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Abstract

As a universal energy generation pathway utilizing carbon metabolism, glycolysis plays an

important housekeeping role in all organisms. Pollen tubes expand rapidly via a mechanism

of polarized growth, known as tip growth, to deliver sperm for fertilization. Here, we report a

novel and surprising role of glycolysis in the regulation of growth polarity in Arabidopsis pol-

len tubes via impingement of Rho GTPase-dependent signaling. We identified a cytosolic

phosphoglycerate kinase (pgkc-1) mutant with accelerated pollen germination and compro-

mised pollen tube growth polarity. pgkc-1 mutation greatly diminished apical exocytic vesic-

ular distribution of REN1 RopGAP (Rop GTPase activating protein), leading to ROP1 hyper-

activation at the apical plasma membrane. Consequently, pgkc-1 pollen tubes contained

higher amounts of exocytic vesicles and actin microfilaments in the apical region, and

showed reduced sensitivity to Brefeldin A and Latrunculin B, respectively. While inhibition of

mitochondrial respiration could not explain the pgkc-1 phenotype, the glycolytic activity is

indeed required for PGKc function in pollen tubes. Moreover, the pgkc-1 pollen tube pheno-

type was mimicked by the inhibition of another glycolytic enzyme. These findings highlight

an unconventional regulatory function for a housekeeping metabolic pathway in the spatial

control of a fundamental cellular process.

Author summary

Glycolysis, which breaks down glucose to produce energy, has long been considered a

“housekeeping” pathway in living cells, i.e., it helps maintain basic cellular functions.

Here, we found that the glycolysis pathway plays an unconventional regulatory role in cell

polarity, i.e., the intrinsic asymmetry in the shape, structure, and organization of cellular

components. Mutation in the gene encoding the glycolytic enzyme cytosolic phosphoglyc-

erate kinase (PGKc) leads to swollen and shorter pollen tubes in Arabidopsis thaliana,

which is associated with the over-activation of Rho GTPase—a master regulator of cell

polarity. Our results suggest that this phenomenon is caused by a specific regulatory role
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of cytosolic glycolysis rather than the global energy supply or moonlighting functions of

glycolytic enzymes that modulate pollen tube growth polarity. Our findings shed light on

the diverse biological roles of glycolysis in plants beyond simple “housekeeping”

functions.

Introduction

Glycolysis, which generates two ATP from each glucose molecule and produces two pyruvate

molecules to fuel the mitochondrial tricarboxylic acid cycle, is a central enzymatic process in

carbon metabolism. In addition, glycolysis also produces metabolic intermediates and reduced

cofactors for secondary metabolism, as well as amino acid and fatty acid biosynthesis [1, 2].

Recent studies have hinted at a role for energy in the regulation of cellular processes indepen-

dent of the housekeeping function. For instance, aldolase, a glycolytic enzyme, acts as a sensor

of glucose availability in mammalian cells, and represses the energy sensing AMP-dependent

kinase (AMPK) pathway, which is known to coordinate cell growth, metabolism, and cell

polarity [3–6]. Therefore, glycolysis may play a regulatory role in determining cell polarity reg-

ulation, although direct evidence for this role is lacking thus far.

Polarized cell growth is a conserved cellular process shared by many diverse systems in

eukaryotic species, such as the mating tubes in budding yeast, cell growth and morphogenesis

in fission yeast and filamentous fungi, axon outgrowth in animals, and root hair and pollen

tube formation in plants. Pollen tubes are a well-established and favorite model system for

studying cell polarity formation and polar cell growth [7]. Pollen tubes are among the most

rapidly extending polarized cells, growing at rates of up to 250 nm per second [8]. The rapid

tip growth exhibited by pollen tubes is supported by cytoskeletal organization/dynamics and

vesicular trafficking coordinated by a conserved signaling network dependent upon a plant

Rho GTPase (ROP1) [7–12]. ROP1 is activated in the apical region, where it orchestrates F-

actin dynamics and calcium homeostasis to dynamically maintain apical growth in the pollen

tube [11, 13]. REN1, a RhoGAP, acts as a global inhibitor to spatially restrict ROP1 activity to

the apical plasma membrane at the pollen-tube tip region [14]. This self-organizing ROP sig-

naling network is comprised of multiple coordinated pathways and feedback loops, providing

a robust molecular linkage between the cytoskeleton, vesicular trafficking, and polarity forma-

tion [11–13, 15–19].

It is conceivable that the rapid tip growth exhibited by pollen tubes is extremely energy-

demanding. Overall elevations in energy metabolism in pollen tubes appears to rely on plastid-

localized glycolysis and mitochondrial-localized respiration pathways [20–23]. As a result, res-

piration rates in pollen tubes are up to ten times greater than those in vegetative tissues [24].

In addition, the ethanol fermentation pathway is also active in support of pollen tube growth

[25]. Apart from an overall increase in energy metabolism, rapid tip growth may also require a

tight spatiotemporal regulation of energy production, given the tightly regulated spatiotempo-

ral dynamic of the aforementioned processes.

Phosphoglycerate kinase (PGK) is a key enzyme in the glycolytic pathway, responsible for

catalyzing the reversible conversion of 1,3-biphosphoglycerate (1,3BPG) to 3-phosphoglycer-

ate (3PG). Here, we report that the Arabidopsis cytosolic phosphoglycerate kinase (PGKc)

plays a regulatory role in the regulation of pollen tube polarity by modulating the apical distri-

bution of the REN1 RhoGAP, and thus the activity of the apical ROP1 RhoGTPase as well.

This action of PGKc is specific for the cytosolic glycolysis pathway and is independent of mito-

chondrial respiration. Our findings provide the first conclusive evidence that glycolysis plays

an important and specific role in the regulation of cell polarity.

Glycolysis regulates cell polarity
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Results

PGKc mutations resulted in pollen tube growth depolarization and

accelerated pollen germination

To discover new genes regulating pollen tube polarity, we performed a genetic screen for Ara-
bidopsis thaliana mutants from the SALK collection of individually indexed homozygous

T-DNA insertion lines presenting altered growth polarity. Among over 8000 individual lines

screened, pollen tubes from SALK_066422C were identified to present defective polarized

growth in in vitro germination medium. According to the annotation, SALK_066422C con-

tains a T-DNA inserted into the 5th exon of AT1G79550, which encodes a cytosolic phospho-

glycerate kinase (designated hereafter as PGKc) (S1A and S1B Fig). We therefore designated

the mutant as pgkc-1. The pgkc-1 mutant pollen germinated at a much faster rate than wild

type (WT) plants (Fig 1D). However, pgkc-1 mutant pollen tubes were significantly shorter

than WT ones after 9 h (Fig 1A, 1B and 1E). Moreover, the majority of mutant pollen tubes

were swollen relative to WT, exhibiting irregular morphology and wider tube width (Fig 1A,

1B and 1F).

We also obtained an independent allele mutant with a T-DNA insertion in the 3rd intron of

PGKc (SALK_062377, designated pgkc-2), which showed similar pollen tube phenotypes (S1A,

S1B and S1G Fig). Quantitative reverse transcription polymerase chain reaction (Q-RT-PCR)

showed that both pgkc-1 and pgkc-2 are knockout mutants for PGKc (S1C Fig). We also per-

formed a backcross of pgkc-1 with WT plants, where F2 progeny pgkc-1 homozygous plants

showed defects in pollen tube polarity while WT progeny remained normal (S1E and S1F

Fig). This indicates the co-segregation of the pgkc-1 locus with the mutant phenotype. Finally,

the pgkc-1 mutant was rescued by introducing PGKc genomic sequences, including the native

Fig 1. pgkc-1 mutant exhibits enhanced pollen germination and growth depolarization. (A) WT pollen tube

morphology. (B) pgkc-1 (SALK_066422C) pollen tube morphology. (C) Complemented pgkc-1 pollen tube

morphology. Scale bar = 50 μm. (D) Pollen germination rate at 3 h and 9 h, respectively. pgkc-1 germinated at higher

rates than WT and complemented pollen, especially at the early time point. (E) Pollen tube length of WT, pgkc-1
mutant, and genetically complemented pgkc-1 plants at 9 h after germination. (F) Pollen tube width of WT, pgkc-1
mutant, and genetically complemented pgkc-1 plants at 9 h after germination. Bars represent mean ± SEM. Asterisks

indicate significant differences (�� = p< 0.001) versus WT as determined by Student’s t-test.

https://doi.org/10.1371/journal.pgen.1007373.g001
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promoter and terminator (Fig 1C to 1F and S1D Fig). Taken together, our results confirm

that loss of PGKc is indeed responsible for the pollen tube polarity phenotype. The vegetative

growth and flowering of pgkc-1 plants were slightly delayed relative to WT, but mutant plant

morphology was normal otherwise (S2A–S2C Fig).

The Arabidopsis genome contains three PGK genes, AT1G79550 (PGKc), AT3G12780, and

AT1G56190. Recent reports have shown that AT1G79550 encodes the sole cytosolic PGK,

while AT1G79550 and AT3G12780 are plastid localized [26]. We also performed subcellular

localization analysis using a GFP fusion protein. Consistent with the results of a previous

study, we found PGKc to be localized to the cytoplasm and nuclei while the other 2 PGKs were

localized to the chloroplasts (plastids) (S3A–S3F Fig). Finally, both a previous study and pub-

licly available microarray expression data showed that PGKc is expressed ubiquitously in most

plant tissues, including pollen (https://genevestigator.com/) [26].

Alteration of actin microfilaments and vesicular trafficking in pgkc-1
pollen tubes

Our surprising findings regarding PGKc knockouts prompted us to assess how a housekeeping

glycolytic enzyme can regulate cell polarity. We first performed a series of assays to assess

pgkc-1 mutant phenotype cellular mechanisms with known links to cell polarity defects. The

spatiotemporal dynamics of apical actin microfilaments (F-actin) and vesicle trafficking is cru-

cial for generation of cell polarity and pollen tube tip growth [7, 13]. We observed F-actin

organization in pgkc-1 pollen tubes by introducing a Lifeact-mEGFP marker via crossing [2,

27]. In WT pollen tubes, highly dynamic fine F-actin structures were observed in the apical

region, dense F-actin fringe structures were present in sub-apical regions, and parallel longitu-

dinal F-actin bundles were found in shank regions (Fig 2A). Dynamic apical F-actin has been

shown to be disrupted by treatment with 1.5 nM Latrunculin B (LatB), a chemical promoting

actin depolymerization [9] [28] (Fig 2A and 2B). In pgkc-1 pollen tubes, no significant differ-

ence was detected in the shank and sub-apical regions. However, fine F-actin filaments were

significantly over-accumulated towards the apex of the apical tip region in pgkc-1 pollen tubes,

even after LatB treatment (Fig 2A and 2B). Indeed, treatment with 1.5 nM LatB had no signifi-

cant effect on the germination, length, and morphology of pgkc-1 mutant pollen tubes, but

greatly inhibited similar mechanisms in WT pollen tubes (Fig 2C to 2G).Taken together, these

results indicate that pgkc-1 mutation promotes the accumulation of F-actin in the apical tip

region of the pollen tube.

A previous study has shown that an increased level of apical F-actin leads to greater apical

accumulation of exocytic vesicles [11]. Thus, we examined the distribution of exocytic vesicles

in pgkc-1 mutant pollen tubes. The Rab GTPase RABA4D is a pollen-specific Arabidopsis
homolog of animal Rab11 known to localize to post-Golgi compartments, including exocytic

vesicles in pollen tube tips [14, 29]. We introduced an EYFP-RABA4D marker into pgkc-1 pol-

len tubes via crossing. In WT pollen tubes, EYFP-RABA4D-labeled membrane compartments

were punctuated and enriched in the tip region (Fig 3A). In pgkc-1 pollen tubes, the apical dis-

tribution pattern of RABA4D was similar to that of WT pollen tubes (Fig 3A), but quantifica-

tion of EYFP-RABA4D signal showed that apical EYFP-RABA4D compartments were much

more enriched in pgkc-1 pollen tube compared to WT despite lower signal intensity in the

shank region (Fig 3B), a similar pattern to that observed in pollen tubes with ROP1 over-acti-

vation [11].

We next examined whether pgkc-1 pollen tubes respond differently to Brefeldin A (BFA),

an inhibitor which interrupts vesicle trafficking by inhibiting vesicle formation from TGN and

recycling endosomes [30–33]. Application of 0.4 μM BFA abolished the apical enrichment of

Glycolysis regulates cell polarity
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RABA4D signal observed in WT pollen tubes, but had a markedly reduced effect on RABA4D

localization in pgkc-1 pollen tubes (Fig 3A and 3B). Moreover, BFA greatly inhibited WT pol-

len germination but only moderately affected pgkc-1 pollen germination (Fig 3C to 3G). Inter-

estingly, pgkc-1 pollen tubes exhibited enhanced growth depolarization when treated with BFA

(Fig 3C to 3G). Germinated pgkc-1 pollen tubes were shorter and wider, and multiple tips

occasionally formed from a single pollen grain (Fig 3D). These results suggested that the pgkc-
1 mutation appears to enhance the production or accumulation of exocytic vesicles in pollen

grains and tubes. This altered vesicular trafficking behavior in pollen tube tips is consistent

with the aforementioned observed over-accumulation of apical F-actin [11].

pgkc-1 mutation affects REN1 distribution at the pollen tube apex

Given the role of ROP1 GTPase signaling in regulating F-actin dynamics and vesicle trafficking

[7, 11, 13], we speculated that the F-actin dynamics and vesicle trafficking phenotype in the pgkc-1
mutant may be linked to altered ROP1 signaling. RIC4 binds active ROP1 via its CRIB4 domain.

CRIB4-GFP localization to the plasma membrane indicates ROP1 activity in pollen tubes [14]. To

evaluate whether ROP1 activity was altered in pgkc-1 mutants, we introduced CRIB4-GFP into

the pgkc-1 mutant background. CRIB4-GFP localization to the apical plasma membrane was sig-

nificantly broader in pgkc-1 mutant pollen tubes than in WT (Fig 4A). Quantification revealed

Fig 2. F-actin dynamics in the pgkc-1 mutant. (A) Lifeact-mEGFP signal in WT and pgkc-1 pollen tubes with mock

or 1.5 nM LatB treatment. Scale bar = 5 μm. (B) Average GFP signal intensity along WT and pgkc-1 pollen tubes with

mock or 1.5 nM LatB treatment. Measurements were performed as described in Materials and Methods. Thirty-five

pollen tubes were measured for each sample. The 0 μm indicates the position of the extreme tip. Orange line indicates

WT pollen tube; red line indicates WT pollen tube treated with 1.5 nM LatB; gray line indicates pgkc-1 pollen tube;

black line indicates pgkc-1 pollen tube treated with 1.5 nM LatB. Error bars on curves indicate standard error of the

mean. (C and D) WT and pgkc-1 pollen tube growth when subjected to mock medium (C) or 1.5 nM LatB (D)

treatment. Scale bar = 50 μm. (E to G) WT and pgkc-1 plant pollen germination (E), pollen tube length (F), and pollen

tube width (G) when subjected to mock or 1.5 nM LatB treatment. Bars represent mean ± SEM. Asterisks indicate

significant differences versus mock treatment as determined using Student’s t-test (�� = p< 0.001).

https://doi.org/10.1371/journal.pgen.1007373.g002
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stronger CRIB4-GFP signal in pgkc-1 pollen tubes than in WT counterparts (Fig 4B). This result

suggested that active ROP1 levels were indeed excessive in pgkc-1 pollen tubes.

A previous study has shown that the RhoGAP REN1 is an important regulator of ROP1

negative feedback loops. REN1 is localized to exocytic vesicles in the pollen tube tip [14]. A

mutation in REN1 causes swollen pollen tubes and is correlated with hyper-activation of ROP1

[14]. We therefore introduced a GFP-REN1 reporter into pgkc-1 plants to observe the subcellu-

lar distribution of this negative feedback regulator of ROP signaling. Consistent with the previ-

ous study, GFP-REN1 was enriched in the apical region in an inverted-cone pattern,

reminiscent of the distribution of RABA4D-labeled vesicles (Figs 4C and 3A). Strikingly, in

pgkc-1 pollen tubes, this apical localization of GFP-REN1 was abolished in stark contrast to the

enhanced apical accumulation of RABA4D-labeled vesicles observed (Fig 4C and 4D). These

results indicate that pgkc-1 mutation disrupted apical localization of REN1, which may be asso-

ciated with ROP1 hyper-activation.

To examine the functional interaction between PGKc and REN1, we generated double

mutants using pgkc-1 and ren1-3 mutant plants. ren1-3 plants contain a weak mutation

Fig 3. Vesicle trafficking in the pgkc-1 mutant. (A) EYFP-RABA4D signal in WT and pgkc-1 pollen tubes subjected

to mock or 0.4 μM BFA treatment. Scale bar = 5 μm. (B) EYFP-RABA4D signal intensity. Measurements were

performed as described in Materials and Methods. Fifteen to twenty pollen tubes from each sample were measured.

0 μm indicates the position of apical tip. Error bars on curves indicate standard error. (C and D) WT and pgkc-1 pollen

tube morphology when subjected to (C) mock and (D) 0.4 μM BFA treatment. Scale bar = 50 μm. (E to G) WT and

pgkc-1 plant pollen germination (E), pollen tube length (F), and pollen tube width (G) when subjected to mock or

0.4 μM BFA treatment. Bars represent mean ± SEM. Asterisks indicate significant differences versus mock treatment as

determined using Student’s t-test (�� = p< 0.001).

https://doi.org/10.1371/journal.pgen.1007373.g003
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consisting of a C terminus truncation which confers a mild polarization defect [14] (S4 Fig). If

PGKc functionally interacts with REN1, the tip-targeting defect of REN1 present in pgkc-1
plants would have a synergistic effect with the phenotype observed in the ren1-3 mutant. We

found that in standard medium, ren1-3 pollen tubes displayed near normal growth and mor-

phology, while pgkc-1 pollen tubes exhibited reduced growth and moderate polarity defects

(Fig 4E and 4F). However, the pollen tubes of the pgkc-1/ren1-3 double mutant plants were

much shorter and dramatically more swollen compared to either single mutant (Fig 4G to 4I).

Fig 4. ROP1 signaling in the pgkc-1 mutant. (A) Active ROP1 visualized by CRIB4-GFP signal in WT and pgkc-1
pollen tubes. Scale bar = 5μm. (B) Average CRIB4-GFP signal intensity along WT and pgkc-1 pollen tubes. (C)

GFP-REN1 localization in WT and pgkc-1 pollen tubes. Scale bar = 5 μm. (D) Average GFP-REN1 signal intensity

along WT and pgkc-1 pollen tubes. Measurements were performed as described in Materials and Methods. Fifteen

pollen tubes from each sample were measured. The 0 μm label indicates the position of the apical tip. Error bars on

curves indicate standard error of the mean. (E to G) Pollen tube morphology of pgkc-1 (E), ren1-3 (F), and ren1-3/
pgkc-1 double mutant plants (G). Scale bar = 50 μm. (H and I) Pollen tube length (H) and width I) of WT, pgkc-1,

ren1-3, and ren1-3/pgkc-1 double mutant plants. Bars represent mean ± SEM. Asterisks indicate significant differences

versus single mutant plant as determined using Student’s t-test (�� = p< 0.001).

https://doi.org/10.1371/journal.pgen.1007373.g004
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These results indicate that a moderate REN1 defect in ren1-3 was synergistically enhanced by

pgkc-1, demonstrating the genetic interaction between PGKc and REN1.

Glycolysis but not mitochondria respiration is responsible for pgkc-1 pollen

tube phenotype

We reasoned that PGKc, as a glycolytic enzyme, regulated pollen tube polarity through one or

more of the following possible mechanisms: (1) pollen tube polarity may be linked to overall

cellular ATP level, which is dependent on both glycolysis and mitochondrial respiration; (2)

glycolysis may play a regulatory role in determining pollen tube polarity; and (3) PGKc may

have evolved a new, so-called “moonlighting” function distinct from its role in glycolysis. We

performed a series of assays to examine these possibilities.

To assess a possible relationship between cellular ATP level and pollen tube polarity, we

determined whether mitochondrial respiration, the downstream pathway of glycolysis and the

main source of cellular ATP production, was involved in pollen tube polarity. The potent inhibi-

tor oligomycin has been used to block mitochondrial respiration in pollen germination medium

[34]. In our assay, 40 nM oligomycin significantly inhibited WT pollen tube growth (Fig 5A

and 5B). However, oligomycin-treated pollen tubes were uniformly short and thin, exhibiting a

distinctly different phenotype than pgkc-1 pollen tubes (Fig 5A to 5D). Therefore, we concluded

that the pgkc-1 pollen tube phenotype was likely not caused by inhibition of respiration.

To check if the role of PGKc in pollen tube polarity could be attributed to its glycolytic

enzymatic activity, we generated a mutant version of PGKc termed mPGKc where an

Fig 5. Oligomycin treatment inhibited pollen tube growth in a manner distinct from the pgkc-1 mutant

phenotype. (A) WT pollen tubes subjected to mock treatment. (B) WT pollen tubes treated with 40 nM oligomycin.

Scale bar = 50μm. (C) Average length of 50 pollen tubes. (D) Average width of 50 pollen tubes. Bars represent

mean ± SEM. Asterisks indicate significant differences versus mock treatment group as determined using Student’s t-
test (� = p< 0.05).

https://doi.org/10.1371/journal.pgen.1007373.g005
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evolutionally conserved residue Glutamate179 was changed to Glutamine. This mutation has

been shown to impair PGK catalytic activity but not binding kinetics in yeast [35, 36] (Fig

6A). We introduced native promoter-driven PGKc or mPGKc cDNA into pgkc-1 mutants, and

found that WT PGKc cDNA transgene expression, while lower than native PGKc expression,

was still able to complement the mutant phenotype (Fig 6B to 6E). In contrast, mPGKc could

not rescue the mutant phenotype despite similar levels of gene expression. These results indi-

cated that glycolytic activity was required for PGKc function in pollen tube polarity (Fig 6B to

6E, S5 Fig).

If PGKc regulates pollen tube polarity through its glycolytic activity, we would anticipate

that other glycolytic enzymes are also involved in this process. GAPDH is an enzyme which

catalyzes the conversion of glyceraldehyde-3-phosphate to 1,3BPG (Fig 7A). When we applied

40 μM of CGP 3466B maleate, a specific inhibitor of GAPDH [37], WT pollen tubes exhibited

Fig 6. Catalytically inactive mPGKc could not rescue the pgkc-1 mutant phenotype. (A) Protein sequences of the

conserved Glutamate179 regions of PGK proteins. AtPGKc, Arabidopsis thaliana cytosolic PGK; OsPGKc, Oryza sativa
cytosolic PGK; DmPGK, Drosophila melanogaster PGK; ScPGK, Saccharomyces cerevisiae PGK; EcPGK, Escherichia
coli PGK. Glutamate179 in AtPGKc is labeled with a red dot. (B) PGKc expression level. (C) Pollen germination rate.

(D) Average length of pollen tubes. (E) Average width of pollen tubes. Bars represent mean ± SEM. Asterisks indicate

significant differences versus WT as determined using Student’s t-test (�� = p< 0.001).

https://doi.org/10.1371/journal.pgen.1007373.g006
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Fig 7. Effects of disrupting GAPDH on pollen tube polarity. (A) Glycolytic pathway of GAPDH and PGK. (B to G)

Pollen tube morphology of WT (B), pgkc-1 (C), and ren1-3 (D) plants subjected to mock treatment; pollen tube

morphology of WT (E), pgkc-1 (F), and ren1-3 (G) plants treated with 40 μM CGP 3466B. Both pgkc-1 and ren1-3
plants were dramatically depolarized by CGP medium. Scale bar = 50 μm. (H and I) Pollen tube length (H) and width

(I) of WT, pgkc-1, and ren1-3 pollen tubes subjected to mock and 40 μM CGP treatment. Bars represent mean ± SEM.

Asterisks indicate significant differences versus either single mutant as determined using Student’s t-test with either

single mutant (�� = p< 0.001). (J)-(M) Average signal intensity along WT pollen tubes subjected to mock or CGP

treatment of (J) GFP- REN1, (K) CRIB4-GFP, (L) Lifeact-mEGFP, (M) EYFP-RABA4D. Measurements were
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a pgkc-1-like phenotype with depolarized morphology [38](Fig 7B, 7C and 7E). Furthermore,

when either pgkc-1 or ren1-3 single mutants were treated with CGP, cell polarity defect magni-

tude was greatly enhanced, exhibiting significantly ballooned pollen tubes (Fig 7B to 7I).

To validate that the cellular mechanism underlying the GAPDH inhibition phenotype was

similar to that underlying the pgkc-1 mutation phenotype, we observed the distribution of

GFP-REN1, CRIB4-GFP, EYFP-RABA4D and Lifeact-mEGFP in WT pollen tubes treated

with 40 μM CGP 3466B. Similar to in pgkc-1 mutants, GFP-REN1 signal was diminished while

CRIB4-GFP, EYFP-RABA4D and Lifeact-mEGFP signals were enhanced in the apical region

after CGP 3466B treatment (Fig 7J to 7M). Similarly, a double mutant of cytosolic GAPDHs,

gapc1-1/gapc2-1 [30],and the application of another GAPDH inhibitor, iodoacetate, also

resulted in pollen tube phenotypes resembling that of pgkc-1 (Fig 8A to 8D and S6 Fig). These

results indicate that GAPDH activity is also involved in the regulation of pollen tube polarity.

Taken together, we conclude that glycolysis plays an important role in the regulation of pollen

tube polarity by affecting the association of the REN1 RopGAP with exocytic vesicles.

Discussion

Cytosolic glycolysis plays a regulatory role in pollen tube polarity

Our findings here clearly demonstrate that cytosolic glycolysis has a novel function in the regu-

lation of cellular signaling, distinct from its conventional housekeeping role in carbon and

Fig 8. gapcp1/gapcp2 double mutant is also defective in pollen tube polarity. (A) WT pollen tubes. (B) gapcp1/
gapcp2 double mutant pollen tubes. Scale bar = 50μm. (C) Average length of pollen tubes. (D) Average width of pollen

tubes. Bars represent mean ± SEM. Asterisks indicate significant differences versus WT as determined using Student’s

t-test (�� = p< 0.001).

https://doi.org/10.1371/journal.pgen.1007373.g008

performed as described in Materials and Methods. Fifteen pollen tubes from each sample were measured. The 0 μm

label indicates the position of the apical tip.

https://doi.org/10.1371/journal.pgen.1007373.g008
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energy metabolism. The global energy level is important for pollen development and pollen

tube elongation [20–23, 31, 39]. In this study, we found that inhibition of mitochondrial respi-

ration using oligomycin resulted in reduced pollen tube length and width. This phenotype is

consistent with previous reports, while distinct from the reduced growth polarity induced by

the pgkc-1 mutation or GAPDH inhibition (Fig 5A to 5D).

The ethanol fermentation pathway serves, concomitantly with oxidative respiration metab-

olism, as a bypass route to help maintain metabolic flux and energy supply in pollen tubes [25,

40]. This pathway is also downstream of glycolysis and consists of two key enzymes, pyruvate

decarboxylase (PDC) and alcohol dehydrogenase (ADH) [25]. In petunia, the mutation of a

pollen-specific PDC2 gene was shown to cause reduced elongation of pollen tubes in the style,

leading to a competitive disadvantage relative to WT pollen [41]. However, pollen tube polar-

ity in pdc2 mutants appeared to be normal [41]. Therefore, we believe that pollen tube growth

polarity is modulated by a specific regulatory aspect of cytosolic glycolysis rather than glycoly-

sis-dependent respiration or fermentation (Fig 9).

In animal cells, many glycolytic enzymes participate in moonlighting functions, including

RNA binding, membrane fusion, cytoskeletal dynamics, autophagy, and cell death [42–46].

Similarly, cytosolic GAPDHs in plants demonstrate nuclear uracil-DNA-glycosylase activity

and participate in plant immunity [47]. Here, we demonstrated that glycolytic activity is

required for PGKc function in pollen tubes. Moreover, GAPDH, another enzyme in the cyto-

solic glycolysis pathway, plays a similar role as PGKc in pollen tube polarity. Based on these

Fig 9. Proposed model for potential role of glycolysis in pollen tube polarity. Glycolysis is required for the

association of the REN1 RopGAP with exocytic vesicles. REN1 RopGAP negatively regulates the Rho GTPase

signaling, which coordinates pollen tube growth by coordinating actin dynamics and exocytosis. The mechanisms

linking glycolysis with cell polarity remains elusive, which are possibly energization of unclear vesicle trafficking, or

HXK signaling.

https://doi.org/10.1371/journal.pgen.1007373.g009
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results, it is more likely that it is the glycolysis pathway which regulates pollen tube polarity,

rather than a moonlighting function of a glycolytic enzyme (Fig 9).

Cytosolic glycolysis regulates Rho GTPase signaling and downstream

cellular activities

The pollen tube polarity defects present in the pgkc mutant have been associated with the over-

activation of ROP1, as well as the over-accumulation of F-actin and exocytic vesicles in the tip

region. Previous findings have suggested that REN1-based negative feedback globally inhibited

ROP1, as ROP1 activity is dependent upon the association of REN1 with exocytic vesicles at

the apical plasma membrane [14]. Both ren1 mutation and constitutively active ROP1 (CA-

ROP1) expression has been shown to cause ROP1 hyper-activation, leading to F-actin stabili-

zation, apical cortex vesicle accumulation, and pollen tube depolarization [11, 14]. In the pgkc
mutant or during treatment with a GAPDH inhibitor, the association between REN1 and the

exocytic vesicles is abolished, thus accounting for the observed over-activation of ROP1.

Accordingly, tip region over-accumulation of F-actin and exocytic vesicles appears to be attrib-

uted to ROP activation (Fig 9).

The oscillation of apical ROP1 activity is regulated by positive and negative feedback via F-

actin-mediated exocytosis [7]. Could the aberrant REN1 localization be the consequence of

disrupted F-actin in the pgkc-1 mutant, rather than the cause? According to previous studies, if

the loss of PGKc activity simply enhance F-actin accumulation, then one may expect overall

alteration of pollen tube elongation, rather than polarity. Mutations of F-actin severing factors

RIC1 or MAP18, also caused aberrant F-actin overaccumulation in the apical tip of pollen

tubes [27, 48]. However, ric1 mutant exhibited enhanced elongation and map18 is defective

in growth direction of pollen tubes, while the pollen tube polarity was normal in both cases

[27, 48]. Therefore, we interpret disrupted RhoGTPase signaling in the pgkc pollen tubes as a

reason rather than consequence of the aberrant cellular activities (Fig 9). Nevertheless, our

study does not exclude the possibility that pgkc mutation might directly interrupt other unelu-

cidated cellular processes, which simultaneously affect multiple steps in the feedback loops of

RhoGTPase signaling, including REN1 distribution, F-actin dynamics, and exocytic vesicle

trafficking.

Possible mechanisms linking glycolysis with cell polarity

Several possible underlying mechanisms may link the glycolysis pathway with pollen tube

polarity. Mitochondria provide most of the energy required by the cell. However, mitochon-

dria are not evenly distributed in polarized cells, and may not meet the needs of all organelles

[49, 50]. In contrast, although net energy gain is low, glycolysis could produce ATP close to

energy sinks, thus complementing mitochondrial function. For instance, in neurons, the vesi-

cles in fast axonal transport are energized by on-board ATP provided by specifically localized

glycolytic machinery rather than mitochondrial respiration [51]. Mitochondria are absent

from the apical tip of pollen tubes, where PGKc is present [50, 52]. Therefore, it is possible that

cytosolic glycolysis may provide an ATP source in close proximity to some unclear vesicle

activities, similar to the fast axonal transport, which are required for the targeting and/or traf-

ficking of REN1 protein in pollen tube tips (Fig 9).

Glycolysis is a fundamental energy metabolism pathway, but glycolytic enzymes and inter-

mediates may also play important signaling roles in growth and development. One of the most

important signaling hubs is the enzyme hexokinase (HXK). As the first enzyme in glycolysis,

HXK is able to phosphorylate glucose, producing glucose-6-phosphate [53]. Independent of its

catalytic activity, plant HXK has also been proven as a glucose sensor for the regulation of
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sugar metabolism and signaling pathways [54, 55]. Since PGK and GAPDH are downstream

of HXK and aldolase, there is a possibility that PGKc or GAPDH inhibition might cause accu-

mulation of glucose in pollen tube, resulting in a hyperactivation of HXK signaling in pollen

tubes (Fig 9). It would be helpful to examine this possibility in the future by overexpressing

HXK in pollen tubes.

It is less likely but still possible that glycolysis may regulate pollen tube polarity through sig-

naling by downstream intermediate metabolites, such as 3-phosphoglyceric acid (3PG), a

product of PGKs. However, given that the plastidial glycolysis pathway remains intact in pgkc
mutant pollen tubes, metabolic intermediates are unlikely to be deficient. Consistent with this,

adding 3PG or pyruvate did not affect the pollen tube polarity phenotype of the pgkc mutant,

even at concentrations inhibitory to WT pollen tubes (S7 Fig and S8 Fig). Although we could

not clarify whether exogenous metabolites could substitute for intracellular metabolic interme-

diates under our experimental conditions, this result indicates that these metabolites have no

effect on pollen tube polarity. Nonetheless, future studies are needed to elucidate the mecha-

nisms by which cytosolic glycolysis regulates the association of REN1 with apical vesicles and

subsequent cell polarity modulation in pollen tubes.

Materials and methods

Plant materials and mutant screening

Arabidopsis (Columbia ecotype) were used as WT specimens. All plants were grown under a

16 h photoperiod at 22˚C. SALK collections of individually indexed homozygous T-DNA

insertion lines were obtained from the ABRC (http://signal.salk.edu/cgi-bin/homozygotes.cgi).

For in vitro pollen germination screening, 5–10 seeds from each SALK line were grown in

individual pots. Pollen grains from three plants for each line were collected and germinated in

in vitro germination medium as previously described [14, 56]. Lines with the pollen tube polar-

ity phenotype were selected as mutant candidates for further verification. SALK_066422C

(pgkc-1) was identified during screening. Another allele, SALK_062377 (pgkc-2), was obtained

from the ABRC. Genotyping was performed based on the protocol provided on the SALK web-

site. gapc1-1/gapc2-1 double mutant seeds were gifts from Dr. Xueming Wang, and genotype

was confirmed using primers as described [30]. All primers used are listed in Supplemental S1

Table

RT-PCR

Total RNA was extracted from indicated tissues using the E.Z.N.A. RNA extraction kit

(Omega) according to manufacturer’s instructions. Oligo dT-primed cDNA was synthesized

from 500 mg of total RNA using the PrimeScript RT reagent Kit with gDNA Eraser (Takara).

Quantitative PCR analysis was performed with the SYBR Premix Ex Taq II ROX plus kit

(Takara) using a Mx3005 device (Agilent). Relative levels of each transcript were calculated

after being normalized to UBC21 endogenous control.

Plasmid construction

All constructs were generated using Gateway technology (Invitrogen). Primers used are listed

in Supplemental S1 Table. All entry vectors were generated from the pDONR-zeo vector (Invi-

trogen). LR reactions were conducted using LR Clonase II (Invitrogen) with corresponding

entry vectors and destination vectors.

To construct catalytic inactive mPGKc complementation vector, PGKc cDNA was cloned

first. Then DpnI-mediated site-directed mutagenesis was performed to change the G535 to C
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[35, 57]. pGWB604 vector was modified by inserting a 2.1 kb PGKc promoter with HindIII

and SbfI. LR cloning were then performed to generate the proPGKc::PGKc-GFP or proPGKc::
mPGKc-GFP constructs, respectively.

Observation of Arabidopsis pollen germination and pollen tube growth

Open flowers were collected and pollen grains were dusted onto standard agar-germination

medium with 18% sucrose, 0.01% boric acid, 1 mM CaCl2, 1 mM Ca(NO3)2, 1 mM MgSO4,

pH 6.0, and 0.5% Difc Noble agar (BD Biosciences). Incubation times ranged from 2 to 9 h at

23˚C, and pollen tubes were observed under an Imager M2 inverted microscope (Olympus).

Tube length and width were measured using ImageJ software. Since the morphology of pgkc-1
pollen tubes was non-uniform, pollen tube width was measured at the widest point.50-100 pol-

len grains or pollen tubes were measured.

For pollen tube chemical treatment, LatB (Invitrogen), BFA(Invitrogen), iodoacetate

(Sigma), oligomycin (Sigma), CGP 3466B (Tocris Bioscience) at indicated concentrations

were added to the above solid pollen germination medium. WT and mutant pollen grains

were germinated using the same medium and compared side-by-side.

For Lifeact-mEGFP, EYFP-RABA4D, REN1-GFP marker observation, previously reported

marker lines were used for crossing with pgkc-1 mutants. Double homozygote F2 progeny

were identified by genotyping for the presence of mutant pgkc-1 and observation of pollen

GFP/YFP fluorescent signal, respectively. For the CRIB4-GFP marker, as pgkc-1 and CRIB4-

GFP are linked on the same chromosome, a vector containing CRIB4-GFP was used to trans-

form pgkc-1. The chosen line was then backcrossed with WT, and CRIB4-GFP on a WT back-

ground was obtained as part of F2 progeny. Fluorescent microscopy was performed with a

Spinning Disk Confocal Microscope Andor Revolution WD.

To quantitatively measure GFP signal intensity, the ImageJ line profile tool was used

according to user guidelines. Briefly, a five pixel block was drawn from the background toward

the tip along the axis of a pollen tube. The signal intensity along the line was measured by the

line profile tool. The apical tip was defined as the position where signal intensity was two-fold

greater than the black background, and this position was designated as 0 μm. Fifteen to twenty

pollen tubes were measured for each sample, with the data from each pollen tube aligned by

tip position, and average intensities were calculated.

Supporting information

S1 Fig. pgkc allele mutants exhibit pollen tube polarity phenotype. (A) Diagram of PGKc
gene structure and T-DNA insertion sites. (B) Genotyping result to validate of pgkc-1 and

pgkc-2 homozygous plants. (C) Q-RT-PCR of PGKc gene expression in pgkc-1 and pgkc-2

homozygous plants. (D) Q-RT-PCR of PGKc gene expression in complemented plants. Pollen

tube phenotype of (E) WT and (F) pgkc-1 progeny genotype plant in F2 progenies, and (G)

pgkc-2 mutant. Scale bar = 50μm.

(TIF)

S2 Fig. Plant Morphology of pgkc-1 and WT mutant. (A) Flowering plants at 40 days after

sawing. (B) Plants at 21 days after sawing. (C) Flower morphology.

(TIF)

S3 Fig. Subcellular localization of PGK-GFP fusion proteins in Arabidopsis transgenic

plants. (A) Free GFP, (B) AT1G79550 (PGKc), (C) AT3G12780, (D) AT1G56190 in leaves of

transgenic plants. (E) Free GFP and (F) PGKc-GFP in pollen tube. Protein fusions were con-

ducted by fusing GFP at C terminus of proteins, which are driven by 35S promoter in (B)-(D),
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and Lat52 promoter in (F), Scale bars = 10μm.

(TIF)

S4 Fig. Genotyping and expression analysis of ren1-3 mutant. (A) Diagram of REN1 gene

structure and T-DNA insertion sites. Bold arrow indicates T-DNA insertion site of ren1-3
mutant. Grey slim arrows indicate primers for RT-PCR upstream of insertion site. Black slim

arrows indicate primers for RT-PCR spanning the insertion site. (B) Genotyping result to vali-

date of ren1-3 homozygous plants. (C) Expression of REN1 fragment upstream of T-DNA

insertion in seedlings. (D) Expression of REN1 fragment spanning T-DNA insertion in seed-

lings.

(TIF)

S5 Fig. Catalytically inactive mPGKc could not rescue the pgkc-1 mutant phenotype. (A)

WT pollen tube morphology. (B) pgkc-1 pollen tube morphology. (C) Complemented pgkc-1
pollen tube. (D) Complementation with mPGKc.
(TIF)

S6 Fig. Effects of disrupting GAPDH on pollen tube polarity. (A) WT pollen tubes on mock

medium. (B) WT pollen tubes on 1μM iodoacetate, an inhibitor of GAPDH. Scale bar = 50μm.

(TIF)

S7 Fig. Exogenous 3PG could not affect pollen tube polarity. (A) WT and pgkc-1 pollen tube

morphology on different concentration of 3PG. Scale bar = 50μm. (B) Quantitative data of pol-

len tube length. (C) Quantitative data of pollen tube width. Bars represent means +/- SEM.

Asterisks indicates significant differences in comparison with mock (�� p<0.001). Students T

test.

(TIF)

S8 Fig. Exogenous pyruvates could not affect pollen tube polarity. (A) WT and pgkc-1 pol-

len tube morphology on different concentration of pyruvate. Scale bar = 50μm. (B) Quantita-

tive data of pollen tube length. (C) Quantitative data of pollen tube width. Bars represent

means +/- SEM. Asterisks indicates significant differences in comparison with mock (��

p<0.001). Students T test.

(TIF)

S1 Table. Primers used in this study.

(XLSX)

S2 Table. Raw numerical data statistic analysis.

(XLSX)
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