MHC binding peptides if patients do not have a common displaying allele

type. This is because failure to display by any of the common alleles increases the chance that

there is display for another allele, e.g., one of the HLA-C alleles or less common HLA-A or

HLA-B allele types.

We expect that this information will be useful in building a model that predicts the antige-

nicity of any given missense mutation detected by whole genome or whole exome sequencing.

Although scores for observed mutations based on counter-selection of similar mutations may

over-estimate neoantigenicity (if a somatic mutation has been observed, it has obviously not

yet been cleared by the immune system), such scores could point to ‘cryptic immunogenicity’

of a somatic variant. In cases of cryptic immunogenicity, some therapies might enable immune

clearance of cancer cells by revealing this immunogenicity, e.g. by relieving tumor-derived

suppression of immune cells. The ability to score each observed somatic mutation in a specific

tumor for its potential to stimulate an immune response would therefore be potentially useful

in scoring tumors with greatest potential to benefit from immunotherapy. Similarly, improved

ability to predict which somatically mutated peptides are more likely to be neo-antigens could

potentially help in choosing peptides as personalized cancer vaccines to specifically stimulate

immune cells to recognize and specifically clear the patient’s tumor cells.

Our results also supported the idea that having two copies of the display-enabling allele is

more effective for peptide display than having just one copy. This could result from a gene-

dosage effect (i.e., incomplete dominance as suggested earlier). Alternatively, it could result

from monoallelic expression (MAE). MAE, the phenomenon that only one allele of a given

gene is expressed, is a frequent genomic event in normal tissues. MAE-derived silencing of

one or more HLA-encoded alleles could potentially cause failure to express MHC binding-

peptide-encoding genes, which may, in turn, alter the immunogenicity of somatic mutations.

A previous study showed that the genome-wide rate of MAE was higher in tumor cells than in

normal tissues, and the MAE rate was increased with specific tumor grade. Oncogenes exhib-

ited significantly higher MAE in high-grade compared with low-grade tumors [16, 21, 22].

The role of MAE in immunogenicity of cancerous cells is entirely unclear. Because HLA alleles

are known to be subject to MAE [16], it may be interesting in future studies to assess the

impact of MAE by comparing the mutation rates between homozygous (same alleles) and het-

erozygous (two different alleles) samples at HLA class I loci A and B respectively using the

allele-specific expression data. One example of a potential therapy that might emerge from this

study is that de-silencing (either global or targeted) could lead to the display of otherwise-cryp-

tic neo-antigens and therefore to immune clearance of cancerous cells, especially when used in

combination with current immunotherapy strategies. If we can better understand the interplay

between individual immune systems and the likelihood that cancer cells bearing specific

somatic mutations are cleared, we will gain insight into the therapeutic potential of MAE mod-

ulation. For example, if MAE can indeed limit peptide display efficiency, then therapies reduc-

ing MAE could potentially increase the efficiency of immune clearance of tumor cells.

With the analysis conducted here, we can begin to quantify the efficiency of immune clear-

ance of somatically mutated cells. For example, for somatic mutations in proteins expressed in

a given cancer type, the depletion ratios we observed were as low as 0.77 in the PCAWG data

and as low as 0.54 for TCGA data (in each case this was for expressed peptides predicted to be

displayed by an MHC receptor encoded by two copies of the same HLA allele). This result
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allows us to predict that cells bearing somatic mutations falling within DNA segments encod-

ing such peptides are cleared roughly 23–46% of the time by the immune system at tumor

stages that are earlier than those examined in PCAWG sequencing studies. Because any inac-

curacy in estimating protein expression levels or peptide display would be expected to dimin-

ish our ability to detect the depletion phenomenon, this estimate of immune clearance rate is

likely conservatively low.

Here, we did not consider finer-grained cancer subtypes (e.g., triple-negative BRCA).

Although such an analysis would be very interesting and could help identify immune-isolated

tumor types, it would require more samples with the requisite HLA type information to be

well-powered.

Methods

Obtaining catalogs of somatic variants in cancer samples

This study used two different collections of cancer-cell-derived somatic variants. First, we used

data from the Pan-cancer Analysis of Whole Genomes (PCAWG, May 2016 version 1.1) proj-

ect [23, 24], including 121,258 missense somatic cancer mutations in 10,745 genes detected

from 2,834 patient samples. The number of patient samples for each cancer type is shown in

S1 Table.

Second, we examined data downloaded from The Cancer Genome Atlas (TCGA) project,

obtaining 676,171 missense somatic cancer mutations in 18,106 genes detected from 5,213

patient samples (S2 Table). For TCGA data, we restricted ourselves to cancer types with more

than five samples, a known expression level for each gene in a tumor sample of broadly-

matched type, and HLA type information for each patient. We also examined 1,048,575 synon-

ymous mutations in 5134 samples as a control. Data were downloaded from Broad Institute

TCGA Genome Data Analysis Center (2016-01-28).

Mapping somatic variants to proteins

Protein sequences were downloaded using BioMart R package [25] based on the Ensemble

Protein IDs provided in PCAWG and TCGA datasets. Each missense mutation was mapped to

the corresponding protein based on the position of the mutation with respect to a given pro-

tein (Fig 5). Also, we validated that the wild type residue given for the mutation was found at

the corresponding position within the downloaded protein sequence.

Predicting peptides bound by class I MHC receptors

We used the NetMHC server, version 3.4 (13, 14) to predict MHC binding peptides associated

with 12 common HLA class I alleles: HLA-A�0101, HLA-A�0201, HLA-A�0301, HLA-A�2402,

HLA-A�2601, HLA-B�0702, HLA-B�0801, HLA-B�1501, HLA-B�2705, HLA-B�3901,

HLA-B�4001, and HLA-B�5801. For this study, NetMHC scores were obtained for MHC bind-

ing peptides of length nine (Although it is possible for peptides with 10 or 11 residues to bind,

this is less common and such cases are more difficult to predict). Also, only strong MHC class

I binding peptides with NetMHC affinity score of 50 or less were selected (smaller NetMHC

scores correspond to higher affinity).

Calculating the depletion of mutations within MHC class I binding

peptides

For each class of proteins and variants examined, we determined the total number of muta-

tions falling within and outside of predicted MHC binding peptide regions for each protein.
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To test for significant differences in proportions of counts in different groups of peptides, we

performed Fisher’s exact test using the “stats” package in R.

Estimating transcript expression levels

We estimated gene expression levels for TCGA patient samples using TCGA RNA-Seq data

[26]. Data were downloaded from Broad Institute TCGA Genome Data Analysis Center

(2016-01-28). The expression level of each gene for each cancer type was estimated using the

median expression level of that gene across all TCGA samples of that cancer type. Genes were

classified as detectably expressed (if the RNA-Seq by Expectation Maximization or RSEM nor-

malized expression value was greater than 0). Detectably expressed genes were grouped into

four expression quantiles according to the RSEM normalized expression value.

Classifying human leukocyte antigen (HLA) types

For PCAWG samples, the four-digit HLA type for 2834 patients was determined by a Bayesian

method ALPHLARD (BioRxiv; https://doi.org/10.1101/323766) and all HLA types are shown

in S3 Table. For TCGA samples, the four-digit HLA type of the 5213 TCGA patients was pre-

dicted using PolySolver [17].

Ethics statement

This study has been approved by the Research Ethics Committee of University of Toronto and

the NCBI dbGaP (the Database of Genotypes and Phenotypes) Authorized Access system,

project # 15046).

Supporting information

S1 Fig. a. MHC-display-dependent mutation densities for genes with different expression

levels using TCGA dataset. Blue bars indicate mutation density within the predicted MHC-

binding peptides. Red bars are the mutation density out of the predicted MHC-binding pep-

tides. Mutations were separated into five categories based on the expression levels of their

Fig 5. Predicting MHC-binding peptides and calculating mutation densities. Mutations within the MHC binding peptides are shown in blue dots,

and mutations out of the MHC binding peptides are shown in pink dots. Protein sequence are shown as yellow line.

https://doi.org/10.1371/journal.pgen.1008227.g005
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genes. b. MHC-display-dependent mutation densities for genes with different expression

levels, considering each TCGA patient’s HLA type. Blue bars are the mutation density

within the predicted patient-displayed MHC binding peptides. Red bars are the mutation

density out of the patient-displayed predicted MHC binding peptides. Mutations were sepa-

rated into five categories based on the expression levels of their genes.

(PDF)

S2 Fig. a. Exploring uncertainty in corrected mutation density ratio for TCGA mutations

in patient-displayed MHC binding peptides. Bootstrap resampling was used for both mis-

sense variants (left panel) and synonymous variants (right panel) Observed values are indi-

cated with a vertical dashed line. b. MHC-display-dependent mutation densities for genes

with different expression levels, considering the number of displaying HLA alleles. Aver-

age mutation density in peptides predicted to be displayed by one or two of the 12 com-

mon HLA-A or HLA-B allele types. A. Mutation density in peptides predicted to be displayed

in patients by only one HLA allele. B. Mutation density in peptides predicted to be displayed

in patients with two displaying HLA alleles.

(PDF)

S3 Fig. MHC-display-dependent synonymous mutation densities for genes with different

expression levels, considering each TCGA patient’s HLA type. Blue bars are the synony-

mous mutation density within the predicted patient-displayed MHC binding peptides. Red

bars are the synonymous mutation density out of the patient-displayed predicted MHC bind-

ing peptides. Synonymous mutations were separated into five categories based on the expres-

sion levels of their genes.

(PDF)

S4 Fig. MHC-display-dependent mutation densities for genes with different expression

levels in different cancer types. Blue bars are the mutation density within the predicted

patient-displayed MHC binding peptides. Red bars are the mutation density out of the patient-

displayed predicted MHC binding peptides. Mutations were separated into five categories

based on the expression levels of their genes.

(PDF)

S5 Fig. In breast cancer, MHC-display-dependent mutation densities for genes with differ-

ent expression levels, considering the number of displaying HLA alleles. Average mutation

density in peptides predicted to be displayed by one or two of the 12 common HLA-A or

HLA-B allele types. A. Mutation density in peptides predicted to be displayed in patients by

only one HLA allele. B. Mutation density in peptides predicted to be displayed in patients with

two displaying HLA alleles.

(PDF)

S1 Table. List of 37 different PCAWG cancer types with number of samples and mutated

genes of each cancer type.

(PDF)

S2 Table. List of 31 different TCGA cancer types with number of samples and mutated

genes of each cancer type.

(PDF)

S3 Table. HLA genotyping for PCAWG patients.

(TSV)
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