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Abstract

Recent advances in single-cell time-lapse microscopy have revealed non-genetic heteroge-

neity and temporal fluctuations of cellular phenotypes. While different phenotypic traits such

as abundance of growth-related proteins in single cells may have differential effects on the

reproductive success of cells, rigorous experimental quantification of this process has

remained elusive due to the complexity of single cell physiology within the context of a prolif-

erating population. We introduce and apply a practical empirical method to quantify the fit-

ness landscapes of arbitrary phenotypic traits, using genealogical data in the form of

population lineage trees which can include phenotypic data of various kinds. Our inference

methodology for fitness landscapes determines how reproductivity is correlated to cellular

phenotypes, and provides a natural generalization of bulk growth rate measures for single-

cell histories. Using this technique, we quantify the strength of selection acting on different

cellular phenotypic traits within populations, which allows us to determine whether a change

in population growth is caused by individual cells’ response, selection within a population, or

by a mixture of these two processes. By applying these methods to single-cell time-lapse

data of growing bacterial populations that express a resistance-conferring protein under

antibiotic stress, we show how the distributions, fitness landscapes, and selection strength

of single-cell phenotypes are affected by the drug. Our work provides a unified and practical

framework for quantitative measurements of fitness landscapes and selection strength for

any statistical quantities definable on lineages, and thus elucidates the adaptive significance

of phenotypic states in time series data. The method is applicable in diverse fields, from sin-

gle cell biology to stem cell differentiation and viral evolution.

Author summary

Selection is a ubiquitous process in biological populations in which individuals are

endowed with heterogeneous reproductive abilities, and it occurs even among genetically

homogeneous cells due to the existence of phenotypic noise. Unlike genotypes, which can

remain stable for many generations, phenotypic fluctuations at the single cell level are
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often comparable to cellular generation times. For this reason, quantifying the contribu-

tion of specific phenotypic states to cellular fitness remains a major challenge. Here, we

develop a method to measure the fitness landscape and selection strength acting on

diverse cellular phenotypes by employing a novel conceptual framework in which cellular

histories are regarded as a basic unit of selection. With this framework, one can tell quan-

titatively whether a population adapts to environmental changes by selection or through

individual responses. This new analytical approach to genetics reveals the roles of hetero-

geneous expression patterns and dynamics without directly perturbing genes. Applica-

tions in diverse fields including stem cell differentiation and viral evolution are discussed.

Introduction

Selection is a process in which the interaction of organisms with their environment determines

which types of individuals thrive and proliferate more than others. Genetic information

encoded in the genome is a primary determinant of reproductivity, but epigenetic and fluctu-

ating phenotypic traits can also strongly influence selection [1–4]. Recent single-cell measure-

ments revealed the existence of phenotypic heterogeneity within clonal populations, including

cases in which heterogeneity has been shown to have a clear functional role [5, 6] such as bac-

terial persistence [7–9], infection [10], and competence and sporulation [11]. Quantifying

reproductivity of phenotypic traits and revealing how strongly selection acts within a clonal

population are thus of crucial importance for understanding the biological significance of phe-

notypic heterogeneity.

To experimentally evaluate reproductivity of a unicellular organism, one usually measures

bulk growth rate (Malthusian parameter [12]) of a cellular population in batch or uses a com-

petition assay between a genotype of interest and a reference genotype [13]. These methods are

only valid when the time-scale of genotypic changes is sufficiently long compared with that of

the measurements. However, the time-scale of phenotypic changes is often comparable to cel-

lular generation time ([14] and S1 Fig), and only in certain cases is it orders of magnitude lon-

ger, e.g. when a phenotypic state is stabilized by specific epigenetic and/or positive-feedback

regulations. As a result, bulk population growth rates of sub-populations fractionated based on

initial phenotypic traits, e.g. by fluorescence-activated cell sorting, do not necessarily represent

reproductivity of initial phenotypic traits because phenotypic traits are diversified rapidly by

complex dynamical processes that occur during measurements. An alternative approach is

necessary to measure reproductivity for heterogeneous and fluctuating cellular phenotypes.

Using time-lapse microscopy and fluorescent reporters, it has become possible to follow full

individual cell histories recording all division events and instantaneous expression levels of

reporters within cellular populations [8, 15–20]. Several theoretical studies have demonstrated

the utility of history-based analysis of growing populations, regarding individual histories

rather than single cells as the basic replicating entity [21–23]. For example, Leibler and Kussell

introduced a time-integrated instantaneous reproduction rate, termed historical fitness [21],

and defined a measure of selection using the response of mean historical fitness over all histo-

ries within a population. However, empirically determining the instantaneous reproduction

rate of an individual cell can be difficult in general, e.g. due to the fact that cell size, age, elonga-

tion rate, and division timing are a subset of possible observables all of which contribute to

reproduction. Evaluating the fitness value of a certain phenotypic trait such as expression level

of a specific gene results in additional complications.
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To address these difficulties, we introduce an empirically measurable quantity associated

with phenotypic states, which we call the phenotypic fitness landscape. This quantity, which

reports how cellular reproductivity is correlated with phenotypic states, extends the definition

of historical fitness so that it becomes meaningful in a general setting without requiring any

assumptions. Our approach allows one to assign a fitness value to any statistical quantities

observed over cellular lineages, and to evaluate the selection strength acting on different phe-

notypic states. Although it does not imply causal relationships driving selection, our measure

of selection strength quantifies correlations between phenotypic states and fitness. To formu-

late our framework, we leverage a fundamental property of selection processes: the retrospec-
tive probability of observing a certain phenotypic trait value by moving backward in time from

the present to the ancestral parts of a lineage is different from its counterpart, the chronological
probability to observe the trait value moving forward in time along a lineage as individuals

grow and divide. We show that these two probabilities can be evaluated directly using single-

cell lineage tree data, leading to natural definitions of the fitness landscape and selection

strength. We apply this framework to analyze proliferation processes of simulated and experi-

mental cellular populations, demonstrating the utility of our measures to reveal phenotype

dependent fitness and its response to environmental change.

Results

Lineage trees and transitions of phenotypes along cell lineages

We first present an overview of the type of biological data that is examined in this study. Fig

1A shows an example of time-lapse images of E. coli growing on an agarose pad. Analyzing the

images provides information on the proliferation dynamics and phenotype transitions (Fig

1B–1D). For example, one can reveal the lineage tree structure, which shows genealogical rela-

tionships among the individual cells that originated from an ancestor cell (Fig 1B). One can

also extract the information on the transitions of cell size along cell lineages (Fig 1C) and of

other cellular phenotypes such as intracellular concentration of a particular protein if it can be

probed with an appropriate fluorescence reporter (Fig 1D). Here we regard any measurable

quantity or set of quantities observed along cell lineages as a quantifiable phenotype in the

broadest sense. We note that this type of information is now available for many biological pro-

cesses including embryogenesis and stem cell differentiation [19, 20, 24–27].

As shown in Fig 1B, division intervals (i.e. cell cycle durations) of individual cells are usually

heterogeneous, yielding variability in the number of divisions observed along different cell lin-

eages. Moreover, cellular phenotypes also fluctuate along cell lineages (Fig 1C and 1D). To

understand the role of such phenotypic heterogeneity for population growth, one must know

whether the difference of the phenotypic states are correlated with the growth rate heterogene-

ity within a population. Below we present the theoretical results and the analytical procedure

that allow us to reveal the quantitative relations between phenotypes and growth.

Retrospective and chronological probabilities for single cell lineages

We consider a binary division process as depicted in Fig 2, where t0, t1 are the start and end

times of a lineage tree, and we define τ = t1 − t0 as the duration of observation. To illustrate

our view of lineage statistics, we first consider a single fixed lineage tree denoted by T
derived from a single ancestor cell (Fig 2A). Let Nðt; T Þ be the number of cells in the tree T
at time t and we label and distinguish each lineage by i ¼ 1; 2; :::;Nðt1; T Þ. For the tree T in

Fig 2A, Nðt1; T Þ ¼ 13. We consider two different ways of randomly sampling single-cell lin-

eages on the tree. We could sample each lineage with equal weight, where the probability of

choosing lineage i is prs
i ¼ 1=Nðt1; T Þ, which we call the retrospective probability because it

Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data
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corresponds to the probability that the past history of the last cell on lineage i is chosen. For

the tree T , prs
i ¼ 1=13 for all i. Alternatively, letting Di be the number of cell divisions on

lineage i, we could sample lineage i with probability pcl
i ¼ 2� Di , which we call the chronologi-

cal probability because it is the probability that lineage i is chosen by descending the tree

from the ancestor cell at t0 randomly at each branch point with equal probability 1/2. For

example, pcl
3
¼ 2� 3 ¼ 1=8 and pcl

9
¼ 2� 5 ¼ 1=32 for the tree T (Fig 2A). The probability dis-

tribution pcl
i is determined solely by the number of divisions on lineage i, being unaffected by

the reproductive performance of the other lineages. In contrast, prs
i strongly depends on the

reproductive performance of the other lineages, which enters into the total number of cell

lineages Nðt1; T Þ. Generally, the ratio prs
i =pcl

i is positively correlated with the relative repro-

ductive performance of lineage i. In fact, prs
9
=pcl

9
> prs

3
=pcl

3
for T . In addition, we note that the

Fig 1. An example of cell lineage data obtained by single-cell time-lapse measurement. A Time-lapse images of a growing microcolony of E. coli F3/

pTN001. This strain expresses a fluorescent protein, Venus-YFP, from a low copy plasmid (see Materials and Methods). One can obtain the time-lapse

images for many microcolonies (ca. 100) starting from different ancestral cells in a single experiment. Scale bars, 5 μm. B Cell lineage tree for the microcolony

in (A), which shows the genealogical relationship of individual cells. C Transitions of cell sizes. Different lines correspond to different single-cell lineages on the

tree (B). Due to the fluctuation of growth parameters such as elongation rate and division interval, the transition patterns are variable among the cell lineages.

D Transitions of mean fluorescence intensity along single-cell lineages on the tree (B). Again, the transition patterns are variable among the cell lineages.

doi:10.1371/journal.pgen.1006653.g001

Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data

PLOS Genetics | DOI:10.1371/journal.pgen.1006653 March 7, 2017 4 / 25



inconsistencies between prs
i and pcl

i reflect the variability in the numbers of divisions among

the cell lineages. It can be confirmed that prs
i ¼ pcl

i for all i if the same number of divisions

occur for all the lineages on a tree (Fig 2B).

Lineage fitness and fitness landscape on a phenotypic trait

The consideration above indicates that the cell lineages with more divisions are over-repre-

sented in the retrospective probability relative to its chronological probability. This idea can be

further extended to the general situation where a large number of lineage trees are contained

in the population.

Fig 2. Chronological and retrospective probabilities of single-cell lineages. A. Chronological and retrospective probabilities on a fixed tree. Here we

consider a representative fixed lineage tree T spanning from time t0 to t1 = t0 + τ. The number of cells in this tree at t1 isNðt1; T Þ ¼ 13 cells, and each of these

cells distinguishes a unique lineage (e.g. the cyan and orange lines in the tree). pcl
i is the probability that a cell lineage i (i ¼ 1; 2; � � � ;Nðt1; T Þ) is chosen by

descending the tree from t0 to t1 (green arrow). At every division point, we randomly select one daughter cell’s lineage with the probability of 1/2 (light green

arrows). The probability that we choose lineage i in this manner is pcl
i ¼ 2� Di , where Di is the number of cell divisions on lineage i. prs

i is the probability of

choosing cell lineage i amongNðt1;T Þ lineages with equal weight (pink arrow). Thus, prs
i ¼ Nðt1; T Þ

� 1
. We call pcl

i and prs
i the chronological probability and

retrospective probability, respectively, based on the time directions of the green and pink arrows. The chronological and retrospective probabilities for the cell

lineages 3 and 9 are shown in cyan and orange texts, respectively. B. A tree on which all the cell lineages have the same number of cell divisions. In this case,

the chronological and the retrospective probabilities are equal for all the lineages. C. General case with a large collection of lineage trees. T i denotes a tree

each descended from a different ancestor cell at time t0. The definitions of the chronological and retrospective joint probabilities of division count D and lineage

phenotype x are shown in green and pink, respectively. n(D, x) denotes the total number of cell lineages with D and x, i.e. nðD; xÞ ¼
P

T nðD; x;T Þ.

doi:10.1371/journal.pgen.1006653.g002
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We now consider the set of lineages within a large collection of independent trees initiated

from a large number of progenitor cells N(t0)� 1 (Fig 2C). For each lineage, we record a phe-

notypic trait x and the number of divisions D, where x can be any random variable represent-

ing a phenotypic trait of a single cell lineage, e.g. a time-averaged gene expression level,

average cell length, number of divisions D, or any variety of other possibilities. We consider

the joint statistics of D and x across all possible trees, letting nðD; x; T Þ denote the number of

lineages with values D and x within tree T , and we denote the sum of this quantity over trees

as n(D, x). The total number of lineages observed across all trees, N(t1), is given by summing

n(D, x) over D and x (see S1 Text). In analogy with the single tree quantities, we define the ret-

rospective probability of choosing a lineage with D and x as

PrsðD; xÞ �
nðD; xÞ
Nðt1Þ

; ð1Þ

and the chronological probability as

PclðD; xÞ �
2� D

Nðt0Þ
nðD; xÞ : ð2Þ

Defining Λ to be the population growth rate,

L �
1

t
ln
Nðt1Þ
Nðt0Þ

; ð3Þ

we obtain using Eqs 1 and 2 the relation

Prs D; xð Þ ¼ et ~hðDÞ� Lð ÞPcl D; xð Þ ; ð4Þ

where ~hðDÞ � t� 1D ln 2. We see from Eq 4 that ~hðDÞ is the natural measure of fitness for a

lineage, since lineages for which this quantity is greater than Λ will be exponentially over-rep-

resented in retrospective probability relative to chronological probability. We call ~hðDÞ the

lineage fitness.
We now measure how quickly the number of lineages with a given phenotype x grow

between times t0 and t1 according to their chronological and retrospective probabilities. We

denote by Prs(x)� ∑D Prs(D, x) and Pcl(x)� ∑D Pcl(D, x) the retrospective and chronological

marginal probability distributions of x. We define the phenotypic fitness landscape h(x) as

h xð Þ �
1

t
ln
Nðt1ÞPrsðxÞ
Nðt0ÞPclðxÞ

¼ Lþ
1

t
ln
PrsðxÞ
PclðxÞ

; ð5Þ

noting that N(t0)Pcl(x) and N(t1)Prs(x) are the effective numbers of cell lineages with a pheno-

typic trait x from the chronological and retrospective perspectives, respectively. We can rewrite

Eq 5 as

Prs xð Þ ¼ et hðxÞ� Lð ÞPcl xð Þ; ð6Þ

which shows that if h(x) is greater than Λ the phenotypic state x will be exponentially over-rep-

resented in retrospective relative to chronological probability. Thus, h(x) provides a natural

extension of fitness for lineage-based phenotypic traits. We point out that both Prs(D, x) and

Pcl(D, x) (hence, Prs(x) and Pcl(x) as well) are obtainable directly from the set of lineage trees

(Fig 2C). Thus, h(x) can also be determined directly from the lineage tree data using Eq 5.

In Fig 3, we schematically show how the fitness landscapes look depending on the deviation

between chronological and retrospective probability distributions. When the deviation is

Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data
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small, the fitness landscape h(x) is flat over the phenotypic space x (Fig 3A); when the deviation

is large, h(x) changes greatly depending on x (Fig 3B). In the next section, we quantify the

amount of heterogeneity in h(x) using the selection strength, S[x], defined below.

Measuring the strength of phenotypic selection

Specific states of the phenotypic trait x can be selected if x and D are correlated. In general, the

strength of this correlation could differ significantly among different phenotypes. In the con-

ventional framework of natural selection known as Fisher’s fundamental theorem, selection

strength is measured by the gain of mean fitness due to the change of probability distribution

of a phenotype [12]. Inspired by this idea, we define the strength of selection acting on a phe-

notypic trait x as

S x½ � � hhðxÞirs
� hhðxÞicl

; ð7Þ

where hh(x)irs = ∑x h(x)Prs(x) and hh(x)icl = ∑x h(x)Pcl(x) are the mean fitness in retrospective

and chronological perspectives, respectively.

This simple measure of selection strength has rich underpinnings. First, S[x] is also a mea-

sure of fitness variation on the landscape h(x) because

S x½ � � tCov ~hðDÞ; hðxÞ
h i

� tVar hðxÞ½ � ; ð8Þ

where the variance and covariance can equivalently be taken over either chronological or ret-

rospective distributions, and the approximation is accurate to the order of second cumulants

of ~hðDÞ and h(x) (see S1 Text). Therefore, S[x]� 0 if h(x) is uniform over the range of

observed value of x, but> 0 if h(x) changes significantly with x (Fig 3). Secondly, S[x] also rep-

resents the statistical deviation between the probability distributions Pcl(x) and Prs(x) because

S½x� ¼
1

t
J PclðxÞ; PrsðxÞ
� �

; ð9Þ

Fig 3. Schematic pictures that show the relations among chronological and retrospective phenotype distributions, fitness landscape, and

selection strength. A. Weak selection. When the chronological (green) and retrospective (pink) probability distributions are similar, the fitness landscape

h(x) largely does not change over the range of phenotypic values x, and the selection strength S[x] is approximately 0. B. Strong selection. When the

retrospective probability distribution significantly deviates from the chronological distribution, the fitness landscape h(x) changes greatly over the range of

phenotypic values x. In this case, the selection strength S[x] is greater than zero.

doi:10.1371/journal.pgen.1006653.g003
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where J p xð Þ; q xð Þ½ � �
P

x p xð Þ � q xð Þð Þ ln pðxÞ
qðxÞ is the Jeffereys divergence [28–30], a non-nega-

tive quantity that measures the dissimilarity between two probability distributions (see S1 Text).

From the properties of Jeffreys divergence, we can prove that

0 � S½x� � S½D�: ð10Þ

The strength of selection acting on any phenotypic state is therefore bounded by the strength

of selection acting on D, i.e. the maximal possible value. As described in S1 Text, S[x] can be

interpreted as an amount of information representing to what extent variation of D can be

explained by phenotype x. Therefore, when S[x] is large, phenotype x is strongly correlated

with lineage fitness. In fact, we prove that the relative selection strength, defined by

Srel½x� �
S½x�
S½D�

; ð11Þ

is approximately equal to the squared correlation coefficient between ~hðDÞ and h(x) to the

order of second cumulants (Eq. S1.55 in S1 Text).

Decomposition of fitness response to environmental change

We now introduce an explicit dependence of all quantities on an environment variable E, and

using this notation Eq 7 becomes

S½x�ðEÞ � hhðx; EÞirs;E
� hhðx; EÞicl;E

: ð12Þ

Let us denote the changes of mean fitness and selection strength due to an environmental shift

from E1 to E2 as Δhh(x)icl, Δhh(x)irs and ΔS[x]. Then

DhhðxÞirs
¼ DhhðxÞicl

þ DS½x�: ð13Þ

Δhh(x)irs represents the response of mean fitness in retrospective histories due to the change of

the environments. Eq 13 indicates that this term can be decomposed into two terms: Δhh(x)icl,

which represents the intrinsic response to the environmental change; and ΔS[x], the change of

selection strength. Thus, this framework allows us to distinguish and evaluate the contribu-

tions of individual response and selection to the total change of retrospective mean fitness.

In S1 Text, we apply the above framework to several analytically tractable models, and

directly calculate the fitness landscape and selection strength in each model. We also provide

examples of the fitness decomposition in S1 Text.

Simulation

To demonstrate the utility of our lineage-based analysis, we first applied it to simulation data

of a cell proliferation model. In this model, we consider a population in which cells divide

according to division probability f(yt)Δt, where Δt is time increment, and yt is a variable that

represents an instantaneous state of a certain phenotype at time t (Fig 4A). For example, yt
could be the intracellular concentration of a protein of interest. In the simulation, we assume

that ln yt follows the Ornstein-Uhlenbeck process so that the stationary distribution of yt in

chronological cell histories follows the log-normal distribution with mean 1 and standard devi-

ation 0.3 (Fig 4B). We set f(y) to be a Hill function, f ðyÞ ¼ yn

1þyn fmax, where n is the Hill coeffi-

cient, and fmax is the maximum division rate (Fig 4B). We fixed fmax = 1.2 h−1 and ran the

simulation under different values of n. The initial state of a cell lineage at t0 was randomly sam-

pled from the stationary log-normal distribution. In each condition, we repeated the simula-

tion 100 times, i.e. N(t0) = 100, which is a realistic sample size of single-cell time-lapse

Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data
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experiments. To calculate the fitness landscape and selection strength, we used the lineage tree

data between t0 = 0 min and t1 = 250 min (thus τ = 250 min). Additional details of the simula-

tion are described in Materials and Methods.

We tested our methodology using the time-averaged expression level as a simple pheno-

typic trait x of cell lineages, i.e.

x ¼ �yt �
1

t

Z t1

t0

ytdt: ð14Þ

We found that the fitness landscape hð�ytÞ calculated from the simulated lineage trees and the

time-series of yt recovers f(y) accurately despite the non-linearity of this function (Fig 4C and

S2A and S2B Fig). The chronological mean fitness hhð�ytÞi
cl

is unchanged by the change of n,

Fig 4. Quantifying fitness landscape and selection strength for the simulation data of clonal cell proliferation. A. Cell proliferation model with

phenotype fluctuations. Individual cells divide according to the instantaneous fitness f(yt), which depends on the current phenotypic state yt (different colors

indicate different phenotypic states). yt fluctuates in time, causing fitness fluctuations on single-cell lineages. B. Stationary probability of the phenotypic state

without selection (filled curve, log-normal distribution with mean 1 and standard deviation 0.3) and instantaneous fitness depending on phenotypic states (Hill

function, colored dashed lines with different Hill coefficients, n = 0, 2 and 10). C. Fitness landscapes. We produced the datasets of clonal cell proliferation by

simulation, in which we assumed that cells stochastically change phenotypic state y and divide in a phenotype-dependent manner with the division rate

fðyÞ ¼ yn

1þyn fmax. We calculated fitness landscapes hð�yÞ from the simulation data for the conditions of n = 0, 2, and 10. In all the conditions, hð�yÞ (points)

recovered the assigned phenotype-dependent division rate f(y) (broken curves) with good precision. The points and the error bars represent means and

standard deviations of results from 10 independent simulations (same in B and C). D. Dependence of mean fitness hhð�y tÞi
cl

and hhð�y tÞi
rs

on Hill coefficient.

Strengthening the phenotype dependence of fitness by increasing the Hill coefficient of f(y) caused hhð�y tÞi
rs

(magenta circles) to be greater than hhð�y tÞi
cl

(green squares). In our definition, selection strength for phenotype �y t is given by hhð�y tÞi
rs
� hhð�y tÞi

cl
(Eq 7), thus the deviation directly indicates the existence

of selection acting on phenotype �y t. E. Dependence of relative selection strength Srel½�y t� ¼ S½�y t�=S½D� on Hill coefficient.

doi:10.1371/journal.pgen.1006653.g004
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but the retrospective mean fitness hhð�ytÞi
rs

increases significantly with n (Fig 4D). As a result,

selection strength S½�yt� ¼ hhð�ytÞi
rs
� hhð�ytÞi

cl
as well as relative selection strength Srel½�yt�

increase with n as expected from the fact that larger n introduces greater fitness variation (Fig

4D and 4E). Reducing the autocorrelation time of yt decreases selection strength (S2C Fig),

since faster fluctuations of the phenotype decrease the variation of the time average, �yt. In this

case, hð�ytÞ deviates slightly from f(y) when the non-linearity is strong (n = 10, S2A and S2B

Fig), which results from the fact that the time-average of f(yt) is not equivalent to f ð�ytÞ, an

effect that becomes pronounced when n is large.

We also examined a bell-shaped fitness landscape, confirming that hð�ytÞ recovered f(y) to

good precision (see Materials and Methods and S3 Fig in detail). These results show that our

lineage-based analysis allows us to probe fitness and selection strength of heterogeneous cellu-

lar phenotypes from realistic sample sizes of single-cell lineage trees.

We point out that S½�yt� can be zero when f(y) = const., but S[D] still becomes positive even

in such circumstances due to the stochastic occurrence of cell division. In fact, we can analyti-

cally calculate that S[D] = f0 ln 2> 0 when f(y) = f0 (obtained by substituting ρ = 0 in Eq. S3.64

in S1 Text).

We emphasize that it is relatively rare to find cases in which population growth is driven by

the instantaneous value of a single measurable phenotype, such as yt above. That is, one should

generally not equate the fitness landscape extracted for a single phenotype, hð�ytÞ, with the

overall physiological fitness landscape of cells, a much more complex, multi-dimensional

quantity. Instead, hð�ytÞ constitutes the effective fitness landscape for the phenotype of interest,

�yt, and despite the underlying complexity of cellular physiology, it remains well defined and

experimentally measurable.

Single-cell time-lapse experiment

Next, we apply the analytical framework to analyze single-cell time-lapse data of E. coli cells

that express an antibiotic resistance gene smR [31] and a fluorescent reporter venus-yfp [32].

We constructed and used two strains in the experiments: F3/pTN001, in which venus and smR

are transcribed together under the control of a common promoter PLlacO-1 [33] on a low copy

plasmid pTN001 (pSC101 ori), but translated separately (Fig 5A); and F3NW, in which the

fusion protein, Venus-SmR is expressed from the intC locus on the chromosome under the

control of PLlacO-1 promoter (Fig 5B). The SmR protein confers resistance to a ribosome-target-

ing antibiotic drug, streptomycin, by direct inactivation [34, 35]. We conducted fluorescent

time-lapse measurements of cells proliferating on agarose pads that contain either no drug

(−Sm) or a sub-inhibitory concentration of streptomycin (+Sm) (200 μg/ml for F3/pTN001;

and 100 μg/ml for F3NW) (Fig 5C). The minimum inhibitory concentrations (MIC) of strep-

tomycin for F3/pTN001 and F3NW were 1000 μg/ml and 250 μg/ml, respectively, which were

significantly higher than the MIC of the parental strain F3 (8 μg/ml) (Fig 5C). Thus, SmR pro-

tein is functional in the constructed strains. We extracted the information of lineage trees

along with time-series of cell size v(t) and of fluorescence intensity c(t) (Fig 5D). Since c(t) is a

proxy for protein concentration in a cell, c(t)v(t) can be regarded as the quantity that scales

with the total amount of protein in a cell. c(t) and v(t) are correlated very weakly in all the

experiments as shown in S4 and S5 Figs. Based on these quantities, we analyzed three different

time-averaged phenotypes along a single-cell lineage: elongation rate �lt, protein production

rate �pt, and protein concentration �ct, which are defined as

�lt �
1

t

Z t1

t0

d
dt

ln vðtÞdt; ð15Þ
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�pt �
1

t

Z t1

t0

1

vðtÞ
d
dt

cðtÞvðtÞ½ �dt; ð16Þ

�ct �
1

t

Z t1

t0

cðtÞdt : ð17Þ

We calculated these phenotypic quantities for all the lineages spanning from t0 to t1, and

obtained the chronological probability distribution Pcl(�), fitness landscape h(�), and selection

strength S[�] of these phenotypes.

Fig 5. E. coli strains used in single-cell time-lapse measurements. A. F3/pTN001 strain. This strain expresses a fluorescent protein Venus-YFP and

streptomycin resistance-conferring protein SmR under the control of the PLlacO-1 promoter from a low copy plasmid pTN001 (pSC101 ori). Ribosomal binding

sites are present in front of the start codons of both structural genes, thus proteins are translated separately. We analyzed the data assuming that production

rate and protein amount of SmR are strongly correlated with those of Venus-YFP. B. F3NW strain. This strain expresses a fusion protein Venus-SmR under

the control of the PLlacO-1 promoter from intC locus on the chromosome. To facilitate the image analysis, we additionally integrated an mcherry-rfp gene that is

expressed under the control of the PLtetO-1 promoter [33] from galK locus on the chromosome. C. MICs of streptomycin for F3, F3/pTN001, F3/pTN002, and

F3NW. Absorbance at 595 nm of cell cultures of each strain at different concentrations of streptomycin was measured after 20-hour incubation with shaking at

37˚C. pTN002 is a negative control plasmid in which the smR gene was removed from pTN001. The average of three replicates are plotted with the standard

deviation for each condition of streptomycin concentration. We determined MICs by the minimum concentration above which the absorbance of cell culture

remains below 0.1 (cyan region): 8 μg/mL for F3 (gray) and F3/pTN002 (purple), 250 μg/mL for F3NW (brown), and 1000 μg/mL for F3/pTN001 (green). D.

Quantities obtained from time-lapse images. We extracted the time-series of cell volume v, protein concentration (mean fluorescence intensity per cell area) c,

and total protein amount (sum of fluorescence intensity of the pixels within a cell) a = cv together with cell lineage trees, and calculated �lt, �pt, and �ct for each

cell lineage according to the definitions in Eqs 15–17.

doi:10.1371/journal.pgen.1006653.g005
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Fitness landscapes and selection strength of F3/pTN001

We first analyzed the growth of F3/pTN001. Population growth kinetics revealed that the

growth rate difference between −Sm and +Sm conditions was small and became noticeable

only after t = 200 min (Fig 6A). Therefore, we focused on the time window between t0 = 200

min and t1 = 400 min (see S6 Fig for the results when t0 = 0 min and t1 = 200 min). The popula-

tion growth rates during this period were 0.45±0.01 h−1 for −Sm and 0.39±0.01 h−1 for +Sm,

respectively (p< 0.05) (Fig 6B). Consistently, the mean of lineage fitness in the chronological

perspective h~hðDÞicl
in +Sm condition was 0.35±0.01 h−1, which is smaller than that in −Sm

condition, 0.41±0.01 h−1 (p< 0.05) (Fig 6C). Despite the decrease in the mean lineage fitness,

we did not detect the difference in intra-population lineage heterogeneity measured by maxi-

mum selection strength S[D] (p = 0.5) (Fig 6D).

The three lineage phenotypes had distinct characteristics in their response to the drug (Fig

6E–6I). The fitness landscapes of elongation rate were nearly identical between −Sm and +Sm

conditions, and increased approximately linearly with �lt (Fig 6E and S7A and S7B Fig). This

agrees with the natural assumption that fast elongation should lead to proportionately high

division rate. The chronological distribution Pclð�ltÞ shifted to the left in +Sm condition (Fig

6E), which is also consistent with the fact that h~hðDÞicl
is slightly lower in +Sm condition. Nev-

ertheless, we did not detect the difference in selection strength S½�lt� (Fig 6H). These results

confirm that �lt behaves coherently with D under these conditions.

The fitness landscape of protein production rate were likewise nearly identical between

+Sm and −Sm conditions (Fig 6F and S7C and S7D Fig). The landscape is a more saturating

function rather than linear with the kink around 0.5 a.u. The fact that hð�ptÞ is an increasing

function even in the absence of the drug is presumably because overall cellular metabolism

couples to all production rates and cells growing faster generally have higher production rates

in most genes. The chronological distribution Pclð�ptÞ shifted significantly toward the left in

+Sm condition. Interestingly, we detected an increased selection strength S½�pt� in +Sm condi-

tion (1.7 × 10−2 h−1) compared with that in −Sm condition (0.5 × 10−2 h−1, p< 0.05) (Fig 6H).

The relative selection strength Srel½�pt� was also significantly different (Fig 6I). Because Srel½�pt� is

a measure of correlation between hð�ptÞ and lineage fitness ~hðDÞ, this result indicates that the

heterogeneity in SmR production rate becomes more strongly correlated with fitness in +Sm

condition than in −Sm condition. This change in the selection strength largely comes from the

shift of the chronological distribution Pclð�ptÞ: A large portion of the probability distribution

resides in the plateau region of the fitness landscape in −Sm condition, whereas its shift in

+Sm condition causes a significant overlap with the linear region, resulting in a larger fitness

heterogeneity in the phenotypic space of �pt.

The fitness landscapes of protein concentration decrease linearly with �ct in both +Sm and

−Sm conditions; protein expression levels and fitness are thus anti-correlated (Fig 6G and S5E

and S5F Fig). Surprisingly, we did not detect any advantages of high expression level even in

the presence of the drug (Fig 6G). The chronological distribution Pclð�ctÞ and selection strength

S½�ct� were nearly identical between the two conditions (Fig 6G and 6H). This indicates that,

unlike production rate �pt, the strength of correlation between SmR expression level and fitness

is unchanged even if the drug is added. The results therefore suggest that the protein produc-

tion rate of SmR is a more responsive phenotype to drug than protein expression level in this

strain. The response characteristics of selection strength are unchanged even if the relative

selection strengths were compared between the two conditions (Fig 6I).

Applying fitness decomposition in Eq 13 to the experimental data revealed that the changes

of mean fitness in retrospective perspective due to the environmental change from −Sm to

Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data
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Fig 6. Fitness landscapes and selection strength measured for E. coli F3/pTN001. A. Population growth curves. Green curve is for −Sm condition, and

red for +Sm condition (the color correspondence is the same for all subsequent panels). Relative population size on the y-axis is the number of cells at each

time point normalized by the number of cells at t = 0 min. The error bars in all panels are the standard deviations of three independent experiments. Growth

rate difference became apparent only after t = 200 min. Hence, we set t0 = 200 min and t1 = 400 min in the following analyses. The results with t0 = 0 min and

t1 = 200 min are shown in S6 Fig. The numbers of cells at times t0 and t1, which specify the number of cell lineages used in the analysis, are given in S1

Table. B-D. Comparison of population growth rate Λ (B), chronological mean lineage fitness h~hðDÞicl
(C), and selection strength for division count S[D] (D),

between −Sm and +Sm conditions. p-values by t-test are 0.013, 0.010, and 0.529, respectively (n = 3). E-G. Fitness landscapes h(x) (upper panels) and

chronological distributions Pcl(x) (lower panels) for elongation rate �lt (E), protein production rate �pt (F), and protein concentration �ct (G). The fitness

Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data

PLOS Genetics | DOI:10.1371/journal.pgen.1006653 March 7, 2017 13 / 25



+Sm (Δhh(x)irs) mostly came from the changes in Δhh(x)icl, not from the changes in selection

strengths ΔS[x], for all the phenotypes (Table 1). Therefore, the contribution of ΔS[x] to

Δhh(x)irs were marginal at least in the environmental difference used in this study.

We found that the relative selection strengths of x ¼ �lt, �pt, and �ct were approximately

equal to the squared correlation coefficients between ~hðDÞ and h(x) evaluated by both chrono-

logical and retrospective probabilities (Fig 6J). This validates the simple interpretation that

Srel[x] represents the correlation between ~hðDÞ and h(x), though the small differences of the

squared correlation coefficients between the chronological and retrospective probabilities sug-

gest the contribution of higher-order cumulants (S1 Text).

Fitness landscapes and selection strength of F3NW

We next examined how the difference in the expression scheme between F3/pTN001 and

F3NW affected the phenotype distributions, fitness landscapes, and selection strength (Fig 7).

For F3NW, we focused on the time window between t0 = 100 min and t1 = 300 min, where the

difference in population growth rate was significant (0.52± 0.02 h−1 in −Sm condition, and

0.48 ± 0.01 h−1 in +Sm condition) (Fig 7A and 7B). We did not detect statistically significant

differences in h~hðDÞicl
(0.49± 0.03 h−1 in −Sm, and 0.45 ± 0.01 h−1 in +Sm, Fig 7C) and in S[D]

(0.06 ± 0.01 h−1 in −Sm, and 0.057 ± 0.004 h−1 in +Sm, Fig 7D).

Comparing the fitness landscapes between the two strains revealed that the overall shapes

of the fitness landscapes were unchanged by the difference of the expression schemes (Fig 7E–

7G and S8A–S8F Fig): For elongation rate of F3NW strain, fitness landscapes increased with

�lt almost linearly; for production rate, fitness increases monotonically with �pt with a kink; and

for protein concentration, fitness decreases monotonically with �ct. One important difference is

that the fitness landscape of protein production rate hð�ptÞ in +Sm condition shifted signifi-

cantly toward the left along with the distribution (Fig 7F). Consequently, the main part of the

distribution of �pt remained in the range where the fitness is fairly uniform (Fig 7F), and the

selection strength S½�pt� of F3NW did not increase in +Sm condition (Fig 7H and 7I). The selec-

tion strength of �lt and �ct of F3NW was also unchanged between −Sm and +Sm conditions

(Fig 7H and 7I) as seen in F3/pTN001 (Fig 6H and 6I).

The measured selection strength of the three phenotypes was close to the squared correla-

tion coefficients between h(x) and ~hðDÞ (Fig 7J), which again validates the interpretation that

Srel[x] is a measure of correlation between phenotype x and fitness.

landscapes for elongation rate and protein production rate were barely distinguishable between −Sm and +Sm conditions, whereas that for protein

concentration shows a slight downshift in +Sm condition. In contrast, shift of chronological distributions was observed for elongation rate and protein

production rate, but not for protein concentration. H. Selection strengths. We compared selection strengths �lt , �pt, and �ct between −Sm and +Sm conditions,

finding a statistically significant difference only for �pt (p < 0.05). The p-values are 0.34 for �lt, 0.044 for �pt, and 0.58 for �ct, respectively (n = 3). I. Relative

selection strengths. Again, the difference is statistically significant only for �pt (p < 0.05). The p-values are 0.21 for �lt, 0.024 for �pt, and 0.14 for �ct,

respectively (n = 3). J. Relationship between relative selection strength and squared correlation coefficient between ~hðDÞ and h(x), where x ¼ �lt, �pt, or �ct.

The correlation coefficients were evaluated by both chronological and retrospective probabilities.

doi:10.1371/journal.pgen.1006653.g006

Table 1. Contributions of individual cells’ responseΔhh(x)icl and change of selection strengthΔS[x] to fitness gain hh(x)irs for the environmental

change from −Sm to +Sm.

Division D Elongation �λt
Protein production �pt Protein concentration �ct

Δhh(x)irs -0.05 ± 0.02 -0.05 ± 0.02 -0.05 ± 0.02 -0.06 ± 0.02

Δhh(x)icl -0.06 ± 0.02 -0.06 ± 0.02 -0.06 ± 0.02 -0.06 ± 0.02

ΔS[x] 0.005 ± 0.009 0.007 ± 0.008 0.012 ± 0.006 0.000 ± 0.004

doi:10.1371/journal.pgen.1006653.t001
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Fig 7. Fitness landscapes and selection strength measured for E. coli F3NW. A. Population growth curves. Green curve is for −Sm condition, and

red for +Sm condition (the color correspondence is the same for all the following panels). Relative population size on the y-axis is the number of cells at

each time point normalized by the number of cells at t = 0 min. The error bars in all panels are the standard deviations of three independent experiments.

Growth rate difference became apparent only after t = 100 min. Hence, we set t0 = 100 min and t1 = 300 min in the following analyses. The numbers of

cells at time t0 and t1 are shown in S2 Table. B-D. Comparison of population growth rate Λ (B), chronological mean lineage fitness h~hðDÞicl
(C), and

selection strength for division count S[D] (D), between −Sm and +Sm conditions. p-values by t-test are 0.036, 0.077, and 0.34, respectively (n = 4). E-G.

Fitness landscapes h(x) (upper panels) and chronological distributions Pcl(x) (lower panels) for elongation rate �lt (E), protein production rate �pt (F), and

protein concentration �ct (G). H. Selection strengths. We compared selection strengths �lt , �pt, and �ct between −Sm and +Sm conditions, finding no

statistically significant differences for all the phenotypes. The p-values are 0.12 for �lt, 0.25 for �pt, and 0.48 for �ct, respectively (n = 4). I. Relative

selection strengths. Again, no statistically significant differences were found. The p-values are 0.057 for �lt, 0.27 for �pt, and 0.69 for �ct, respectively
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Interestingly, we found that the chronological distributions of the three phenotypes of

F3NW were all narrower than those of F3/pTN001 (Fig 7E–7G, and S9 Fig). This indicates

that expressing SmR and Venus from the plasmid induced additional heterogeneity in all the

phenotypes including elongation rate. Such non-trivial effects of different gene expression

schemes can be also probed by this method quantitatively. We note that the ranges where we

can assess the fitness landscapes became narrower in F3NW than in F3/pTN001 simply

because of the lower levels of phenotypic heterogeneity of this strain.

We remark that the measured selection strength for all the phenotypes (x = D, �lt, �pt, and

�ct) is significantly greater than the values calculated after randomly shuffling the combination

of D and x of the lineages, which indicates that the experimentally measured S[x] reports the

true selection levels (S10 Fig). The details on computing selection strength for shuffled pheno-

types are described in S1 Text.

Discussion

Phenotypes of individual cells are intrinsically heterogeneous, and phenotypic heterogeneity is

ubiquitously seen across taxa from microbes to mammalian cells. Different phenotypic states

among genetically identical cells can be selected within a population when they are correlated

with fitness. Therefore, unraveling the unique phenotypic characteristics that allowed a certain

set of cell lineages to outperform in a population is important for understanding the biological

roles of the phenotypic heterogeneity of interest.

We have presented a method to quantify fitness differences and selection strength for het-

erogeneous phenotypic states of individual cells within a population. Our framework shares a

basic idea with the method for measuring selection strength developed in evolutionary biology

in that we evaluate phenotype-dependent fitness [36–38]. The key novelty of our approach is

that we consider individual lineages or histories as the basic units of proliferation. An impor-

tant advantage of this history-based formulation of fitness landscapes and selection strength is

that it is applicable even to cellular phenotypes that fluctuate in time, such as gene expression

levels in single cells. Indeed, we demonstrated by simulation that the pre-assigned fitness land-

scape could be recovered from the single-cell lineage trees and the associated dynamics of cel-

lular phenotypic states despite the stochastic transitions of internal, cellular states. Though a

number of single cell studies have suggested the functional roles of phenotypic fluctuation in a

genetically uniform cell population [5, 6], our framework provides the first procedure for the

rigorous quantification of the fitness values of such fluctuating cellular states. In this frame-

work, we can use any statistical quantities that are measurable on cell lineages as the ‘pheno-

type’. Although we exclusively evaluated the time-averages of cellular phenotypes along cell

lineages in the analysis, other statistical quantities such as variance and coefficient of variation

can also be evaluated as lineage phenotypes, which might reveal e.g. the fitness value of “noisi-

ness” of gene expression level. Conversely, the flexibility imposes a technical challenge to select

a suitable quantity that correctly reports cellular functions. We emphasize that the fitness land-

scapes and selection strengths quantified in this study report only correlation between the line-

age phenotypes and cell division, not causality. To address causality, one must carefully choose

appropriate lineage phenotypes that take detailed time-series of phenotypic states into account.

One of the key features of our analysis is that we measure fitness by cell divisions, and not

by cell size growth such as elongation rate, which is widely used as a proxy for fitness in single-

(n = 4). J. Relationship between relative selection strength and squared correlation coefficient between ~hðDÞ and h(x), where x ¼ �lt, �pt, or �ct. The

correlation coefficients were evaluated by both chronological and retrospective probabilities.

doi:10.1371/journal.pgen.1006653.g007
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cell analysis on bacterial growth. There are two important reasons for this: (1) population

growth is ultimately driven by cell divisions, not by cell elongation; and (2) selection strength

S[D] imposes the fundamental upper limit on the strength of selection for any phenotype. We

are interested in determining which single-cell variables are under the strongest selection,

which can be assessed by our measure of relative selection strength, Srel[x] = S[x]/S[D]. Thus,

evaluating the fitness and selection through the correlation with cell divisions has a fundamen-

tal importance for studying selection in a population.

We applied our method to the clonal proliferation processes of E. coli, and quantified the

fitness landscape and the selection strength for different phenotypes with and without an anti-

biotic drug. First, we found that the elongation rate was the phenotype with largest relative

selection strength, across conditions and strains, with values of S½�lt� that ranged from 30% to

50% of the maximum possible value. This indicates that elongation rate behaves like a trait that

is under strong phenotypic selection within clonal populations of E. coli. As mentioned previ-

ously, this analysis on its own cannot determine the causal relations, i.e. whether elongation

rate is directly under selection, or indirectly by correlation with another trait. All other things

being equal, however, cells that elongate faster are likely to divide sooner, and their lineages

will thus be amplified with respect to cells that elongate slower and divide later, yielding a sim-

ple mechanism for the selection we detect.

Second, we made an interesting observation concerning the selection strength for the time-

averaged protein concentration of SmR, which was indistinguishable between the two environ-

ments with and without the drug, whereas that for time-averaged protein production rate

increased significantly by drug exposure in F3/pTN001. This result indicates that, at least for

this particular strain and experimental condition, the production rate is a more responsive

phenotype that increases its correlation with fitness in +Sm condition. This does not mean

that SmR protein concentration is less important for the fitness in +Sm condition. The correla-

tion between phenotype and fitness in each condition is represented by Srel[x] itself, not by the

change in Srel[x]. Srel½�ct� of F3/pTN001 remains at a high level both in −Sm and +Sm conditions

(Fig 6I), thus its heterogeneity is significantly correlated with the lineage fitness. It is, however,

surprising that the heterogeneity in SmR protein concentration is not correlated with fitness in

the +Sm condition any more than that in the −Sm condition, considering the known func-

tional role of SmR protein in inactivating the drug. It would be important for the future studies

to examine the fitness landscapes and selection strength for broader sets of drug conditions

and resistance proteins.

Our method characterized the similarities and differences of phenotype distributions, fit-

ness landscapes, and selection strength between the closely related E. coli strains (F3/pTN001

and F3NW) (Fig 7). Interestingly, the results revealed that the phenotypes of F3NW were all

less heterogeneous than those of F3/pTN001 (S9 Fig). This suggests that even a small difference

of expression scheme could affect the heterogeneity levels of a large set of phenotypes. Even if

one knows that different strains have different levels of phenotypic heterogeneity, the conse-

quences for fitness are usually difficult to evaluate rigorously. Our method extracts such infor-

mation from experimentally obtainable lineage trees and the measured transition of

phenotypes along cellular lineages.

We emphasize that our method evaluates net results, i.e. the fitness landscapes and selection

strength for each phenotype whose heterogeneity can be caused by many possible noise

sources. The fitness landscapes and selection strength of F3/pTN001 and F3NW are them-

selves valid for describing the properties of the measured phenotypes in each strain, and com-

paring the results among the strains would provide the contributions of different noise sources

such as plasmid copy number variations. The same is true for cases where multiple cell types
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coexist in a population due to cellular differentiation or bet-hedging; even when the differences

between these cell types are not easily apparent, our method can evaluate the overall fitness

landscapes and selection strength of the phenotypes of interest. When one can clearly identify

differences between cell types using markers, such a parameter can be directly incorporated

into the analysis as a phenotype, and the contribution of coexisting cell types to the overall

population growth can then be unraveled.

Recently, several groups have demonstrated that the heterogeneity of division intervals in

clonal cellular populations increases population growth rate [15, 39]. Cerulus, et al. showed

that the levels of variability and epigenetic inheritance of division intervals are changeable to a

large extent depending on the environments and the genetic backgrounds in Saccharomyces
cerevisiae. In general, larger variations and stronger epigenetic inheritance of division times

cause stronger selection in the population, and our method allows us to quantify the contribu-

tion of these factors to population growth by the selection strength S[D]. Since S[D] is directly

measurable using lineage trees, and has a clear meaning as the upper bound of selection

strength for any phenotype, the statistics of division counts have a fundamental importance in

our lineage analysis framework.

Conventional genetic perturbation methods such as gene knock-out, overexpression, and

gene suppression only associate a population-level gene expression state with population fit-

ness; they are unable to report whether different expression states of single cells in the same

population are correlated to their fitness. Our new analytical framework, however, allows us to

reveal the impact of different expression levels and dynamics on cellular fitness without modi-

fying population-level expression states, and might open up a new field in genetics that con-

nects different expression states to cellular fitness without applying the genetic perturbation.

The application of this method is not restricted to the analysis of clonal proliferation in uni-

cellular organisms. An important application would be in the analysis of embryogenesis and

stem cell differentiation of multicellular organisms, in which cellular reproduction rates diver-

sify among the branches of lineage trees as the differentiation process goes forward [40].

Recently, large-scale cell lineage trees along with detailed quantitative information on cellular

phenotypes (gene expression, cell position, movement, etc.) have been available [19, 20, 24,

25]. Quantifying fitness and selection strength for different phenotypes at the single-cell level

in differentiation processes might reveal key phenotypic steps and events leading to cell fate

diversification. Additionally, fruitful applications may be found in the analysis of evolutionary

lineages in viral populations, such as influenza [41] and HIV [42], where lineage trees have

been obtained using temporal sequencing data. Quantifying the strength of selection on viral

traits, such as antigenic determinants, and inferring their fitness landscape is an important

challenge in the field [43–45] which the method presented here could address. The application

of this new lineage analysis tool to broader biological contexts may unravel the roles of pheno-

typic heterogeneity in diverse cellular and evolutionary phenomena.

Materials and methods

Simulation

We simulated clonal cell proliferation processes using a custom C program. We determined

phenotypic state yt+Δt by randomly sampling the value of ln yt+Δt from the normal distribution

with mean μ + e−γΔt(ln yt − μ) and variance σ2(1 − e−2γΔt) assuming that the transition of ln yt
follows the Ornstein-Uhlenbeck process. We set Δt = 5 min, μ = −0.5 ln(1.09), σ2 = ln(1.09),

and γ = (−0.6 ln rg) h−1 with rg = 0.8. In this setting, yt follows the log-normal distribution with

mean 1.0 and standard deviation 0.3 in the stationary state without selection (i.e. Hill coeffi-

cient n = 0). We assumed that cells divide with the probability of f(yt)Δtwhere f ðyÞ ¼ yn

1þyn fmax
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with fmax = 1.2 h−1 at each time point, and the initial states of two daughter cells (yt+Δt) were

determined independently of each other from the last state (yt) of their mother cell. Without

selection, the division rate is f0 = fmax/2 = 0.6 h−1 and thereby the mean interdivision time

along a lineage is f � 1
0
¼ 0:6� 1 h� 1

. Without selection, since the normalized autocorrelation

function of ln yt at stationary sate is ϕ(τ) = e−γτ, rg ¼ e� g=f0 is the autocorrelation of ln yt after a

single generation. Fitness landscapes of �yt with faster fluctuation conditions (rg = 0.5 and 0.2)

were shown in S2 Fig. We also ran the simulations with another type of instantaneous repro-

duction rate f ðyÞ ¼ f0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s� 2
p

exp ð� ðy � 1Þ
2
=2ð0:3sÞ2Þ with f0 = 0.6 h and with s = 0.5, 1, 2

(S3 Fig). We produced a dataset that contains 100 lineage trees (i.e. N(t0) = 100 cells) with the

length of τ = 250 min in each condition, which is comparable to the data size of the real experi-

ments (S1 Table). For each condition, we repeated the simulation 10 times, and the average

and standard deviation were shown in Fig 4 and in S2 Fig.

Cell strains and culture conditions

We used F3, F3/pTN001, F3/pTN002, and F3NW E. coli strains in the experiments. F3 is a

W3110 derivative strain in which three genes (fliC, fimA, and flu) are deleted. pTN001 and

pTN002 are low copy plasmids constructed from pMW118 (Nippon Gene, Co., LTD). We

constructed pTN001 by introducing the PLlacO-1 promoter [33], venus gene [32], smR gene,

t1t2 rrnB terminator, and frt-franked kanamycin resistance cassette [46] into the multi-cloning

site of pMW118. We also placed ribosome-binding sites in front of both venus and smR genes;

these two genes are transcribed together, but translated separately. pTN002 is a control plas-

mid that lacks the smR gene from pTN001. F3NW expresses the fusion protein of Venus-SmR

from the intC locus of the chromosome under the control of the PLlacO-1 promoter. We also

introduced mcherry-rfp into the galK locus on the chromosome under the PLtetO-1 promoter

[33] to facilitate the microscopic observation and image analysis. See S1 Text and S3 Table for

the details on how we constructed these plasmids and strains.

We cultured the cells in M9 minimal medium (M9 minimal salt (Difco) + 2 mM MgSO4

(Wako) + 0.1 mM CaCl2 (Wako) + 0.2% glucose (Wako)) at 37˚C. 0.1 mM Isopropyl β-D-1

thiogalactopyranoside (IPTG) (Wako) was added to the cultures of F3/pTN001, F3/pTN002,

and F3NW to induce the expression of the genes under the control of the PLlacO-1 promoter.

For single-cell time-lapse experiments, we solidified M9 medium with 1.5% (w/v) agarose

(Gene Pure Agarose, BM Bio). We adjusted the IPTG concentration in M9 agarose to 0.1 mM

by adding ×1,000 concentrated IPTG solution to the melted M9 agarose before solidification.

Approximately 5 mm (W)×8 mm (D)×5 mm (H) piece of M9 agarose gel was mounted onto

cell suspension on a glass-bottom dish (IWAKI). For +Sm condition, we added 200 μg/mL

streptomycin when solidifying M9 agarose gel.

Determination of MIC

Overnight cultures of the four E. coli strains in M9 medium at 37˚C from glycerol stock were

diluted ×100 into 2-ml fresh M9 medium and cultured for three hours at 37˚C. 100 μl expo-

nential phase culture was mixed with 100 μl fresh M9 medium containing streptomycin in a

96-well plate. We prepared 10 different conditions of streptomycin concentration for each

strain with the concentration increased in two-fold stepwise. The optical density of the cell cul-

tures after mixing was ca. 0.05 at 600 nm. The cell cultures in a 96-well plate were incubated by

shaking at 37˚C for 20 hours. We determined the MICs of the four strains with a microtiter

plate (FilterMax F5, Molecular Devices) by absorbance at 595 nm.
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Time-lapse microscopy

To prepare a sample for time-lapse microscopy, we first cultured the cells from glycerol

stock in M9 medium at 37˚C by shaking overnight. Next, we diluted the overnight culture

×100 in 2 ml fresh M9 medium, and cultured it for another three hours at 37˚C by shaking.

We adjusted the OD600 of the culture to 0.05, and 1 μl of the diluted culture was spread on

a 35-mm (ϕ) glass-bottom dish (IWAKI) by placing M9 agarose pad onto the cell suspen-

sion. To avoid drying the M9 agarose pad, water droplets (total 200 μl) were placed around

the internal edge of the dish. The dish was sealed by parafilm to minimize water evapora-

tion. Fluorescent time-lapse images were acquired every 5 minutes with Nikon Ti-E micro-

scope equipped with a thermostat chamber (TIZHB, Tokai Hit), 100x oil immersion

objective (Plan Apo λ, N.A. 1.45, Nikon), cooled CCD camera (ORCA-R2, Hamamatsu

Photonics), and LED excitation light source (DC2100, Thorlabs). The temperature around

the dish was maintained at 37˚C. The microscope was controlled by micromanager

(https://micro-manager.org/).

Analysis

Time-lapse images were analyzed with a custom macro of ImageJ (http://imagej.nih.gov/ij/).

This macro produces the results file, which contains the information of mean fluorescence

intensity, cell size (area), and geneaological position of individual cells. We analyzed the results

file with a custom C program.

To evaluate fitness landscapes and selection strengths both in the simulation and the experi-

ments, we determined the bin width based on the interquartile range of each phenotypic state

(S11, S12 and S13 Figs). The details are explained in S1 Text.

Supporting information

S1 Text. Supplementary texts for theory, data analysis, application to models and Materi-

als and Methods.

(PDF)

S1 Table. Numbers of cells at 0 min, 200 min and 400 min, in the datasets of F3/pTN001

described in main text.

(PDF)

S2 Table. Numbers of cells at 0 min, 100 min and 300 min, in the datasets of F3NW

described in main text.

(PDF)

S3 Table. List of primers.

(PDF)

S1 Fig. Normalized autocorrelation functions of experimental data. Normalized autocorre-

lation functions of experimental data were calculated according to the method described in

section 2.8 in S1 Text. Autocorrelation functions with chronological weights are shown by

green solid lines and those with retrospective weights are shown by magenta solid lines. Col-

ored shades for each line indicate the ± standard deviation over all the independent measure-

ments for each pair of strain and drug condition (3 for A and B, and 4 for C and D). The gray

time windows indicate the doubling time with ± standard deviation over all the independent

measurements. The doubling time was calculated by dividing ln2 by the population growth

rate in Eq.S2.11 in S1 Text. A. F3/pTN001 without streptomycin, B. F3/pTN001 with

200 μg/mL streptomycin, C. F3NW without streptomycin, D. F3NW with 100 μg/mL
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streptomycin. These graphs show that the autocorrelation decays to approximately 0.8 in one

generation for F3/pTN001 and 0.7 for F3NW.

(PDF)

S2 Fig. Quantifying fitness landscape and selection strength for the simulation data of

clonal cell proliferation with faster fluctuation conditions (rg = 0.5 and 0.2, rg: autocorrela-

tion of ln yt after a single generation). A. Fitness landscapes for rg = 0.5. We produced the

datasets of clonal cell proliferation by simulation, in which we assumed that cells stochastically

change phenotypic state y and divide in a phenotype-dependent manner with the division rate

fðyÞ ¼ yn

1þyn fmax (broken curves). We calculated fitness landscapes hð�yÞ from the simulation

data for the conditions of n = 0, 2, and 10. The points and the error bars represent the means

and the standard deviations of the results from 10 independent simulations. B. Fitness land-

scapes for rg = 0.2. C. Dependence of relative selection strength Srel½�y t� ¼ S½�y t�=S½D� on hill

coefficient for rg = 0.2, 0.5 and 0.8. As rg decreases, the relative selection strength also decreased

for the same value of hill coefficient.

(PDF)

S3 Fig. Quantifying fitness landscape for simulated data with non-monotonic fitness func-

tions. Fitness landscapes for rg = 0.8 with Gaussian fitness functions. We produced the data-

sets of clonal cell proliferation by simulation, in which we assumed that cells stochastically

change phenotypic state y and divide in a phenotype-dependent manner with the division

rate fðyÞ ¼ f0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s� 2
p

exp ð� ðy � 1Þ
2
=2ð0:3sÞ2Þ (broken curves). We calculated fitness

landscapes hð�yÞ from the simulation data for the conditions of s = 0.5, 1, and 2. The points

and the error bars represent the means and the standard deviations of the results from 10

independent simulations.

(PDF)

S4 Fig. Correlation between fluorescence intensity and cell size for F3/pTN001. A. Correla-

tion coefficients between fluorescence intensity c and cell size v in the data of F3/pTN001 for

−Sm and +Sm conditions at three different time points, 200, 300 and 400 min. Averages and

standard deviations of the correlation coefficients among three independent measurements

for each drug condition are also shown. Those data suggest that c and v are almost uncorre-

lated. Typical scatter plots of c vs v are shown in B and C. B. Scatter plot of c vs v for the mea-

surement #2 with −Sm condition for F3/pTN001 at 300 min. C. Scatter plot of c vs v for the

measurement #2 with +Sm condition for F3/pTN001 at 300 min.

(PDF)

S5 Fig. Correlation between fluorescence intensity vs cell size for F3NW. A. Correlation

coefficients between fluorescence intensity c and cell size v in the data of F3NW for −Sm and

+Sm conditions at three different time points, 100, 200 and 300 min. Averages and standard

deviations of the correlation coefficients among three independent measurements for each

drug condition are also shown. Those data suggest that c and v are almost uncorrelated. Typi-

cal scatter plots of c vs v are shown in B and C. B. Scatter plot of c vs v for the measurement #4

with −Sm condition for F3NW at 200 min. C. Scatter plot of c vs v for the measurement #1

with +Sm condition for F3NW at 200 min.

(PDF)

S6 Fig. Fitness landscapes and selection strength measured for the early term of F3/

pTN001 (t0 = 0 min and τ = 200 min). A. Population growth curves. The time window col-

ored in light blue corresponds to the early term. Green curve is for −Sm condition, and red for

+Sm condition (the color correspondence is the same for all the following panels). Relative
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population size on Y-axis is the number of cells at each time point normalized by the number

of cells at t = 0 min. The error bars are the standard deviations of three independent experi-

ments, which is also true for all the error bars in the following panels. B. Comparison of popu-

lation growth rate between +Sm and −Sm conditions. Error bars are SD of the three replicate

experiments (the same for all the results below). C. Comparison of the mean fitness hh(D)icl.

D. Comparison of selection strength S[D]. E-G. Fitness landscapes and chronological probabil-

ity distributions of the phenotypes: elongation rate (E), protein production rate (F), and pro-

tein concentration (G). H. Comparison of selection strength between +Sm and −Sm

conditions. I. Relative selection strengths. J. Relationship between relative selection strength

and squared correlation coefficient between ~hðDÞ and h(x), where x ¼ �lt, �pt, or �ct. The corre-

lation coefficients were evaluated by both chronological and retrospective probabilities.

(PDF)

S7 Fig. Chronological and retrospective probability distributions and fitness landscapes

for F3/pTN001. In each panel, chronological probability distribution (green), retrospective

probability distribution (magenta), and fitness landscape (blue) are shown. The error

bars for the fitness landscapes represent ± standard deviations among the replicate experi-

ments. A. Time-averaged elongation rate, −Sm. B. Time-averaged elongation rate, +Sm. C.

Time-averaged protein production rate, −Sm. D. Time-averaged protein production rate,

+Sm. E. Time-averaged protein concentration, −Sm. F. Time-averaged protein concentra-

tion, +Sm.

(PDF)

S8 Fig. Chronological and retrospective probability distributions and fitness landscapes

for F3NW. The chronological and retrospective probability distributions and the fitness land-

scapes for the three phenotypes of F3NW are shown. A. Time-averaged elongation rate, −Sm.

B. Time-averaged elongation rate, +Sm. C. Time-averaged protein production rate, −Sm. D.

Time-averaged protein production rate, +Sm. E. Time-averaged protein concentration, −Sm.

F. Time-averaged protein concentration, +Sm.

(PDF)

S9 Fig. Coefficient of variation (CV) for lineage phenotypes. The CVs for time-averaged

elongation rate �lt, time-averaged protein production rate �pt and time-averaged protein con-

centration �ct are calculated with both chronological and retrospective weighing. The CVs for

F3/pTN001 (green squares) and those for F3NW (brown circles) are compared in each panel:

(A) chronological, −Sm, (B) retrospective, −Sm, (C) chronological, +Sm, (D) retrospective,

+Sm. Error bars are the standard deviations among 3 or 4 independent measurements (3 for

F3/pTN001 and 4 for F3NW). The CVs for F3NW were not greater than those for F3/pTN001

in all the cases.

(PDF)

S10 Fig. Assessing the significance of selection strength measurements by randomly shuf-

fling division counts D and phenotypes x among lineages. The combination of D and x
(x = D, �lt, �pt and �ct) was randomly shuffled over the lineages in each measurement, and

selection strength S[x] was computed for each realization of the shuffle (Sshuffle[x]). The shuf-

fle was repeated 10000 times, and the median and the 95% confidence interval were com-

puted (shown as cross points with error bars) for all the independent measurements. A-D.

95% CI of Sshuffle[x] and original selection strength value Sori[x] (same as those calculated in

Figs 6 and 7 in Main Text) were compared for all the independent measurements and pheno-

types D, �lt, �pt and �ct. The strain (F3/pTN001 or F3NW) and drug condition (−Sm or +Sm)
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are shown in each panel. S[x] is grouped by phenotype, and different color indicates different

experiment.

(PDF)

S11 Fig. Bin width dependence of selection strength for F3/pTN001. Start time is 0 min

and end time is 200 min. Results are of three replicates for each drug conditions (− Sm or

+ Sm).

(PDF)

S12 Fig. Bin width dependence of selection strength for F3/pTN001. Start time is 200 min

and end time is 400 min. Results are of three replicates for each drug conditions (− Sm or

+ Sm).

(PDF)

S13 Fig. Bin width dependence of selection strength for F3NW. Start time is 100 min and

end time is 300 min. Results are of three replicates for each drug conditions (− Sm or + Sm).

(PDF)
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