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Abstract

Genomic instability is a major driver of intra-tumor heterogeneity. However, unstable

genomes often exhibit different molecular and clinical phenotypes, which are associated

with distinct mutational processes. Here, we algorithmically inferred the clonal phylogenies

of ~6,000 human tumors from 32 tumor types to explore how intra-tumor heterogeneity

depends on different implementations of genomic instability. We found that extremely unsta-

ble tumors associated with DNA repair deficiencies or high chromosomal instability are not

the most intrinsically heterogeneous. Conversely, intra-tumor heterogeneity is greatest in

tumors exhibiting relatively high numbers of both mutations and copy number alterations, a

feature often observed in cancers associated with exogenous mutagens. Independently of

the type of instability, tumors with high number of clones invariably evolved through branch-

ing phylogenies that could be stratified based on the extent of clonal (early) and subclonal

(late) instability. Interestingly, tumors with high number of subclonal mutations frequently

exhibited chromosomal instability, TP53 mutations, and APOBEC-related mutational signa-

tures. Vice versa, mutations of chromatin remodeling genes often characterized tumors with

few subclonal but multiple clonal mutations. Understanding how intra-tumor heterogeneity

depends on genomic instability is critical to identify markers predictive of the tumor complex-

ity and envision therapeutic strategies able to exploit this association.

Author summary

Cancer is characterized by cells accumulating molecular alterations promoting specific

phenotypic features, such as uncontrolled proliferation and survival. Cancer cells some-

times exhibit a high number of such alterations, often driven by defects of the DNA

repair pathway or by external mutagens, such as tobacco smoking or UV-radiation.

Highly altered cells are termed genomically unstable. A major consequence of genomic

instability is that a single tumor is often composed by cells that have accumulated dis-

tinct alterations. This diversity is termed intra-tumor heterogeneity and represents a

critical clinical challenge. In this study, we examined how different forms of genomic

instability are associated with intra-tumor heterogeneity. We inferred intra-tumor
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heterogeneity in ~6000 human tumors and found that tumors with extreme mutational

or chromosomal instability were not the tumors with the highest number of clones.

Instead, tumors harboring both mutational and chromosomal alterations were the most

diverse. Furthermore, we identified specific genetic fingerprints that are associated with

early and/or late genomic instability. These results show that cancer genomic instability

does not necessarily lead to high intra-tumor heterogeneity and, importantly, they pro-

vide markers to recognize when it does.

Introduction

Cancer is a dynamic and ever-changing disease that mutates and evolves during its progression

[1]. While the transformation from healthy to malignant cell is characterized by a few selected

oncogenic alterations [2], genomic instability is frequently observed in formed tumors, where

it fuels the acquisition of novel molecular changes diversifying the cancer cell population [3].

As a result, each tumor is a composite of multiple clones, defined as groups of cells that are

genetically identical within each group, but different among them [4].

Genomic instability has been long considered a major driver of intra-tumor heterogeneity.

Multiple implementations of genomic instability have been identified and characterized in

tumors [5]. These differ by type of genetic lesions being accumulated, e.g. somatic mutations

[6] or copy number alterations [7], as well as by the extent of time and space throughout the

genome that is affected by these lesions [8], [9]. Importantly, recent studies have reported

diverse association between specific types of genomic instability and clinical outcome. In

particular, chromosomal instability was found indicative of worse prognosis in lung adenocar-

cinoma and other diseases [10], [11], even though tumors with extreme mutational or chromo-

somal instability were reported having better prognosis than less altered tumors in multiple

tumor types [6], [12–14]. Genomic instability therefore encompasses diverse molecular pheno-

types associated with distinct mutational processes and clinical outcome. Whether these phe-

notypes are associated with diverse extent and patterns of intra-tumor heterogeneity remains

an outstanding question.

Approaches based on single-cell profiles [15–18] or multiple biopsies of the same tumor

[19–21] have revealed a daunting diversity among cancer cells. Unfortunately, single-cell anal-

yses of tumors or profiling of multiple samples for each patient face technical and cost limita-

tions, thus large scale datasets of these types are currently limited for systematic investigations.

In response to these limitations, algorithmic approaches have been proposed to infer the clonal

composition of a tumor from the genetic profile of a single sample [22–26]. Using such tools,

different clonality and timing of emergence have been shown for specific therapeutically

actionable mutations [27] and an association has been found between intra-tumor heterogene-

ity and patients’ prognosis [28].

Here, we used computational inference of intra-tumor heterogeneity to explore its associa-

tion with genomic instability. Briefly, we collected data for 5,593 human cancer genomes from

32 tumor types profiled by The Cancer Genome Atlas (TCGA) (S1 Table) and inferred the

clonal composition of each tumor from its repertoire of somatic mutations and copy number

alterations. The resulting cohort of tumor clonal phylogenies allowed us to assess how intra-

tumor heterogeneity depends on diverse forms of genomic instability and whether these are

associated to specific genetic lesions or mutational signatures that can act as markers of the

underlying tumor complexity.

Pan-cancer associations between intra-tumor heterogeneity and genomic instability
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Results

To estimate intra-tumor heterogeneity in individual tumor samples from their repertoire of

somatic mutations and copy number changes, we used a combination of two algorithmic

approaches. First, we used ABSOLUTE [29] to integrate mutations and copy number changes

of each tumor and determine copy number statuses of mutated and wild-type alleles. Then, we

used PhyloWGS [24] to infer the clonal architecture of a tumor from its set of mutations and

copy number alterations. Briefly, PhyloWGS defines clones as groups of cells sharing muta-

tions with identical or similar variant allele frequencies (VAF) after accounting for the copy

number statuses of variant and wild-type alleles. Notably, this approach was validated on real

and simulated tumors exhibiting variable numbers of mutations and read-depths, including

cases in the range of the exome sequencing data used in this study [24]. To increase the robust-

ness of our results, we estimated the clonal structure of each TCGA tumor sample based on

the set of top scoring predictions made by multiple runs of PhyloWGS, each weighted by its

likelihood (see Methods).

Within the TCGA dataset, the inferred number of clones ranged between 1 and 28, with

95% of the cases having less than 8 clones (Fig 1A and S1 Table). Both the range of number of

clones and the ranking of tumor types by mean number of clones was in high agreement with

a previous study where a different algorithmic approach was used to infer intra-tumor hetero-

geneity on a smaller dataset [28]. Furthermore, molecular tumor subtypes often exhibited dis-

tinct intra-tumor heterogeneity (S1A Fig).

Both tumor purity and sequencing depth have been shown to affect the inference of tumor

clonality. In our dataset, tumor purity estimated by ABSOLUTE did not correlate with the esti-

mated number of clones (Spearman’s correlation coefficient, corS = -0.07, Fig 1B) indicating

that the combination of approaches here used are robust to variable tumor content. Con-

versely, estimated number of clones per tumor were positively correlated with the mean num-

ber of reads covering a mutated site (mean RMS) (corS = 0.39, Fig 1C) confirming that deep

sequencing is beneficial to detect rare variants and clones.

To assess the impact of variable mean RMS on our results, we first compared mean RMS

values among tumor types (S1B Fig). Cancer types with the lowest (cholangiosarcoma and

thymoma) and highest (ovarian and pancreatic cancer) mean RMS scored respectively among

the least and most heterogeneous (Fig 1A), suggesting their ranks could here depend on the

sequencing coverage. However, the overall ranking of tumor types by mean number of clones

was not strongly associated with the ranking by mean RMS (S1B Fig) and mean RMS values

were similar among the majority of tumor types. Next, we explored mean RMS within each

tumor type. The majority of tumor type exhibited only a moderate correlation between mean

RMS and inferred number of clones (60% had corS < 0.4, 85% had corS < 0.5), with the nota-

ble exception of acute myeloid leukemia (AML, corS = 0.75). Indeed, in AML, a subset of sam-

ples exhibited high clonal heterogeneity (>4 clones), a 2.5-fold increase of RMS, and a 15-fold

increase in number of mutations. Overall, these results suggest that caution should be taken

when comparing inferred intra-tumor heterogeneity among tumors with heterogeneous

sequencing coverage. Nonetheless, with the exception of a few tumor types, mean RMS were

rather similar among and within the tumor types that we analyzed and did not have a major

impact on mutation calling (correlation between mean RMS and number of mutation, corS =

−0.07) or on inferred clonal heterogeneity.

The rank of tumor types based on their mean number of clones (Fig 1A) bore a striking

resemblance with a previously reported rank based on mutation load [30], indicating that

most mutagenic tumor types are on average also the most clonally diverse. Indeed, the

inferred number of clones correlated with the total number of mutations per sample

Pan-cancer associations between intra-tumor heterogeneity and genomic instability
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(corS = 0.39, Fig 1D), even though the most frequently mutated tumor samples were not

the most clonally diverse. In addition, we found a positive correlation between the number

of copy number alterations and number of clones (corS = 0.26, Fig 1E). These results

indicate that intra-tumor heterogeneity can be driven by both mutational and chromosomal

instability.

To correlate the inferred number of clones with different forms of genomic instability, we

explored distinct highly mutagenic and chromosomally unstable tumor subtypes. High muta-

tion loads have been associated with exogenous carcinogens, such as tobacco smoking in lung

adenocarcinoma (LUAD) and UV radiation in skin melanoma (SKCM), as well as with defects

of the DNA repair machinery, such as mismatch repair deficiency in micro-satellite unstable

tumors (MSI) or specific mutations affecting the polymerase-ε encoding gene POLE. MSI and

especially POLE-mutant tumors in our dataset exhibited over one order of magnitude more

mutations than lung or melanoma tumors (Fig 2A—left panel), however they were character-

ized by fewer clones (Fig 2A—right panel). Similarly, when we compared stomach (STAD),

breast (BRCA), and serous endometrial (UCEC) tumors exhibiting high chromosomal

Fig 1. Number of clones in human tumors. A) Number of clones in human tumors within each tumor type. Tumor types are ranked by

median number of clones. The number of clones in each human tumor is the weighted mean of the number of clones obtained in the top

scoring PhyloWGS phylogenies for that sample. The thick central line of each box plot represents the median number of significant motifs, the

bounding box corresponds to the 25th–75th percentiles, and the whiskers extend up to 1.5 times the interquartile range. B-E) Correlation

between number of inferred clones by PhyloWGS (Y-axis) and tumor purity (B) inferred by ABSOLUTE, mean number of reads per mutated

sites (RMS) (C), number of mutations (D) and number of copy number altered segments (E) (X-axes).

https://doi.org/10.1371/journal.pgen.1007669.g001
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instability (CIN), we found that the subgroup with the least amount of copy number changes

(STAD) was the one inferred having the greatest number of clones (Fig 2B).

We previously reported that at the extreme of genomic instability tumors exhibit high num-

ber of mutations (e.g. MSI and POLE-mutant cases) or high numbers of copy number alter-

ations (e.g. serous endometrial cancer), but never both [31]. In our dataset, we could confirm

an inverse trend between the accumulation of copy number changes and somatic mutations

(Fig 2C). Interestingly, upon partitioning all samples based on the number and type of genetic

alterations (Fig 2C), we found that lung, melanoma, and CIN stomach cancer were over-repre-

sented in the class exhibiting a relatively high number of both mutations and copy number

changes (S2 Fig) and indeed these tumor types tend to exhibit high number of both type of

alterations, even though not as extreme as in other subtypes (Fig 2A and 2B).

Consistent with what we observed for these specific tumor subtypes, we found that tumors

exhibiting high numbers, yet not extreme, of both mutations and copy number alterations

were predicted being the most intrinsically heterogeneous (Fig 2D) and this trend was con-

firmed by an independent approach in a subset of our cohort (S3 Fig) [28]. Independently of

Fig 2. Genomic instability and intra-tumor heterogeneity. A) Number of mutations (left panel) and number of clones (right panel) in tumor

types and subtypes with high mutation instability. Samples are color coded by the their number of copy number changes, with high color

intensity corresponding to high number of events. B) Number of copy number altered segments (left panel) and number of clones (right panel)

in tumor types and subtypes with high chromosomal instability. Samples are color coded by the their number of mutations, with high color

intensity corresponding to high number of events. C) Total number of mutations (Y-axis) versus of copy number altered segments (CNA, X-

axis) for all tumor samples (n = 5593). Samples are grouped 4 classes: low numbers of mutations (<300) and CNA (<80) (gray), high number of

mutations (>300) and low number of CNA (<80) (M class, green), high number of CNA (>80) and low number of mutations (<300) (C class,

red), or high numbers of both mutations (>300) and CNA (>80) (MC class, orange). D) Number of clones in classes M, C, MC, and with Low

Instability. Samples are color coded by the their total number of alterations, with high color intensity corresponding to high number of events.

E) The mean number of clones increases (from cold to warm colors) in samples with relatively high numbers of both mutations and CNA. Axes

are normalized by the maximum of the logarithm of the number of mutations (Y-axis) and CNA (X-axis). Acronyms: LUAD: lung

adenocarcinoma, SKCM: skin melanoma, MSI: microsatellite instability, POLE: tumors with hotspot mutations of polymerase-ε gene, STAD:

stomach adenocarcinoma, BRCA: breast cancer, UCEC: endometrial cancer, CIN: chromosomal instability.

https://doi.org/10.1371/journal.pgen.1007669.g002
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the cut-offs used to partition our tumor dataset, we confirmed that the highest inferred num-

bers of clones were in tumors where both numerous mutations and copy number alterations

were concurrently observed (Fig 2E).

From clone sets to clonal architectures

To further characterize how intra-tumor heterogeneity emerged in our set of tumors, we

explored their inferred phylogenies, i.e. the ensemble of clone-to-clone relationships that

describe which clone descends from the others. Linear phylogenies are the result of the sequen-

tial generation of clones along the same lineage, i.e. the last clone is the product and summary

of all its predecessors. Conversely, in branching phylogenies multiple clones spur from the

same common ancestor, generating independent lineages that can evolve in distinct popula-

tions with little similarity from one another. Tumor phylogenies are typically combinations

of linear and branching evolution and they can be represented as connected graphs or trees
where clones are the nodes of the tree and two clones are connected if one descends from the

other. According to this representation, the first emerged clone is the root of the tree, while

clones emerging last without descendants are the leaves. Intuitively, the more branching a phy-

logeny, the closer each leaf will be to the root, conversely perfectly linear phylogenies will have

only one leaf at the maximal possible distance from its root. We formalized this intuition and

quantify each phylogeny with the following score:

Tree score ¼ 1 �

1

L

X

l
dðl; rootÞ

N � 1

where L is the total number of leaves, N the total number of clones, and d(l, root) is the length

of the path connecting a leaf l to the root of the tree. Based on this definition, all linear phyloge-

nies will obtain a score equal to 0, while the Tree score will increase with its degree of branch-

ing and number of branching nodes (Fig 3A).

Tree scores computed for our tumor cohort indicated that branching phylogenies were

almost invariably observed as the number of clones increased. In tumor predicted having

more than 5 clones, linear phylogenies or phylogenies with minimal branching (i.e. linear phy-

logenies with only two branching leaves) were almost never observed (Fig 3B). Importantly,

this association was independent of the type of genomic instability (S4A Fig). Notably, as for

the number of clones, genomically unstable tumor subtypes exhibiting high numbers of both

copy number alterations and mutations were associated with higher Tree score than tumors

with extreme numbers of exclusively one type of alteration (S4B Fig). Within each tumor type,

patients with Tree scores above the average did not show significantly different survival, except

in 4 tumor types were a consistent trend was observed. Indeed, in all 4 cancer types, patients

with high Tree scores exhibited on average 4 or more clones and were associated with better

prognosis (S5A–S5D Fig), consistent with previous observations made on a subset of the

TCGA cohort [28]. A stratification of patients based on low (<0.3) and high (>0.6) Tree scores

confirmed that patients with high Tree scores had higher median overall survival than patients

with low Tree score in the majority of the tumor types (S5E Fig).

Branching phylogenies have been previously reported to be associated with the clonal

expansion that characterizes tumor progression, rather than initiation [32]. To verify this asso-

ciation, we used a previously proposed mathematical model of tumor progression [33] based

on two parameters: the mutation rate μ and fitness s (see Methods). Briefly, at each iteration

cells can either replicate or die with complementary probabilities that depend on the number

of driver mutations k and the fitness parameter s (the higher k and s, the higher the probability

of replicating). Replicating cells will acquire a mutation with probability μ, and such mutation

Pan-cancer associations between intra-tumor heterogeneity and genomic instability
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will be considered a driver with probability Kμ (here K = 0.025). Using this model, we simu-

lated and characterized the evolution of approximately 40,000 simulated tumors spanning a

wide range of evolutionary parameters (μ and s) (see Methods). Observed number of clones

and Tree scores of the simulated tumors were remarkably concordant with the inferred values

in the human cohort (Fig 3C), confirming that high intra-tumor heterogeneity emerging dur-

ing exponential growth gives rise to branching phylogenies.

The model that we adopted allows the emergence of mutations improving the cell fitness

(i.e. driver) and, thus, it mimics tumor evolution under selection. However, it has been pro-

posed that a fraction of human tumors displays features that can be explained exclusively by

neutral evolution [34]. In our dataset, we detected samples with such features across all tumor

types (S5F Fig). Interestingly, in 8 distinct tumor types we found that tumors exhibiting fea-

tures of neutral evolution had significantly higher Tree scores than tumors without such fea-

tures (Fig 3D), whereas the opposite association was never observed. This trend was confirmed

in the pan-cancer cohort (Fig 3E) and suggests that neutral evolution could foster intra-tumor

heterogeneity and the emergence of branching lineages.

Fig 3. Linear and divergent evolution for low and high number of clones. A) Example of Tree score values for phylogenies with 5 clones. The

Tree scores increase with increasing divergence. B-C) Tree score as a function of the number of clones observed in human (B) and simulated

(C) tumors. Divergent phylogenies can emerge when at least 3 clones are detected (blue dotted line). The range of Tree scores for phylogenies

with more than 3 clones goes from a minimal divergence value (green line) to a maximal divergence value (red line). Points are colored to reflect

point density with cold colors for low density and warm colors for high density. D) Box plot comparison of Tree scores in samples exhibiting

features of neutral evolution (R2 model fit> 0.98, black) and samples that do not exhibit such features (R2 model fit< 0.98, red) in individual

cancer types that where the difference was significant (FDR< 0.2, left) and across the whole dataset (right). Acronyms: PAAD: pancreatic

adenocarcinoma, LUAD: lung adenocarcinoma, STAD: stomach adenocarcinoma, BRCA: breast cancer, CHOL: cholangiosarcoma, LUSC: lung

squamous-cell cancer, OV: ovarian cancer, CRC: colorectal cancer.

https://doi.org/10.1371/journal.pgen.1007669.g003
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Clonal and subclonal genomic instability

Tumor phylogenies allow to explore the temporal emergence of individual or groups of muta-

tions. In particular, previous characterizations of tumor phylogenies have focused on the

dichotomy between clonal and subclonal mutations [10], [27], [35]. Clonal mutations are pres-

ent in all cancer cells and are typically considered early events. Subclonal mutations emerge

later during tumor evolution and thus characterize only individual or subsets of clones. Start-

ing from this premise, we quantified the number of clonal and subclonal mutations for each

tumor in our dataset, and explored whether different types of genomic instability are them-

selves early or late emerging events.

In our tumor phylogenies, clonal mutations are grouped in the root, which corresponds

to the oldest detectable clone and it documents, at least in part, the previous history of the

tumor. The root could either represent the first clone that underwent clonal expansion or the

last one able to outcompete all previous clones, typically in association with an evolutionary

bottleneck where cells undergo strong selective pressure (e.g. therapeutic intervention or meta-

static migration).

Tumor types in our human dataset exhibited a variable average number of clonal muta-

tions, with most of them ranging between 30 to 60% of their total number of mutations (Fig

4A and S1 Table). Cancers that exhibited the highest extent of intra-tumor heterogeneity, such

as lung, bladder, and stomach cancers, were characterized by high numbers of both clonal and

subclonal alterations indicating that genomic instability is here emerging early and continues

to evolve as the tumor progresses. An interesting exception was skin melanoma which was

characterized by the highest number of clonal mutations, consistent with all of these samples

being metastatic and not primary tumors (Fig 4A). In this case, the root of the tumor phylog-

eny is likely to represent the clone that was able to migrate from an advanced primary tumor

and seed the metastasis.

Next, we explored whether the emergence and selection of genomic alterations were asso-

ciated with the extent of clonal and subclonal mutations. First, we estimated within each

patients which mutational processes (or mutational signatures) could explain the emergence

of the observed patterns of mutations [36], [37]. For each tumor type, we compared the

numbers of clonal and subclonal mutations in patients exhibiting a given signature and in

patients that did not (Fig 4B, S2 Table). As expected, the UV light signature (S7) was strongly

associated with melanoma patients with high number of clonal mutations, consistent with

these been mostly metastatic samples and characterized by high numbers of clonal events.

Signatures characteristic of tumor subtypes with a high mutation load were associated with

high numbers of both clonal and subclonal mutations. For example, lung and head neck can-

cer patients exhibiting a signature associated with tobacco smoking (S4) had higher number

of both clonal and subclonal mutations than patients with smoke unrelated tumors, even

though in lung squamous-cell cancer only the different numbers of clonal mutations reached

statistical significance (FDR < 0.1). Similarly, DNA repair deficiencies, such as double strand

break repair (DSB, S3) in breast and ovarian cancer, or mismatch repair (MMR, S6 and S20),

in colorectal and stomach cancer were associated with higher number of both clonal and

subclonal mutations. Interestingly, colorectal and stomach cancer patients exhibiting a sig-

nature of unknown etiology (S21) but associated with microsatellite instability (MSI) had sig-

nificantly higher numbers of clonal, but not subclonal, mutations than patients without such

signature. Finally, patients exhibiting signatures of APOBEC-associated mutagenesis (S13

and S2) had higher numbers of subclonal mutations in diverse tumor types, except for meta-

static melanoma, consistent with this mutational process occurring late in tumor develop-

ment [27].

Pan-cancer associations between intra-tumor heterogeneity and genomic instability
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Fig 4. Clonal and subclonal genomic instability. A) Mean clonal and subclonal mutations found in each tumor type. For each tumor type we

report: mean number of clonal mutations (blue line), mean number of subclonal mutations (height of the red triangle), mean Tree score (base

width of the red triangle), and mean Tree score variance (shade of red within the triangle: intense red corresponds to high variance, transparent

red corresponds to low variance). B) Statistical significance of the difference between the numbers of clonal (X-axis) and subclonal (Y-axis)

mutations in patient exhibiting a specific mutational signature (S, n = 22) in each tumor type. Signatures of known etiology that scored as

significant (p-value< 0.003, FDR< 0.1) in at least 2 tumor types are labeled and color coded based on their etiology, all other significant

signatures are in black. Signatures below the significance threshold are in gray. C) Statistical significance of the difference between the numbers

of clonal (X-axis) and subclonal (Y-axis) mutations in patient exhibiting a specific alteration (n = 505) in each tumor type. Significant alterations

(p-value< 0.001, FDR< 0.25) are color coded based on their type as described in the legend. Alterations below the significance threshold are in

gray. Acronyms: TGCT: testicular cancer, THCA: thyroid cancer, PCPG: pheochromocytoma / paraganglioma, PRAD: prostate cancer, UVM:

uveal melanoma, KICH: kidney chromophobe cancer, LGG: low grade glioma, AML: acute myeloid leukemia, PAAD: pancreatic

adenocarcinoma, THYM: thymoma, MESO: mesothelioma, OV: ovarian cancer, KIRP: kidney papillary cancer, ACC: adrenocortical cancer,
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Then, we performed a similar analysis to test whether the selection of ~500 cancer-associ-

ated mutations and copy number alterations [38] was associated with a high number of clonal

or subclonal mutations (S2 Table). Surprisingly, alterations that were associated with a higher

number of subclonal, but not clonal, events, included for the most part copy number changes

(67%), especially in sarcomas, breast and ovarian cancers, and TP53 mutations, in lung adeno-

carcinoma, low grade glioma, and breast cancer (Fig 4C). Alterations associated with high

number of clonal, but not subclonal, events were instead prevalently recurrent mutations

(87%), mostly occurring in colorectal and stomach cancer, and skin melanoma. Interestingly,

these mutations were enriched for events targeting chromatin remodeling factors such as

SWI/SNF components PBRM1, ARID2, ARID1A, and ARID1B, lysine methyltransferase

KMT2D, and histone acetyltransferase CREBBP (Fig 4C). Finally, highly recurrent mutations

in MSI tumors, such as those affecting RNF43 and BRAF in gastric cancers [39], [40] were asso-

ciated with high number of clonal and subclonal mutations, consistent with MSI tumors hav-

ing a higher mutational load than micro-satellite stable tumors.

Overall, mutational signatures and cancer-associated alterations further highlighted that

distinct patterns of genomic instability are associated with different extents of intra-tumor

heterogeneity.

Discussion

Intra-tumor heterogeneity is intrinsically difficult to measure as a limited portion of a tumor is

typically accessible for molecular analyses, providing only a static snapshot of a disease in con-

stant evolution. Computational techniques can help to infer tumor progression, extract shared

evolutionary patterns through the analysis and comparison of large-scale sample cohorts, and

predict the missing pieces of an otherwise incomplete picture. Nonetheless, these approaches

often have limited power, especially if relying only on whole-exome sequencing of single sam-

ples, they depend on sequencing coverage and mutation calling, and still mostly rely on genetic

data to infer clonal diversity. Based on a simple comparison of different tools that were applied

to the same tumors, we observed that results on individual cases are often inconsistent, how-

ever, trends derived from the whole set of samples were reproducible.

In this study, we combined two different methods that used both mutation and copy num-

ber data to explore the association between intra-tumor heterogeneity and diverse forms of

genomic instability. Surprisingly, tumors with the highest alteration burden were not found to

be the most heterogeneous. Indeed, both mutational instability associated with DNA repair

deficiencies and high chromosomal instability (CIN) were associated with less intra-tumor

heterogeneity than instability associated with exogenous mutagens (e.g. tobacco smoke and

UV-radiation). In particular, the most heterogeneous tumors were those concurrently exhibit-

ing high, yet not extreme, numbers of mutations and copy number alterations. This molecular

phenotype was common in lung and skin melanoma, but also bladder, head and neck and CIN

stomach cancer (S2 Fig), and could represent a marker of high intra-tumor heterogeneity.

Tumors likely undergo multiple phases of clonal expansions and diversification punctuated

by evolutionary bottlenecks (e.g. therapeutic intervention or nutrients depletion) where only

one or a few clones harbor the necessary molecular features to survive. Computationally

inferred phylogenies from single samples are thus likely representative of one such phase, but

BRCA: breast cancer, GBM: glioblastoma, LIHC: liver cancer, UCS: uterine carcinosarcoma, SARC: sarcoma, CESC: cervical cancer, DLBC:

diffuse large B-cell lymphoma, HNSC: head and neck squamous-cell cancer, LUAD: lung adenocarcinoma, CHOL: cholangiosarcoma, BLCA:

bladder cancer, ESCA: esophageal cancer, CRC: colorectal cancer, LUSC: lung squamous-cell cancer, STAD: stomach adenocarcinoma, UCEC:

endometrial cancer, SKCM: skin melanoma.

https://doi.org/10.1371/journal.pgen.1007669.g004
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cannot capture the whole evolutionary history of the disease. This was nicely evidenced by the

analysis of metastatic skin melanoma, where the large numbers of clonal mutations likely

resulted from the development and progression of heterogeneous primary tumors, out of

which a clone was able to seed the metastasis. Within this context, the distinction between

clonal and subclonal mutations, provided us with a simple but useful means to explore the

early versus late emergence of genomic instability. However, tumor phylogenies were here

inferred from a single sample from each tumor, hence mutations that appeared as clonal,

might actually be only “locally clonal”, i.e. different regions of the same tumor might not

exhibit such mutations or exhibit them only in a fraction of cells.

Overall, tumors with greatest intra-tumor heterogeneity exhibited high numbers of both

clonal and subclonal mutations, suggesting that genomic instability emerged early, but was

sustained and fostered during tumor evolution. An interesting case was represented by gastric

tumors with microsatellite instability (MSI). MSI tumors are associated with mismatch repair

deficiency, which has been associated with multiple signatures (S6, S20, S15, S21, and S26)

[41]. Nonetheless, the extent of clonal and subclonal mutations associated with these signa-

tures were different, especially between signatures S6 and S21 (Fig 4B), potentially suggesting

the existence of distinct MSI subtypes associated with different mutational processes. On the

other hand, we found that chromosomal instability characterized by multiple copy number

changes and TP53 mutations, was often accompanied by multiple subclonal mutations con-

firming previous observations in glioma [42] and extending them to other tumor types. More-

over, amplification of TP53 inhibitory proteins MDM2 (12q15) and MDM4 (1q32) and

deletion of the MDM2 inhibitor ARF (CDKN2A, 9p21) exhibited a trend for being associated

with high numbers of subclonal mutations in 8 tumor types (p value < 0.1, S2 Table). Interest-

ingly, while TP53 mutations or alterations in the p53 pathway are invariably observed in chro-

mosomally unstable tumors [31], only few other mutations have been reported as recurrent in

these tumor subtypes, suggesting these multiple subclonal events might be only a “passenger”

byproduct of p53 deficiency.

Targeted sequencing of cancer-associated variants is empowering clinicians with the ability

to tailor therapeutic protocols to the genetic fingerprint of each tumor. These decisions how-

ever often rely on a single and potentially incomplete observation. While single-cell sequenc-

ing or multiple sampling of the same tumor are still for the most part unfeasible in the clinic,

the identification of tumors at “high-risk” of intra-tumor heterogeneity could provide a means

to better prioritize patients likely to benefit from additional analysis and profiling. Genomic

instability has been often proposed as a major driver of intra-tumor heterogeneity and, thus, as

a potential marker of its extent. Our study delved into the diverse implementations of such

instability and characterized their potential to anticipate low or high intra-tumor heterogene-

ity. With a more comprehensive understanding of the risks and vulnerabilities posed by highly

unstable genomes, strategies can be envisioned to exploit these phenotypes to control intra-

tumor heterogeneity and enhance therapeutic response.

Materials and methods

TCGA cohort

Molecular data for the tumor types analyzed in this study has been collected from the FireHose

(https://gdac.broadinstitute.org/) and cBioPortal (Cerami et al., 2012) (http://www.cbioportal.

org/) data repositories for The Cancer Genome Atlas (TCGA). Mutation files (MAF format)

and copy number segmentation files used for the analyses in this manuscript are available at

https://zenodo.org/record/1404658#.W4VNVJMzbOQ. Reported numbers of mutations per
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sample (S1 Table) include all variants, reported numbers of copy number alterations corre-

spond to the number of segment with copy number value > 0.3 (gain) or < -0.3 (loss).

Software

Inference of tumor phylogenies: PhyloWGS [24], numerical procedure and scoring.

PhyloWGS is a method to infer evolutionary relationships between clonal subpopulations

based on variant allele frequencies of point mutations and taking into account copy number

alterations at the mutated loci. PhyloWGS provides in output detailed phylogenies represent-

ing the clonal evolution, thus inferring the clonal architecture and not only the clonal compo-

sition of each tumor. In particular, PhyloWGS does not provide a unique tree representing the

phylogenetic evolution of the tumor, but a number of trees, each scored by its complete-data

log likelihood. For each sample, we run 10 inference procedures with different seeds and we

kept the 50 trees with the highest complete-data log likelihood for each run for a total of 500

phylogenies for each human tumor. We then sorted all the trees by log-likelihood and kept the

top 10% (50 trees) for further analysis. For the reduced list of trees, we assigned a score Si
50

to

each tree i according to:

Si
50
¼

CDLLi
50
� minðCDLL50Þ

maxðCDLL50Þ � minðCDLL50Þ

where CDLLi
50 is the complete-data log likelihood of the tree i and min(CDLL50) (resp. max

(CDLL50)) is the minimum (resp. maximum) complete-data log likelihood value within the

reduced set of trees. For each sample, we computed the weighted average number of clones

and weighted average Tree score as follows:

Clones ¼
1

P50

i¼1
Si

50

X50

i¼1
Si

50
Ci

Tree score ¼
1

P50

i¼1
Si

50

X50

i¼1
Si

50
Ti

where Ci is the number of clones and Ti the Tree score for the tree i as defined in the main

text.

Accuracy of PhyloWGS. PhyloWGS accuracy depends on both the number of mutations

and the sequencing read depth. In the original publication, PhyloWGS was applied to synthetic

data with known clonal structures to test whether the method was able to recover the true

number of clones based on the number of mutations and the read depth. Based on their results,

we extract threshold lines for different number of clones in the population separating regions

where the reconstruction is accurate and where it is not (S6 Fig). For tumors falling above the

threshold line, the reconstruction is considered accurate, whereas below the threshold line the

number of clones is likely to be overestimated. The vast majority of the TCGA samples we ana-

lyzed are in the region of accurate phylogenetic reconstruction. A few cases with high hetero-

geneity (number of clones> 6) fall slightly below the threshold line indicating a potential

overestimation of one clone. While PhyloWGS was designed for whole genome data, the

authors demonstrated that it did not necessary require thousands of mutations from whole

genome but instead could provide accurate reconstruction for number of mutations and read

depth similar to those from TCGA dataset. We used PhyloWGS with the default parameters.

Absolute. We used ABSOLUTE [29] to estimate the copy number status of each point

mutation. Originally, ABSOLUTE was designed to infer purity and ploidy of tumor samples,

but it also returns information on the copy number status of point mutations when a list of
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mutations is provided as input. ABSOLUTE reports multiple possible solutions and often

manual curation is required to select the best among the top ones (personal communication).

For this reason, in this study we relied on TCGA samples with purity and ploidy values previ-

ously reported by the authors of the original publication. We independently ran ABSOLUTE

on all samples and for each sample i selected the solution that minimizes:

ðPurabs
i � PurTCGA

i Þ
2
þ ðPloabs

i � PloTCGA
i Þ

2

where (Purabs
i, Ploabs

i) is the purity and the ploidy obtained from our ABSOLUTE runs and

(PurTCGA
i, PloTCGA

i) is the purity and the ploidy previously reported for the sample i.

Modeling cancer evolution

To model cancer evolution, we rely on the model proposed by Bozic et al. [33]. This model is a

discrete time Galton-Watson branching process in which cells can at each time step either rep-

licate (with a probability b) or die (with a probability d). During the replication, one of the two

daughter cells can acquire a new alteration with a probability μ. If an alteration occurs, this can

be of two types: a driver alteration confers to the cell a selective advantage by reducing its prob-

ability to die, while a passenger mutation has a neutral effect. The probability to die of a cell i
that has accumulated k driver mutations, dk

i is given by:

dk
i ¼

1

2
ð1 � sÞk

where s is the fitness parameter. According to the previous equation, the replication probabil-

ity for the cell i with k mutations is bk
i = 1 − dk

i. μ and s are the input parameters of the model

and remain the same during the simulation and for all cells. The probability to die will change

during the simulation depending on the number of accumulated driver alterations.

Given the available mutation data for human samples is limited to the exome, we esti-

mated the mutation rate across multiple tumor types by assessing the number of mutations

per nucleotide of the coding genes in the TCGA cohort. In our dataset, the number of muta-

tions per nucleotide ranged between 7x10-8 to 10−4 (assuming an exome length equal to

6x107, corresponding to ~2% of the genome length). Accordingly, we generated simulation

with μ 2 [10−7 − 10−3], which covers the estimated range in human tumors allowing for even

higher mutation rate values. Similarly, variable fitness values have been previously proposed

ranging between 0.0001 and 0.1 [43], [44]. In our simulations we reflected this variability set-

ting s 2 [10−4 − 5x10-1]. Finally, the probability for a new mutation to be a driver is defined

as μ x K, with K = 0.025, chosen based on an estimation of 500 cancer associated alterations

(e.g. as in COSMIC Cancer Census: http://cancer.sanger.ac.uk/census).

In our analyses, after each replication step, if no alteration has occurred then the two daugh-

ter cells will remain in the same clone, otherwise the sibling with the new alteration will create

a new clone. Importantly, a new clone is formed whether the new alteration is a driver or a pas-

senger. To calculate the mean number of clones and Tree score, only clones with a number of

cells greater or equal to 1% of the total population are retained. This is in accordance with the

fraction of sequencing reads typically required by cancer exome sequencing studies to retain a

somatic mutation (S7 Fig). The model of clonal evolution is implemented in Python, using the

ETE environment.

Statistical tests

Enrichment analysis of mutational signatures and number of clonal and subclonal

mutations. A score was derived for each patient and each mutational signature using the
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deconstructSig algorithm [37]. The score returned by this tool is proportional to the fraction

of mutations that can be explained by the given signature normalized between 0 and 1. The

tool was used with default parameters and using the exome2genome normalization as sug-

gested by the authors (see https://github.com/raerose01/deconstructSigs). Next, we set all

scores greater than 0 to 1, thus to obtained a binary matrix with signature calls for each patient:

m[i,j] = 1, if patient i exhibit signature j, m[i,j] = 0, otherwise.

The association between signatures and the number of clonal and subclonal mutations

observed in a tumor sample was tested by Wilcoxon one-tailed test: for each signature we

tested whether tumors that exhibit the signature had a higher number of clonal (subclonal)

mutations than tumors that did not. Each tumor type was tested separately and false discov-

ery rate was controlled independently in each tumor type. Signatures were scored based on

the -log10 of their p-value (Fig 4B), and signatures with a score > 2.5, which guaranteed a

FDR < 0.1 in all tumor types, were retained as significant.

Enrichment analysis of selected alterations and number of clonal and subclonal muta-

tions. For this analysis, we used a set of 505 cancer associated recurrent mutations and copy

number alterations that we previously derived [38] and available at http://ciriellolab.org/select/

select.html. This alteration set is formatted as a binary matrix such that: m[i,j] = 1, if patient i

exhibit the alteration j, m[i,j] = 0, otherwise. Based on this binary matrix representation, we

tested whether tumor exhibiting a given alterations had a higher number of clonal (subclonal)

mutations using a Wilcoxon one-tailed test. Alterations were tested and scores using the

same procedure we adopted for mutational signatures and retained as significant if their

score > 3 (p-value < 0.001).

Survival analysis. Survival analysis was performed using the Python package lifelines
(https://doi.org/10.5281/zenodo.1252342). P-values were computed by log-rank test.

Supporting information

S1 Fig. A) Tumor types and B) tumor subtypes ranked by the median of the mean reads

per mutated site (mean RMS) of each sample (blue dots). The thick central line of each

box plot represents the median number of significant motifs, the bounding box corresponds to

the 25th–75th percentiles, and the whiskers extend up to 1.5 times the interquartile range.

(PDF)

S2 Fig. For each tumor type, the number of altered copy number segments (X-axis) and

the number of mutations (Y-axis) in each sample are compared by scatterplot. Samples are

classified and color coded based on having more or less than 80 altered copy number segments

(vertical blue line) and more or less than 300 mutations (horizontal blue line).

(PDF)

S3 Fig. Number of clones estimated by EXPANDS in classes M, C, MC, and Low Instability.

Samples are color coded by the their total number of mutations, with warm colors correspond-

ing to high number of events. Samples with the highest number of mutations (red dots) have

highest numbers of clones, consistent with the reported bias of EXPANDS for predicting high

number of clones in tumors with high number of mutations.

(PDF)

S4 Fig. A) Tree score as a function of the number of clones. From left to right, samples belong-

ing to the MC (orange), M (green), and C (red) class are highlighted. The remaining samples

are in the background (grey). B) Boxplot comparison of Tree scores in tumor samples with

mutational instability (LUAD, SKCM, MSI, and POLE) and chromosomal instability

(UCEC_CN High, BRCA Basal, STAD CIN). The thick central line of each box plot represents
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the median number of significant motifs, the bounding box corresponds to the 25th–75th per-

centiles, and the whiskers extend up to 1.5 times the interquartile range.

(PDF)

S5 Fig. A-D) Kaplan-Meier curves comparing overall survival of patients from the pancreatic

(A), liver (B), renal clear cell (C), and squamous-cell esophageal (D) cancer cohorts. Patients

are stratified based on their Tree score being above (high, red curve) or below (low, black

curve) the mean Tree score value of the corresponding tumor type. For each group, we report

the corresponding mean number of clones and mean Tree score. Log-rank p-values are

reported in bracket below the tumor type acronym. E) For each tumor type, we compared the

percentage of surviving patients at the median time point (median follow-up of the cohort) for

patients with high (>0.6) and low (<0.3) Tree scores. Each bar is the difference between these

two values, positive values are in red (higher survival in high Tree score group), negative values

in black (higher survival in low Tree score group). F) Boxplot comparison of R2 model fit

value among tumor types. Samples with R2 model fit values above 0.98 (red line) are consid-

ered exhibiting features of neutral evolution.

(PDF)

S6 Fig. Assessment of the accuracy of phylogenetic reconstruction using TCGA dataset.

Scatter plots for the average number of reads per mutation and number of mutations per clone

for: A) Inferred number of clones less than 3. B) Inferred number of clones equal to 3. C)

Inferred number of clones equal to 4. D) Inferred number of clones equal to 5. E) Inferred

number of clones equal to 6. F) Inferred number of clones greater than 6. The dashed lines rep-

resent the threshold line of exact subclonal reconstruction using synthetic data [24]. Samples

above the threshold are correctly reconstructed. Points are color coded by density with low

number of samples in blue and high number of samples in red.

(PDF)

S7 Fig. Estimation of the detection threshold. Rank plot of the variant allele frequencies

(VAF) of point mutation in TCGA dataset. No mutations are observed with a VAF lower

than 1%.

(PDF)

S1 Table. Properties of the tumor samples.

Column 1—Tumor sample name

Column 2—Tumor type

Column 3—Tumor subtype

Column 4—Mean number of reads per mutated site

Column 5—Number of mutations

Column 6—Number of copy number altered segments

Column 7—Top scoring phylogenies mean number of clones

Column 8—Top scoring phylogenies mean Tree score

Column 9—Top scoring phylogenies mean number of clonal mutations

Column 10—Top scoring phylogenies mean number of subclonal mutations

Column 11—TCGA curated tumor sample purity
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Column 12—ABSOLUTE inferred tumor sample purity.

(XLSX)

S2 Table. Signature and alteration enrichment analysis for clonal and subclonal mutations.

Tab 1: Signature enrichment results

Tab 2: Alteration enrichment results

Column names are consistent in both tabs:

Column 1—Signature ID (Tab 1) / Alteration ID (Tab 2)

Column 2—Association with the number of clonal mutations (Wilcoxon p value)

Column 3—Association with the number of subclonal mutations (Wilcoxon p value)

Column 4—Tumor type where the test was made

Column 5—Class: C, patient exhibiting the signature/alteration have significantly more clonal

mutations, S, patient exhibiting the signature/alteration have significantly more subclonal

mutations, CS, patient exhibiting the signature/alteration have significantly more clonal

and subclonal mutations.

(XLSX)
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