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Abstract

Genome-wide association studies (GWAS) have identified more than 90 susceptibility loci

for breast cancer, but the underlying biology of those associations needs to be further eluci-

dated. More genetic factors for breast cancer are yet to be identified but sample size con-

straints preclude the identification of individual genetic variants with weak effects using

traditional GWAS methods. To address this challenge, we utilized a gene-level expression-

based method, implemented in the MetaXcan software, to predict gene expression levels

for 11,536 genes using expression quantitative trait loci and examine the genetically-pre-

dicted expression of specific genes for association with overall breast cancer risk and estro-

gen receptor (ER)-negative breast cancer risk. Using GWAS datasets from a Challenge

launched by National Cancer Institute, we identified TP53INP2 (tumor protein p53-inducible

nuclear protein 2) at 20q11.22 to be significantly associated with ER-negative breast cancer

(Z = -5.013, p = 5.35×10−7, Bonferroni threshold = 4.33×10−6). The association was consis-

tent across four GWAS datasets, representing European, African and Asian ancestry popu-

lations. There are 6 single nucleotide polymorphisms (SNPs) included in the prediction of

TP53INP2 expression and five of them were associated with estrogen-receptor negative

breast cancer, although none of the SNP-level associations reached genome-wide signifi-

cance. We conducted a replication study using a dataset outside of the Challenge, and

found the association between TP53INP2 and ER-negative breast cancer was significant

(p = 5.07x10-3). Expression of HP (16q22.2) showed a suggestive association with ER-neg-

ative breast cancer in the discovery phase (Z = 4.30, p = 1.70x10-5) although the association

was not significant after Bonferroni adjustment. Of the 249 genes that are 250 kb within

known breast cancer susceptibility loci identified from previous GWAS, 20 genes (8.0%)

were statistically significant associated with ER-negative breast cancer (p<0.05), compared

to 582 (5.2%) of 11,287 genes that are not close to previous GWAS loci. This study demon-

strated that expression-based gene mapping is a promising approach for identifying cancer

susceptibility genes.
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Author summary

Although individual genetic variant-based genome-wide association studies have greatly

increased our understanding of the genetic susceptibility to breast cancer, the genetic vari-

ants identified to date account for a relatively small proportion of the heritability. Shifting

the focus of analysis from individual genetic variants to genes or gene sets could lead to

the identification of novel genes involved in breast cancer risk. Here, we take advantage of

a recently developed gene-level expression-based association method MetaXcan to exam-

ine the association of genetically-predicted expression levels for 11,536 genes across the

human genome with breast cancer risk. The MetaXcan method uses external information

on the effects of genetic variants on gene expression. We show that the TP53INP2 gene on

human chromosome 20 is significantly associated with estrogen-receptor negative breast

cancer (P = 5.35×10−7, Bonferroni threshold = 4.33×10−6). The association is consistent

across analyses of four datasets, representing European, African and Asian ancestry popu-

lations. As a downstream gene of p53, TP53INP2 may affect breast cancer risk through

p53 signaling pathway. Furthermore, TP53INP2, also known as DOR (Diabetes And Obe-

sity-Regulated Gene), has been linked to obesity and diabetes, suggesting a novel biologi-

cal pathway for the known association between obesity and breast cancer risk.

Introduction

Breast cancer is the most common cancer in women in the United States and in the world [1].

It is a heterogeneous disease and the two main subgroups of breast cancer are estrogen recep-

tor (ER)-positive and ER-negative cancer. Genome-wide association studies (GWAS) have

identified more than 90 susceptibility loci for breast cancer [2–20], with only a few loci specific

for ER-negative breast cancer [3,15,17]. Susceptibility loci for ER-positive loci are often the

same as loci for overall breast cancer risk because most of breast cancers are ER-positive, espe-

cially in women of European or Asian ancestry [2,4,19].

Women of African ancestry are more likely to be diagnosed with ER-negative breast cancer

compared to women of non-African ancestry [21–23]. To date, breast cancer GWAS have

been conducted primarily in populations of European ancestry. The difference in linkage

disequilibrium (LD) patterns and allele frequencies across ancestry groups may explain the

apparent inconsistencies in GWAS findings from studies of women of European ancestry as

compared to studies of women of African ancestry [24,25]. The strength and the direction of

the association between causal variants and disease are expected to be consistent across popu-

lations, and thus cross-population validation provides further evidence of causation. In addi-

tion, trans-ancestry analysis could identify novel breast cancer susceptibility variants [26].

The variants discovered by previous GWAS along with previously known high-penetrance

genes explain only a modest proportion of the heritability of breast cancer [2]. More genetic

factors for breast cancer are yet to be identified, but power for discovery of new loci is limited

by the sample size of existing GWASs. Moreover, the biologic significance of the variants iden-

tified by GWAS and the genes on which they act, are often unknown. Single nucleoid poly-

morphisms (SNPs) associated with disease traits are more likely to be expression quantitative

trait loci (eQTLs) [27], and regulatory variants can explain a large proportion of disease herita-

bility [28]. Therefore, genes regulated by eQTLs can be used as an enrichment analysis unit to

identify more genetic risk factors for breast cancer. Recently, gene-based approaches using

eQTL information, such as PrediXcan, have been proposed, which can reduce the multiple

testing burden in genome-wide analyses and have been used to identify novel genes for
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autoimmune diseases [29]. PrediXcan uses individual-level data to estimate the correlation

between genetically predicted levels of gene expression and human traits to prioritize causal

genes. MetaXcan computes the same correlation as PrediXcan, but does so using summary sta-

tistics from GWAS, which are much more readily accessible than individual level data [30].

To identify novel genes involved in breast cancer susceptibility, we utilized a gene-level

expression-based association method, implemented in the MetaXcan software [30], to infer

gene expression levels using summary statistics from five GWASs. We used an additive predic-

tion model of gene-expression levels trained in Depression Genes and Network (DGN) data

[31] and examined the predicted expression of specific genes for association with overall breast

cancer risk and estrogen receptor-negative breast cancer risk. The GWAS datasets were made

available in dbGaP (https://www.ncbi.nlm.nih.gov/gap) through “Up For A Challenge (U4C)–

Stimulating Innovation in Breast Cancer Genetic Epidemiology” launched by the National Can-

cer Institute. The DGN data included RNA sequencing data from whole blood of 922 genotyped

individuals (463 cases of major depressive disorder and 459 controls), all of European ancestry.

These individuals consisted of 274 males and 648 females with ages ranged from 21 to 60.

Results

Using logistic regression, we first conducted SNP-level GWAS analysis for overall breast can-

cer risk among 8605 breast cancer cases and 8095 controls, and for ER-negative breast cancer

risk among 3879 cases and 10213 controls. The analyses were performed for each of the five

GWAS datasets separately and summary statistics including log odds ratios and standard

errors were generated. These summary statistics for each dataset were input to the software

MetaXcan [30] to perform genome-wide gene-level expression association tests for 11,536

genes. Then, we performed meta-analysis of the results from individual MetaXcan analyses.

Quantile-quantile plots of P-values from the meta-analysis showed little inflation (Fig 1). For

overall breast cancer risk, there was no gene with a P-value that deviated from the null distri-

bution (Fig 1A), but for ER-negative breast cancer risk analysis, there were several genes with

P-values smaller than expected, including TP53INP2, HP, and DHODH (Fig 1B).

Table 1 lists the top genes with P-values less than 10−3 in the analyses of association

between predicted gene expressions and overall breast cancer risk. The sign of Z score indi-

cates the direction of association between genetically-predicted expression and breast cancer

risk. None of the genes reached genome-wide significance when a Bonferroni threshold (α =

4.33x10-6) was used.

Of the 249 genes that are 250 kb within known susceptibility loci identified from previous

breast cancer GWAS [2–4,17,32], 12 genes (4.8%) were statistically significant associated with

overall breast cancer risk at nominal significance level of 0.05, compared to 497 (4.4%) of

11,287 genes that are not close to previous GWAS loci (P for enrichment = 0.75).

Table 2 lists the genes with P-values less than 10−3 in the ER-negative breast cancer analysis.

TP53INP2 was the top gene (P = 5.35x10-7), which surpassed the Bonferroni-corrected p-value

threshold (α = 4.33x10-6). The false discovery rate for TP53INP2 was 0.0062. Higher geneti-

cally-predicted TP53INP2 expression was associated with lower risk of ER-negative breast can-

cer. The gene with the second smallest P-value was HP, which had p-value of 1.70x10-5, close

to but not significant after Bonferroni correction. The false discovery rate for the HP gene was

0.098. For the HP gene, higher expression was associated with higher risk of ER-negative breast

cancer. Both genes are novel and no previous studies have found association between these

two genes and breast cancer risk.

Of the 249 genes that are 250 kb within known breast cancer susceptibility loci identified

from previous GWAS, 20 genes (8.0%) were statistically significant associated with ER-
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Fig 1. Quantile-quantile plot of gene-based association P values for (a) overall and (b) estrogen

receptor negative breast cancer. Red line shows the null distribution of P values.

https://doi.org/10.1371/journal.pgen.1006727.g001
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negative breast cancer (p<0.05), compared to 582 (5.2%) of 11,287 genes that are not close to

previous GWAS loci (P for enrichment = 0.044), suggesting a moderate enrichment for genes

close to known susceptibility loci.

There were six SNPs included in the prediction of the expression of the TP53INP2 gene,

from 367 kb upstream to 159 kb downstream of the gene (Table 3). Five of the six SNPs

(except for rs8116198) were associated with overall breast cancer risk and ER-negative breast

cancer risk (at the nominal level of α = 0.05), and the effects were consistently across studies

(none of the heterogeneity tests were significant). These associations were more significant for

ER-negative breast cancer risk (p values ranging from 5.0x10-4 to 1.8x10-6) than for overall

breast cancer risk (7.0x10-4 to 1.4x10-4). None of the SNP-level associations reached traditional

genome-wide significance, thus they have not been reported in previous GWAS publications.

However, our study showed the aggregate effects of these SNPs were significantly associated

with ER-negative breast cancer after Bonferroni correction. We noticed that one of the six

SNPs, rs8116198, is monomorphic in the SBCGS data. Therefore, when MetaXcan was applied

to the SBCGS data, the prediction of TP53INP2 expression was based on only five SNPs. To

make our results more robust to missing and low quality genotypes, in the DGN prediction

model, we used elastic net with 0.5 as the mixing parameter, which sets the degree of mixing

between ridge regression and LASSO. In addition, the SNPs in the prediction were not neces-

sarily causal but could be in LD with the causal SNPs.

Fig 2 shows positions of the 6 eQTL SNPs for TP53INP2 in the cytoband 20q11.22. Interest-

ingly, there are several other genes in this region that were associated with ER-negative breast

cancer, including MAP1LC3A, ITCH, and TRPC4AP (Fig 2 and Table 2). The 6 SNPs are

Table 1. Top genes with P-values < 10−3 in analyses of association between predicted gene expressions and overall breast cancer risk*.

Gene Cytoband SNPs in predictor AABC CGEMS ROOT SBCGS Total

Z score P value Z score P value Z score P value Z score P value Z score P value FDR

TP53INP2 20q11.22 6 -2.536 1.12E-

02

-0.953 3.41E-

01

-3.023 2.50E-

03

-1.683 9.23E-

02

-4.180 2.91E-

05

0.34

BAG3 10q26.11 18 -2.109 3.49E-

02

-1.145 2.52E-

01

-3.003 2.67E-

03

-1.074 2.83E-

01

-3.660 2.52E-

04

0.77

POLN 4p16.3 39 -2.291 2.20E-

02

-2.614 8.96E-

03

-0.942 3.46E-

01

-1.624 1.04E-

01

-3.644 2.68E-

04

0.77

WDR37 10p15.3 9 -1.637 1.02E-

01

-0.747 4.55E-

01

-0.292 7.70E-

01

-4.144 3.42E-

05

-3.629 2.84E-

04

0.77

TTLL5 14q24.3 26 2.717 6.59E-

03

2.087 3.69E-

02

1.189 2.35E-

01

1.206 2.28E-

01

3.588 3.33E-

04

0.77

HP 16q22.2 19 2.424 1.53E-

02

1.961 4.99E-

02

1.598 1.10E-

01

1.147 2.52E-

01

3.529 4.18E-

04

0.77

VTI1B 14q24.1 1 1.433 1.52E-

01

2.790 5.28E-

03

0.902 3.67E-

01

2.151 3.15E-

02

3.471 5.18E-

04

0.77

HLA-DMA 6p21.32 30 -2.001 4.54E-

02

-0.756 4.50E-

01

-1.603 1.09E-

01

-2.293 2.19E-

02

-3.456 5.47E-

04

0.77

MYOM2 8p23.3 109 2.338 1.94E-

02

-0.051 9.59E-

01

2.153 3.14E-

02

1.955 5.06E-

02

3.430 6.04E-

04

0.77

MYO9B 19p13.11 6 1.643 1.00E-

01

0.887 3.75E-

01

1.473 1.41E-

01

2.549 1.08E-

02

3.373 7.44E-

04

0.81

ZNF202 11q24.1 15 2.214 2.69E-

02

1.675 9.39E-

02

0.003 9.98E-

01

2.644 8.20E-

03

3.363 7.71E-

04

0.81

*Bonferroni threshold = 4.33×10−6.

FDR, false discovery rate.

https://doi.org/10.1371/journal.pgen.1006727.t001
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located either in enhancer elements or in promotor regions (Table 4). The promotor/enhancer

features of 4 SNPs were found in human mammary epithelial cells (HMEC) and breast variant

human mammary epithelial cells (HMEC.35), and the enrichment was statistically significant

for both cell types (both p<0.03).

There were 20 SNPs included in the prediction of the expression of the HP gene (S1 Table).

Thirteen of the 20 SNPs were associated with overall breast cancer risk and 17 were associated

with the risk of ER-negative breast cancer (at the nominal level of α = 0.05), quite consistently

across populations (none of the heterogeneity tests were significant). The strengths of their

associations were stronger for ER-negative breast cancer risk than for overall breast cancer

risk. Interestingly, none of the associations for individual SNPs reached genome-wide signifi-

cance, thus they have not been reported in previous GWAS publications.

We used summary results from GAME-ON GWAS (http://gameon.dfci.harvard.edu) to

replicate our study findings from the U4C. All the six eQTLs for the TP53INP2 gene were

available in GAME-ON (Table 5). Five of the six SNPs that were associated with ER-negative

breast cancer in the discovery phase (using U4C datasets) were all statistically significant in

GAME-ON at the nominal 0.05 significance level. Gene-level test of TP53INP2 from MetaXcan

gave a Z-score of -2.803 (p = 5.1×10−3) for ER-negative breast cancer in GAME-ON. The

gene-level test for overall breast cancer risk was not significant in GAME-ON (Z-score =

-1.627, p = 0.10). Because the GAME-ON ER-negative data included the BPC3 dataset, in

order to show the independent replication, we tested association in the U4C ER-negative data

excluding BPC3, and found the Z-score for the TP53INP2 gene was -4.127 (p = 3.67×10−5).

For the HP gene, the direction of association for 19 SNPs (out of 20) were consistent

between U4C and GAME-ON for ER-negative breast cancer risk, but only 2 SNPs were

Table 2. Top genes with P-values < 10−3 in analyses of association between predicted gene expressions and ER-negative breast cancer risk*.

Gene Cytoband SNPs in

predictor

AABC BPC3 ROOT SBCGS Total

Z score P value Z score P value Z score P value Z score P value Z score P value FDR

TP53INP2 20q11.22 6 -3.708 2.09E-

04

-2.919 3.51E-

03

-2.703 6.87E-

03

-0.417 6.77E-

01

-5.013 5.35E-

07

0.0062

HP 16q22.2 20 1.424 1.54E-

01

3.302 9.61E-

04

1.851 6.41E-

02

1.749 8.03E-

02

4.300 1.70E-

05

0.098

DHODH 16q22.2 58 -1.121 2.62E-

01

-4.700 2.61E-

06

1.020 3.08E-

01

-1.859 6.31E-

02

-4.119 3.80E-

05

0.15

YJEFN3 19p13.11 20 -2.650 8.05E-

03

-2.797 5.16E-

03

0.154 8.78E-

01

-1.549 1.21E-

01

-3.810 1.39E-

04

0.34

MAP1LC3A 20q11.22 49 -2.077 3.78E-

02

-2.922 3.48E-

03

-1.751 7.99E-

02

-0.157 8.75E-

01

-3.734 1.88E-

04

0.34

DPY19L1 7p14.2 24 2.188 2.87E-

02

3.035 2.41E-

03

0.672 5.01E-

01

0.791 4.29E-

01

3.731 1.91E-

04

0.34

GCOM1 15q21.3 75 -1.841 6.56E-

02

-3.295 9.85E-

04

-0.854 3.93E-

01

-0.525 5.99E-

01

-3.689 2.25E-

04

0.34

AMOTL1 11q21 14 2.155 3.12E-

02

2.118 3.42E-

02

0.448 6.54E-

01

2.509 1.21E-

02

3.675 2.38E-

04

0.34

ITCH 20q11.22 12 -1.597 1.10E-

01

-3.861 1.13E-

04

0.203 8.39E-

01

-0.318 7.51E-

01

-3.494 4.77E-

04

0.61

TRPC4AP 20q11.22 26 2.385 1.71E-

02

1.899 5.76E-

02

2.536 1.12E-

02

0.127 8.99E-

01

3.466 5.28E-

04

0.61

SNX24 5q23.2 3 -0.902 3.67E-

01

-2.235 2.54E-

02

-1.612 1.07E-

01

-2.022 4.32E-

02

-3.327 8.77E-

04

0.91

*Bonferroni threshold = 4.33×10−6

FDR, false discovery rate

https://doi.org/10.1371/journal.pgen.1006727.t002
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statistically significant at nominal 0.05 level in GAME-ON (S2 Table). None of the SNPs were

significantly associated with overall breast cancer risk in GAME-ON. In the gene-based analy-

sis using GAME-ON data, the Z-score for overall breast cancer risk was 1.769 (p = 0.077) and

the Z-score for ER-negative breast cancer risk was 2.02 (p = 0.043). In addition, we tested this

association in the U4C ER-negative data excluding BPC3, and found the Z-score for the HP
gene was 2.81 (p = 5.1×10−3).

Table 3. TP53INP2-related SNPs and their association with breast cancer risk.

Pos. at chr20

/from TP53INP2*
Overall ER-negative

SNP Test/ref allele Study OR (95% CI) P OR (95% CI) P

rs1205339 32,924,967 G/A BPC3 1.17 (1.05–1.31) 5.9E-03

-367,127 CGEMS 1.05 (0.91–1.23) 0.49

AABC 1.14 (1.03–1.27) 0.013 1.29 (1.12–1.50) 5.6E-04

ROOT 1.19 (1.04–1.36) 0.012 1.39 (1.10–1.76) 5.6E-03

SBCGS 1.07 (0.97–1.18) 0.18 1.06 (0.89–1.26) 0.51

meta 1.11 (1.05–1.18) 4.2E-04 1.20 (1.11–1.29) 1.8E-06

rs4911154 32,996,101 A/G BPC3 1.16 (1.04–1.30) 0.01

-295,993 CGEMS 1.04 (0.89–1.21) 0.65

AABC 1.15 (1.03–1.28) 0.014 1.32 (1.14–1.54) 2.9E-04

ROOT 1.23 (1.07–1.42) 3.5E-03 1.39 (1.09–1.78) 8.3E-03

SBCGS 1.09 (0.98–1.21) 0.11 1.06 (0.88–1.28) 0.54

meta 1.13 (1.06–1.20) 1.6E-04 1.20 (1.11–1.30) 2.6E-06

rs8116198† 33,114,201 G/A BPC3 0.92 (0.80–1.05) 0.21

-177,893 CGEMS 0.94 (0.78–1.13) 0.5

AABC 1.04 (0.82–1.33) 0.73 1.11 (0.79–1.57) 0.54

ROOT 0.67 (0.45–1.00) 0.052 0.87 (0.49–1.54) 0.63

meta 0.93 (0.81–1.07) 0.33 0.92 (0.80–1.04) 0.30

rs6058107 33,288,546 C/T BPC3 0.87 (0.78–0.97) 8.7E-03

-3,548 CGEMS 0.92 (0.80–1.06) 0.27

AABC 0.91 (0.83–1.01) 0.072 0.84 (0.73–0.96) 0.014

ROOT 0.83 (0.73–0.94) 4.00E-03 0.80 (0.64–0.99) 0.041

SBCGS 0.92 (0.84–1.00) 0.057 1.03 (0.88–1.20) 0.71

meta 0.90 (0.85–0.95) 1.4E-04 0.90 (0.83–0.97) 5.0E-04

rs6060047 33,367,400 G/T BPC3 0.87 (0.77–0.97) 0.017

75,306 CGEMS 0.91 (0.78–1.07) 0.27 .

AABC 0.88 (0.79–0.98) 0.016 0.75 (0.65–0.86) 7.5E-05

ROOT 0.83 (0.73–0.95) 6.10E-03 0.76 (0.60–0.96) 0.019

SBCGS 0.94 (0.86–1.03) 0.21 0.98 (0.83–1.16) 0.81

meta 0.90 (0.85–0.95) 2.1E-04 0.84 (0.78–0.91) 7.3E-06

rs11546155 33,451,148 A/G BPC3 1.19 (1.04–1.35) 9.1E-03

159,054 CGEMS 1.12 (0.94–1.34) 0.21

AABC 1.14 (1.02–1.27) 0.023 1.32 (1.14–1.54) 3.3E-04

ROOT 1.11 (0.96–1.28) 0.15 1.18 (0.93–1.51) 0.18

SBCGS 1.16 (0.98–1.38) 0.089 1.26 (0.94–1.70) 0.13

meta 1.13 (1.05–1.21) 7.0E-04 1.23 (1.13–1.35) 2.0E-06

* NCBI 37 and from transcription starting site of TP53INP2

† rs8116198 is monomorphic in Asian population.

None of the tests for heterogeneity across studies was significant.

OR, odds ratio; CI, confidence intervals; ER, estrogen receptor

https://doi.org/10.1371/journal.pgen.1006727.t003
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Discussion

In this gene-level expression-based genome-wide association analysis of five breast cancer

GWAS datasets composed of individuals of diverse ancestry, we identified TP53INP2
(20q11.22) as gene with genetically-determined expression that is associated with ER-negative

breast cancer. The gene-based analysis of aggregated eQTLs for a particular gene as an analysis

unit can reduce the burden of multiple testing and provide a direction of association between

expression of a specific gene and disease risk. We found that increased expression of TP53INP2
expression in whole blood was associated with a decrease in ER-negative breast cancer risk. In

Fig 2. The 20q11.22 locus spanned for expression quantitative trait loci of TN53INT2, and analysis of regulation enhancer with data from

ENCODE through UCSC Genome Browser, including transcription factor binding sites and human mammary epithelial cells (HMEC) histone

modification marks. Chromosomal coordinates are in NCBI build 37.

https://doi.org/10.1371/journal.pgen.1006727.g002

Table 4. Regulatory element annotation of variants that predicted expression of TP53INP2 using HaploReg [33].

Variant Position* Promoter

histone marks†

Enhancer

histone marks†

DNAse hypersensitivity Proteins

bound

Motifs

changed by the

variant

rs1205339 -367,127 6 tissues including breast and

blood (HMEC, MYO, HMEC.35)

ATF2, Mef2, Pax-

4, Pou1f1, TATA

rs4911154 -295,993 Liver Blood, liver TCF4 RFX5

rs8116198 -177,893 24 tissues including breast and

blood (HMEC, MYO, HMEC.35)

POL2,

TBP, TR4

Rad21

rs6058107 -3,548 24 tissues including breast

and blood (HMEC, MYO,

HMEC.35)‡

28 tissues including

breast and blood‡

AP-1,NF-E2

rs6060047 75,306 Multiple tissue types including

blood and breast (HMEC, MYO,

HMEC.35)‡

Multiple tissue types

including blood

BATF, GCNF,

HNF1, Irf, STAT

rs11546155 159,054 2 tissue types 4 tissue types NRSF, Pou5f1,

RXRA, Sin3Ak-20

* base pair from the transcription starting site of TP53INP2

† Normal mammary or breast cancer cell lines are indicated in parenthesis. HMEC.35: breast variant human mammary epithelial cells; MYO: breast

myoepithelial primary cells; HMEC: mammary epithelial primary cells (vMHEC)

‡ Variants in strong linkage disequilibrium

https://doi.org/10.1371/journal.pgen.1006727.t004
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addition, we identified the HP gene in the 16q22.2 regions to have expression levels that are pos-

itively associated with ER- negative breast cancer.

The TP53INP2 gene (tumor protein p53-inducible nuclear protein 2) is 9150 base pairs

long and codes for a 220 amino acid protein, which is a dual regulator of transcription and

autophagy and is required for autophagosome formation and processing. One experimental

study showed that overexpression of TP53INP2 severely attenuated proliferative and invasive

capacity of melanoma cells, via p53 signaling and lysosomal pathways [34]. This inverse corre-

lation between TP53INP2 expression and cancer proliferation is consistent with our finding

that TP53INP2 expression inversely correlated with breast cancer risk. P53 is a transcription

factor for TP53INP2, and TP53 plays an important role in development of multiple cancers.

Germline TP53 mutations cause Li-Fraumeni syndrome, characterized as a cluster of cancers

including breast cancer [35]. Somatic TP53 mutation is a common event in ER-negative breast

cancer [36]. As a downstream gene of p53, TP53INP2 may affect breast cancer risk through

p53 signaling pathway. Also, known as DOR (diabetes- and obesity-regulated gene), TP53INP2
has been linked to obesity and diabetes [37]. TP53INP2 is also associated with triglycerides and

cholesterol level. One experimental study found that dietary fat content influenced the expres-

sion of TP53INP2 expression in adipose and muscle tissues of mice [38]. This gene has been

proposed to serve as a diagnostic biomarker for papillary thyroid carcinoma [39] but no study

has linked its expression to cancer risk. Obesity has been convincingly correlated with breast

cancer risk in numerous studies, although the relationship is complex and involves additional

modifying factors [40,41]. Obesity has been associated with excess risk for breast cancer

among postmenopausal women [42–46], while in pre-menopausal women, obesity was associ-

ated with decreased breast cancer risk [40,43,47–49]. However, the underlying mechanisms

for this association are still not fully understood. The identification of TP53INP2/DOR as

breast cancer-related gene could provide novel insight on the mechanism for obesity-breast

cancer relationship.

In the 20q11.22 region, several other genes including MAP1LC3A, ITCH, and TRPC4AP
were associated with ER-negative breast cancer risk. MAP1LC3A codes for a protein that is

important in the autophagy process, and was found to be expressed at higher level in breast

Table 5. GAME-ON replication for SNPs related to the TP53INP2 gene.

Test/ref allele Study phase Overall ER-negative*

SNP OR (95% CI) P OR (95% CI) P

rs11546155 A/G U4C 1.13 (1.05–1.21) 7.0E-04 1.28 (1.14–1.44) 5.0E-05

GAME-ON 1.05 (0.99–1.10) 0.11 1.13 (1.03–1.25) 0.013

rs1205339 G/A U4C 1.11 (1.05–1.18) 4.1E-04 1.22 (1.11–1.35) 8.0E-05

GAME-ON 1.02 (0.98–1.07) 0.3 1.09 (1.01–1.17) 0.021

rs4911154 A/G U4C 1.13 (1.06–1.20) 1.6E-04 1.25 (1.12–1.39) 5.5E-05

GAME-ON 1.02 (0.98–1.07) 0.31 1.09 (1.01–1.17) 0.02

rs6058107 C/T U4C 0.90 (0.85–0.95) 1.5E-04 0.90 (0.82–0.98) 0.021

GAME-ON 0.96 (0.92–1.00) 0.045 0.91 (0.85–0.97) 5.0E-03

rs6060047 G/T U4C 0.90 (0.85–0.95) 2.1E-04 0.82 (0.75–0.91) 1.2E-04

GAME-ON 0.96 (0.91–1.00) 0.066 0.90 (0.84–0.97) 7.7E-03

rs8116198 G/A U4C 0.93 (0.81–1.07) 0.33 1.04 (0.78–1.40) 0.79

GAME-ON 0.97 (0.91–1.03) 0.28 0.94 (0.84–1.05) 0.28

*The overlapping study (BPC3) was removed from the meta-analysis in the discovery phase (U4C).

OR, odds ratio; CI, confidence interval; ER, estrogen receptor

https://doi.org/10.1371/journal.pgen.1006727.t005
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cancer tissues than in normal tissues [50]. E3 ubiquitin ligase ITCH plays a role in erythroid

and lymphoid cell differentiation and immune response regulation, and ITCH was found to be

important in the cross-talk between the Wnt and Hippo pathways in breast cancer develop-

ment [51]. TRPC4AP is involved in Ca2+ signaling and is part of the ubiquitin ligase complex

[52,53]. It is unclear which of these genes (or their interactions) play a role in breast cancer

development, but the 20q11.22 locus is worthy of further investigation. Three of the six SNPs

for TP53INP2 (rs6060047, rs11546155, and rs1205339) are also shared by the genes MAP1LC3A
and TRPC4AP. It is possible that the associations in these three genes are partly generated by

the overlapped SNPs, which contribute to predicted expression levels of the three genes and,

possibly, to the enrichment observed at this locus.

The HP gene (16q22.2) is 6,491 base pairs long and codes for a 406 amino acid preprotein,

which codes haptoglobin. Haptoglobin binds to hemoglobin to prevent iron loss during hemo-

lysis. There are two allelic forms, Hp1 (83 residues) and Hp2 (142 residues), which determine

3 major phenotypes [54]. Haptoglobin genotype has been linked to cardiocerebral outcomes

among diabetic patients [55]. A small study found haptoglobin phenotypic polymorphism was

associated with familial breast cancer [56], but no studies have reported on the relationship

between SNPs in this gene and breast cancer risk. Further larger studies could investigate the

relationship between major HP genotype/phenotype (HP1-1, HP1-2, and HP2-2) and breast

cancer risk.

The present study has several strengths, including its large sample size, diverse ancestry

groups, a cross-replication approach, and a novel gene expression-based analysis method. The

gene-level analysis method can combine eQTL SNPs in a biologically informative way to assess

relationships between predicated gene expression and disease risk. Compared to SNP-based

analysis, the gene-based analysis can gain power by reducing the multiple testing burden by

about 100-fold and using external information on correlation between gene expression and

SNPs from reference samples. In addition, this approach enables the detection of individual

SNPs with weak effects on disease risk by leveraging combined effects of multiple SNPs on

gene expression. For example, none of SNPs for TP53INP2 reached traditional genome-wide

significance, but their aggregated effect via TP53INP2 expression was genome-wide significant.

The gene-based method (MetaXcan) that we employed is an extension of the gene expression-

based method (PrediXcan) [29] and allows the use of SNP-level summary statistics without the

need to access individual-level genotype data [30]. The MetaXcan method has been shown to

produce PrediXcan results accurately, and it is robust to ancestry mismatches between studies

and reference/training populations [30]. With this property, we were able to use summary sta-

tistics from the GAME-ON consortium for external replication.

Several limitations should be considered when interpreting the study findings. The gene

expression-based association method relies on accurate prediction of gene transcript level

from genotypes, i.e. identification of eQTLs, but eQTL identification depends on sample size

of eQTL studies as well as tissue types. In the current study, we used the transcriptome predic-

tion model that was developed using 922 RNA-seq samples from whole blood and genotype

data [31]. Although it has been shown that models developed in whole blood were still useful

for understanding diseases that affect other primary tissues [29], we expect there to be a loss

of power when studying non-blood diseases using whole blood eQTL data. As a sensitivity

analysis, we performed the MetaXcan analysis using the prediction model from breast tissues

of 183 donors of multiple ethnicities (http://www.gtexportal.org). Only 4,308 genes had breast

tissue specific eQTLs, and no eQTL was available for TP53INP2, perhaps due to the small

sample size. We found that DHODH (P = 3.61×10−5), ITCH (P = 1.23×10−4), and TRPC4AP
(P = 7.7x10-4) were among the top genes associated with ER-negative breast cancer risk, and

TRPC4AP (P = 1.68×10−5) and DHODH (P = 1.12×10−4) among the top genes associated with
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the overall breast cancer risk using breast tissue eQTLs. In the enrichment analysis, we found

that 7 (8.2%) out of 85 genes that are close to known breast cancer susceptibility loci identified

in previous GWAS were associated with ER-negative breast cancer and 6 (7.1%) genes were

associated with overall breast cancer risk; by contrast, of the 4223 genes away from previous

GWAS loci, 199 (4.7%) genes were associated with ER-negative breast cancer and 212 (5.0%)

genes were associated with overall breast cancer risk. Here, we have to consider the balance

between tissue relevance and sample size in eQTL studies. Further investigations based on

large, reliable eQTL datasets are desirable. In future studies, we will seek out larger samples of

multi-ethnic breast tissue as training data to construct improved prediction models of gene

expression and further investigate trans-ethnic associations for breast cancer.

In conclusion, our study identified TP53INP2 and several other genes in the 20q11.22

region as potential susceptibility genes for ER-negative breast cancer using a novel gene-based

analysis method that incorporates genetically determined gene expression. We demonstrated

this gene-based method increases statistical power and may be helpful in searching for causal

variants. Future studies need to determine whether the TP53INP2 gene is a true susceptibility

gene for breast cancer and what are the underlying mechanisms for its association with ER-

negative breast cancer.

Materials and methods

Study samples

The study was approved by the Institutional Review Board of the University of Chicago. The

Epidemiology and Genomic Research Program within the National Cancer Institute launched

a Challenge at the end of 2015 to inspire novel cross-disciplinary approaches to more fully

decipher the genomic basis of breast cancer, called "Up For A Challenge (U4C)–Stimulating

Innovation in Breast Cancer Genetic Epidemiology”. Several data sets were gathered and made

available for use in dbGap (https://www.ncbi.nlm.nih.gov/gap). Our study has two phases; the

discovery phase included five U4C GWAS datasets (Table 6). Here, we refer them collectively

as “U4C” data. These data were collected from three distinct ancestry groups. The BPC3 [16,

18] and CGEMS study [15,20] were conducted in women of European ancestry. The ROOT

[17] and AABC study [57] consisted of women of African ancestry. The SBCGS study was con-

ducted in Chinese population [19]. For the analysis of overall breast cancer risk, we used four

GWAS datasets: AABC, CGEMS, ROOT, and SBCGS. For the analysis of ER-negative breast

cancer risk, we used datasets from AABC, BPC3, ROOT, and SBCGS. All these dbGap datasets

included imputed genotype data that were inferred based on reference haplotypes from the

1000 Genomes project.

Table 6. dbGaP datasets used in the our gene level expression-based GWAS analysis.

Accession

Number

Study Name Acronym Breast Cancer Phenotype Population

phs000851 African American Breast Cancer GWAS AABC 3016 cases, 988 ER- cases, 2745

controls

African American

phs000812 Breast and Prostate Cancer Cohort Consortium

GWAS

BPC3 1998 ER- cases, 3263 controls European American

phs000147 Cancer Genetic Markers of Susceptibility Breast

Cancer GWAS

CGEMS 1142 cases, 1145 controls European American

phs000383 GWAS of Breast Cancer in the African Diaspora ROOT 1657 cases, 403 ER- cases, 2029

controls

African American, African, African

Barbadian

phs000799 Shanghai Breast Cancer Genetic Study SBCGS 2790 cases, 490 ER- cases, and

2176 controls

Asian (Chinese)

https://doi.org/10.1371/journal.pgen.1006727.t006
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In the replication phase, we used the summary results from the meta-analysis of 11 breast

cancer GWASs in the GAME-ON consortium (http://gameon.dfci.harvard.edu). All partici-

pants were of European ancestry. The overall breast cancer analysis included 16,003 cases and

41,335 controls from 11 GWAS studies; The ER-negative breast cancer analysis included 4939

cases and 13128 controls from 7 GWAS studies. The dataset from one study (BPC3; all ER-

negative cases) in GAME-ON consortium was also included the U4C datasets. Because only

meta-analysis results were available from GAME-ON, we removed the BPC3 data from “U4C”

dataset when we compared replication performance to avoid duplicate counting.

Statistical analysis

Our gene level expression-based association analysis consists of three main steps. First, we

conducted SNP-level genome-wide association tests and calculated summary statistics such

log odds ratios and their standard errors. We used logistic regression model adjusting for

eigenvectors from the principal component analysis and related covariates such as age. Geno-

types were coded by an additive genetic model. Eigenvectors in principal component analysis

were calculated using the method smartPCA, which is implemented in the software EIGEN-

SOFT version 6.0.1 [58]. For the ROOT dataset, we adjusted for age, study sites, and the top 4

eigenvectors. For the AABC dataset, we adjusted for age, study sites, and top 10 eigenvectors.

For CGEMS and SBCGS, we adjusted for age and the top three or two eigenvectors, respec-

tively. The number of eigenvectors we adjusted for was chosen according to published papers

from these GWASs [17,57], as well as their association with case-control status. The logistic

regression models were fit using software Mach2dat (http://www.unc.edu/~yunmli/software.

html) or SNPtest [59], depending on format of the datasets; the Mach2dat software was used

for CGEMS and SBCGS and SNPtest was used for ROOT and AABC. For BPC3, the GWAS

summary statistics for ER-negative breast cancer have been pre-calculated in the dbGap

release, so we used them directly.

Second, we applied the gene level association method, MetaXcan [30] (https://github.com/

hakyimlab/MetaXcan), to each of the datasets listed in Table 6. MetaXcan is an extension of

the method PrediXcan [29], which uses an additive genetic model to estimate the component

of gene expression determined by an individual’s genetic profile and then identifies likely

causal genes by computing the correlations between genetically predicted gene expression lev-

els and disease phenotypes. MetaXcan infers the results of PrediXcan using summary statistics

from GWAS, which are much more readily accessible than individual level data. In our study,

as input files for MetaXcan, we used summary statistics from SNP-based analysis of each data-

set obtained in step one. In addition, we used the whole blood genetic prediction model of

transcriptome levels trained in the DGN data [31], which can be downloaded from http://

predictdb.hakyimlab.orghttps://s3.amazonaws.com/predictdb/DGN-HapMap-2015/. The

DGN data provides a large reference sample of 922 individuals with both genome-wide geno-

type data and RNA sequencing data. The model trained in the DGN data can be useful in esti-

mating gene expression levels and has been successfully applied to the Wellcome Trust Case

Control Consortium (WTCCC) data in identifying genes associated with five complex diseases

[29]. The DGN prediction model includes a) weights for predicting gene expression using

genotypes and b) covariance of the SNPs that takes into account linkage disequilibrium. We

tested the association between predicted expression levels of 11,536 genes for each of the two

phenotypes, overall and ER-negative breast cancer risk, using the MetaXcan software. To con-

struct the prediction model of expression levels using the DGN data, MetaXcan used SNPs

with minor allele frequencies (MAFs) >0.05. When MetaXcan was applied to the breast cancer
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GWAS data, only SNPs with MAFs >0.05 were used. We also looked up genes within 250 kb

of the 93 breast cancer susceptibility loci identified in previous GWAS [2–4,17,32].

Third, we conducted meta-analysis to combine results from MetaXcan analyses for differ-

ent datasets. The method described by Willer et al. with sample size as meta-analysis weight

[60] was used. We also conducted SNP-level meta-analysis using a fixed effect model, as imple-

mented in the software METAL (http://genome.sph.umich.edu/wiki/METAL). False discovery

rates were calculated using the Benjamini and Hochberg method [61].

For genes identified in the discovery phase using the U4C datasets, we conducted replica-

tion analysis using GAME-ON summary results using the same methods described above. For

each top variant and gene identified in this study, we used HaploReg [33] and USCS Genome

Browser to explore functional annotations of noncoding variants. Chromatin states (promot-

ers and enhancers), variant effect on regulatory motifs, and protein binding sites were assessed

from available data from the ENCODE [62] and Roadmap Epigenomics Consortium [63].

Data from normal mammary epithelial cells (HMEC, MYO, vMHEC) were emphasized.
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