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Abstract
Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular

appendages called cilia. Different cilia types possess distinct stereotypic microtubule dou-

blet arrangements with non-motile or ‘primary’ cilia having a 9+0 and motile cilia have a 9+2

array of microtubule doublets. Primary cilia are critical sensory and signaling centers

needed for normal mammalian development. Defects in their structure/function result in a

spectrum of clinical and developmental pathologies including abnormal neural tube and

limb patterning. Altered patterning phenotypes in the limb and neural tube are due to pertur-

bations in the hedgehog (Hh) signaling pathway. Motile cilia are important in fluid movement

and defects in motility result in chronic respiratory infections, altered left-right asymmetry,

and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM

244400). While mutations in several genes are associated with PCD in patients and animal
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models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of

Growth Arrest Specific 8 (GAS8). GAS8 shares strong sequence similarity with the Chlamy-
domonas Nexin-Dynein Regulatory Complex (NDRC) protein 4 (DRC4) where it is needed

for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the

microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was

recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking

into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it

causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In

addition, we identified two human patients with missense variants in Gas8. Rescue experi-

ments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls.

Further experiments using CRISPR/Cas9 homology driven repair (HDR) to generate one of

these human missense variants in mice demonstrated that this allele is likely pathogenic.

Author Summary

Growth-Arrest Specific 8 (Gas8) is implicated in dual roles at both the primary cilium to
regulate hedgehog signaling and in motile cilia to coordinate cilia movement. To investi-
gate these roles in vivo, we created a Gas8 genetrap mutant mouse. Though no overt pri-
mary cilia phenotypes were evident in the Gas8 genetrap mutant mice, there were severe
motility defects and the mice presented with Primary Ciliary Dyskinesia (PCD) like symp-
toms including situs inversus and hydrocephalus. We also identified two potential disease
causing GAS8missense variants (A391V and E199K) in humans. Utilizing CRISPR/Cas9
we generated a mouse to mimic the A391V allele. When we crossed the Gas8AV mutants
with the Gas8GT mutant, the compound Gas8GT/AV heterozygous animals developed mild
hydrocephalus. Rescue experiments using Chlamydomonas with mutations in the Gas8
homolog revealed only a modest decrease in swim velocity raising the possibility that the
E199K allele is not pathogenic.

Introduction
Primary cilia are solitary and immotile cellular appendages that serve as signaling hubs for
pathways such as Hedgehog (Hh) during development [1]. Motile cilia initiate and maintain
fluid flow and are critical in the brain for cerebral spinal fluid flow and are necessary for mucus
transport in the lungs [2]. During development, motile cilia are responsible for initiating flow
at the embryonic node which is critical for setting up left-right asymmetry in the mammalian
body [3–5].

While all cilia have common core components such as tubulin and intraflagellar transport
proteins, motile cilia possess several accessory structures such as inner dynein arms (IDAs),
outer dynein arms (ODAs), radial spokes, and the nexin-dynein regulatory complex (N-DRC).
In Chlamydomonas reinhardtii, data indicate that the N-DRC functions to link the A microtu-
bule of one doublet with the B microtubule of the adjacent doublet. It coordinates the activities
of the outer and inner dynein arms to regulate flagellar beat frequency and waveform [6,7].
Studies in Chlamydomonas have led to the identification of several N-DRC proteins many of
which appear to be conserved in mammals [8,9]. As in Chlamydomonas, mutations in putative
mammalian N-DRC proteins CCDC164 (DRC1), CCDC65 (DRC2), and most recently, GAS8
(DRC4) are correlated with defects in ciliary motility [10–13].
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The human homolog of Gas8 was originally identified in human breast cancer and referred
to as Growth Arrest Specific 11 (GAS11) [14]. This gene shares 56% protein identity to an
N-DRC component in Chlamydomonas known as DRC4, the protein product of the paralyzed
flagella 2 (PF2) gene [15]. Loss of PF2 (DRC4) in Chlamydomonas leads to loss of IDAs and
the majority of the N-DRC (N-DRC proteins DRC3-7) visible by transmission electron micros-
copy (TEM) and results in a slower forward swimming velocity and defective waveform
[6,16,17]. The function of Gas8 in the mammalian N-DRC remains poorly understood.

Gas8 localizes to the axoneme of motile cilia and also to the base of primary cilia in verte-
brate cells [18]. This led us to question if Gas8 serves as an N-DRC component in motile cilia
and whether it has a separate role in non-motile primary cilia. This possibility is supported by
data from knockdown studies of Gas8 in NIH3T3 cells showing defects in Hh pathway
responses. Expression of truncated versions of Gas8, after knockdown of endogenous Gas8,
revealed that the C-terminal region of Gas8 bound to and facilitated the transport of Smooth-
ened into the cilium in response to Hh pathway activation using the Smoothened agonist
(SAG) [18,19]. In mammals, cilia are essential for normal regulation of Hh signaling activity
with many of the Hh signaling components such as Smoothened, Patched and Gli transcription
factors dynamically localizing in primary cilia [20–22].

Primary Ciliary Dyskinesia (PCD, OMIM #244400) is a human disease characterized by
abnormal motile cilia. PCD patients exhibit bronchiectasis, infertility, and chronic respiratory
infections, and in some cases can present with hydrocephalus. A subset of PCD patients will also
have a reversal of their left-right body axis that includes situs inversus totaliswhich is referred to
as Kartagener syndrome [23]. PCD patients often have changes in cilia axonemal ultrastructure
that include defects in the inner or outer dynein arms, central complex, radial spokes, and the
N-DRC [24–28]. These structural defects alter ciliary beat frequency (CBF), ciliary waveform,
and cilia orientation. Recent data indicate that mutations in the putative mammalian N-DRC
components CCDC164, CCDC65, and Gas8 correlate with the clinical presentation of PCD.
Mutations in these genes lead to dyskinetic cilia with subtle changes in cilia ultrastructure point-
ing to an importance for these components in ciliary motility. Other proteins such as CCDC39
and CCDC40 are responsible for the assembly and attachment of the IDAs and N-DRC in motile
cilia. The absence of these proteins results in severe motility defects [10,11,29–31].

In this study, we investigate a role for Gas8 in both primary and motile cilia in vivo. For this
we generated a Gas8 genetrap mutant mouse. Gas8 mutants present with severe hydrocephalus
and cilia motility defects on both the ependyma and trachea, as well as a situs inversus pheno-
type. Given the role for Gas8 in cilia motility and recent data suggesting it is a PCD causing
allele, we screened human PCD patients for GAS8mutations and identified two independent
missense variants. The potential pathogenicity of these alleles was tested by rescue experiments
in Chlamydomonas PF2mutants and by generating a mouse model for one of the variants. In
contrast to the PCD phenotypes, we did not observe Hh associated defects in any of the mutant
mice or cell lines derived from them or other phenotypes typically associated with defects in
primary cilia function. These results suggest that GAS8 plays a highly conserved role in ciliary
motility and mutations in Gas8 are associated with human disease through their impact on
motile cilia.

Results

Generation of Gas8 mutant mice and phenotype description
A β-geo cassette containing the β-galactosidase enzyme, a neomycin resistance cassette, an
N-terminal splice acceptor and poly-A tail was inserted in intron 7 of the Gas8 mouse allele
(Fig 1A, herein referred to as Gas8GT). RT-PCR analysis using primers located before the
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genetrap insertion indicates that the 5’ end of the transcript is generated (Fig 1B, left). In con-
trast, primers located 3’ to the insertion failed to detect any Gas8 mRNA (Fig 1B, right).

Western blot analysis shows a product of expected size (57kDa) in wildtype and heterozy-
gous Gas8 mice. This product is absent in homozygous mutants (Fig 1C). Additionally, the

Fig 1. Generation of mutant Gas8GT mice and phenotype description. (A) Schematic of the wildtype
Gas8 allele (Gas8WT) and the Gas8 genetrap allele (Gas8GT). The relative position of the β-geo cassette is
indicated by the blue box. Arrows indicate the primers used for RT-PCR analysis. (B) RT-PCR expression
analysis of Gas8 transcript in Gas8WT, Gas8GT/WT, Gas8GT whole embryos shows the presence of the 5’ end
of Gas8 transcript (left panels) and absence of the 3’ end (right panels). Actin served as a positive template
control in all samples. Reactions with reverse transcriptase are indicated (+) and negative RT controls (-). (C)
Western blot for Gas8 protein on Gas8WT, Gas8GT/WT, and Gas8GT trachea. Wildtype Gas8 is located at 57
kDa (Gas8WT) while the genetrap allele is at approximately 230kDa (Gas8GT). * denotes a spurious band
recognized by polyclonal antibody. GAPDHwas used as a loading control. (D) Nissl stained coronal section
of P21 Gas8WT and Gas8GT brain. (E) Gas8GT mice display situs inversus as noted by the reversed direction
of the heart apex (white lines indicate heart axis) and (F) the stomach location in P2 pups (arrow).

doi:10.1371/journal.pgen.1006220.g001
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Gas8::β-geo fusion protein is detected (approx. 230kDa) in heterozygous and homozygous
mutants indicating that the genetrap allele is being transcribed and translated. Loss of Gas8 led
to lethality at approximately postnatal day 14 (P14) with few living to P21. All mutants pre-
sented with severe hydrocephalus (Fig 1D). Gas8GT mutant mice also presented with situs
inversus at a rate of 36% (6 of 16 mutants) in live births based on position of the heart and
stomach (Fig 1E and 1F). Both the hydrocephalic and situs inversus phenotypes suggested a
defect in the function of motile cilia.

Loss of Gas8 does not result in defective Hh signaling
Based on a previous study reporting Gas8 as a positive effector of Hh signaling in mammals,
we anticipated Gas8GT mice would present with phenotypes related to Hh signaling defects,
especially since this mutation would lack the putative Smo binding domain (amino acids 386–
478). However, we did not observe any hedgehog-associated phenotypes in limb patterning or
neural tube formation. To further test a role for Gas8 in the Hh pathway, we isolated Mouse
Embryonic Fibroblasts (MEFs) from Gas8WT and Gas8GT mutant mice and treated them with
150nM Smoothened agonist (SAG). The MEFs were then immunolabeled for Smo and acety-
lated tubulin to analyze differences in Smo trafficking into the cilium (Fig 2A). In contrast to
the outcome of the knockdown studies, there was no difference between the amounts of Smo
present in the cilia of Gas8GT mutants when compared to Gas8WT cilia (Fig 2B). These data
indicate that a least in the Gas8GT mutants, Gas8 is not an essential factor involved in regulat-
ing Smo cilia trafficking. Similarly, none of the Gas8GT mutants exhibited defects in dorsal ven-
tral patterning of the neural tube typical of altered Hh signaling (Fig 2C).

Gas8GT mice present with dyskinetic cilia and subtle cilia ultrastructural
defects
To investigate the hydrocephalus phenotype, cilia morphology, ultrastructure and motility on
ependymal and tracheal cells was assessed. DIC analysis and immunofluorescence staining of tra-
chea indicate motile cilia are present on the epithelium, but the Gas8GT protein fails to localize to
these cilia (Fig 3). We counted cilia from trachea TEMs for broken doublet rings and found that
about 9% of cilia from Gas8GT mutants showed disorganization of the arrangement of the micro-
tubule doublets (Fig 4A arrowhead and 4E). To analyze ultrastructure within the doublets, we
averaged 202 doublets of both genotypes to reduce variability due to random sectioning of the
96nm repeat of the microtubule doublet. We did not observe any major structural differences in
the inner or outer dynein arms (Fig 4B). However, high speed video and Fourier transformation
analysis revealed that cilia are largely static with only a few moving (Fig 4C and 4D, S1 Movie
and S2Movie). Those cilia that did moved were dyskinetic, resulting in an inability of cilia to pro-
pel fluid as seen by tracking of fluorescent beads added to either brain ventricle or trachea prepa-
rations (Fig 4F and 4G). Beat frequency of cilia that remained motile in Gas8GT mutants was
modestly decreased from 17.0Hz in Gas8WT to 12.7Hz in Gas8GT (Fig 4H). Cilia length is also
affected in Gas8GT mice, with Gas8GT motile cilia measuring 0.9μm shorter than Gas8WT motile
cilia (Gas8WT 5.3μm and Gas8GT 4.4μm) (Fig 4I). Cilia orientation in Gas8GT tracheas is also
more randomized than in Gas8WT controls (Fig 4J). These phenotypes observed in the motile
cilia of Gas8GT mutant mice are similar to those observed in PCD patients and animal models.

GAS8 is a disease causing gene in humans
The phenotypes in the Gas8GT mutants led us to evaluate whether mutations in GAS8 are asso-
ciated with PCD in humans. We identified two independent missense variants, c.595G>A
E199K and c.1172C>T A391V, in human patients through a previously published screen (Fig
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5A) [32]. The E119K patient is of Latino decent and presented with heterotaxy. Unaffected
parents of the patient are heterozygotes, and an unaffected female sibling is a homozygote.
This allele appears at a frequency of 11% in Latino populations (87 homozygotes and 1279 het-
erozygotes in a total of 11564 alleles sequenced according to ExAC). The prevalence of this
allele in the Latino community makes it unlikely to be associated with disease. The A391V
patient met the diagnostic criteria for PCD. This allele is infrequent, occurring only 3 times het-
erozygously and 0 times homozygously in 84864 alleles sequenced according to ExAC. Both
variants affect highly conserved regions across multiple species (Fig 5B). We utilized the Poly-
Phen-2 program to predict the pathogenicity of these alleles. The A391V allele had a Poly-
Phen-2 score of 0.762 suggesting that it is a potentially damaging mutation while the E199K
allele had a score of only 0.082, suggesting that this is a benign mutation. Given the low allele
frequency, PolyPhen-2 score, and the confirmation of the PCD diagnosis in the patient carry-
ing the A391V variant, we chose to test potential pathogenicity of this allele in mice.

To further assess the potential pathogenicity of the human allele, we created a mouse har-
boring the A391V mutation via homology driven repair with CRISPR/Cas9 technology.
Sequencing confirmed the presence of the c.1172 C>T mutation resulting in an A391V amino
acid change (Fig 6A). We crossed Gas8AV mice onto the Gas8GT background to create

Fig 2. Gas8mutant embryos have no overt Hh phenotypes. (A) Vehicle (Control) and drug treated (SAG)
Gas8WT and Gas8GT mutant MEFs stained for Smo (green) and acetylated tubulin (purple). Scale bar is
15μm. (B) Quantification of Smo translocation into the cilium. All bars are normalized to WT CONT. (* =
significantly different thanWT CONT, # = Significant different than GT CONT p<0.05). (C) Gas8WT neural
tube sections and Gas8GT sections. The Pax7 and Sonic hedgehog (SHH) domains in the notochord, floor
plate and neural tube all appear similar between Gas8GT and Gas8WT littermates. Scale is 90μm.

doi:10.1371/journal.pgen.1006220.g002
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compound heterozygous (Gas8GT/AV) mice. To determine the impact on motile cilia and test
possible cause of the hydrocephalus, we took brains from 6 week old mice and analyzed cilia
beat and the ability of motile cilia to move fluid. While there were no differences in beat fre-
quency, bead flow analysis shows a modest decrease in the ability of Gas8GT/AV cilia to move
fluid compared to Gas8GT/WT cilia (Fig 6B and 6C). Compound heterozygotes develop mild
hydrocephalus at approximately 10 weeks of age (Fig 6D) but there were no evident laterality
defects. While all the Gas8GT/AV mice analyzed (n = 6) display hydrocephalus at this age, the
severity ranged from mild (arrowhead) to moderate (arrow). The phenotype in the Gas8GT/AV

mice is not as severe as in the Gas8GT mice and hydrocephalus was not present in any (n = 2)
of the Gas8GT/WT or (n = 2) of the Gas8WT/AV mice analyzed.

We chose to generate the A391V mouse model because of the PCD symptoms of the patient
but given the lack of full PCD symptoms in the E199K patient, we decided to test first whether
or not the E199K is pathogenic in Chlamydomonas before proceeding to a potential mamma-
lian model. Alignment of GAS8 and the Chlamydomonas orthologue DRC4 revealed that E199
in GAS8 aligns with D198 in DRC4 (Fig 5B). To better understand the mechanisms underlying
these defects, we generated strains expressing the Chlamydomonas equivalent (D198K) of the
human E199K alleles in a null mutant background (pf2). Interestingly, transformation with
DRC4-DK-GFP rescued the severe motility defects seen in the pf2 null mutant, but measure-
ments of forward swimming velocities revealed a subtle defect in the swimming phenotype of
the rescued strains (Fig 6E). Furthermore, the DRC4-DK-GFP protein is assembled at wild-
type levels in the flagellar axonemes of Chlamydomonas, as assayed by western blot (S1 Fig).
These observations show that the D198K DRC4 mutant protein is properly localized in the
axoneme and may not correspond to a pathogenic allele.

Discussion
Defects involving cilia motility cause severe phenotypes in humans including infertility, hydro-
cephalus, respiratory defects, and reversal of left-right asymmetry. Much of our understanding

Fig 3. Gas8 localizes to cilia.Gas8 immunofluorescence staining on Gas8WT and Gas8GT p21 trachea
(Scale Bar = 10μm). Gas8 is present in wild-type axonemes but absent frommutant axonemes. DIC images
are shown to visualize the cilia on the tracheal epithelium.

doi:10.1371/journal.pgen.1006220.g003
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Fig 4. Gas8GT mice present with cilia motility phenotypes. (A) TEM of Gas8WT and Gas8GT tracheal cilia
showing disorganized microtubule doublets in mutants. (B) TEM average of tracheal cilia microtubule doublet
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about cilia motility has come from studies in organisms such as Chlamydomonas. These studies
and how defects in cilia motility cause disease are now being extended into mammalian sys-
tems. Recently GAS8 was implicated as a cause for Primary Ciliary Dyskinesia (PCD) as well as
a positive effector of Smoothened transport into cilia during Hh pathway activation [12,13,19].

To further evaluate the connection between Gas8 and PCD in mammals, we generated a
mouse with a β-geo cassette inserted in intron 7 of the Gas8 gene. Insertion of the β-geo gene-
trap cassette effectively eliminated the presence of wildtype transcript and protein in mutants
as verified by RT-PCR and western blot analysis. Though the Gas8GT mutant allele is translated
into a large fusion protein between the N-terminal portion of Gas8 and β-geo, it does not local-
ize to motile cilia. Gas8GT mutant mice present with hydrocephalus starting at postnatal day 5
(P5) that becomes more pronounced as the mice mature and eventually leads to mortality
between P14-P21. Development of hydrocephalus is associated with severe impairment of cilia
motility on ependymal cells lining the ventricles of the brain.

Previous studies using image average procedures to analyze flagella ultrastructure in Chla-
mydomonas showed that strains with mutations in PF2/DRC4, the Gas8 homolog, were associ-
ated with the loss of the majority of the N-DRC complex along with a subset of the IDAs
[6,16,17,33]. In contrast to the Chlamydomonas results, the N-DRC and IDA do not appear to
be overtly affected in Gas8 mutant mice based on standard thin-section TEM analysis. How-
ever, loss of Gas8 does effect microtubule organization, as indicated by a higher percentage of

showing no major structural defects (Gas8WT N = 202 doublets from 1 trachea, Gas8GT N = 202 doublets
from 1 trachea). (C) Representative kymograph measurement of ciliary waveform in Gas8WT and Gas8GT

tracheal cilia. (D) Schematic depicting waveform defects observed in Gas8GT cilia. (E) Percentage of cilia
with disorganized doublets in wildtype and mutant trachea (Gas8WT N = 77 cilia from 1 trachea, Gas8GT

N = 287 cilia from 1 trachea). (F and G) Fluorescent bead tracking of Gas8 mice in ependyma and trachea
epithelium respectively. Bead flow is significantly impaired in Gas8GT versus Gas8WT Ependyma: Gas8WT =
147.5μm/sec, Gas8GT = 10.2μm/sec (Ependyma: Gas8WT N = 4 brains, Gas8GT N = 4 brains). Trachea:
Gas8WT = 24.15μm/sec, Gas8GT = 0.62μm/sec. (Trachea: Gas8WT N = 3 trachea, Gas8GT N = 3 trachea). (H)
Tracheal cilia beat frequency (CBF) captured by DIC and analyzed using fast Fourier transform test. Gas8WT

CBF = 17.0Hz and Gas8GT CBF = 12.7Hz (Gas8WT N = 108 cilia from 4 trachea, Gas8GT N = 46 cilia from 3
trachea). (I) Cilia length is decreased in Gas8GT mutants as measured from DIC images (p<0.01, Gas8WT

N = 321 cilia from 3 trachea, Gas8GT N = 343 cilia from 3 trachea). (J) Cilia orientation is significantly altered
in Gas8GT mice (p = 0.025) (Gas8WT N = 184 cilia from 1 trachea, Gas8GT N = 375 cilia from 1 trachea). * =
p<0.01, ** = p<0.001

doi:10.1371/journal.pgen.1006220.g004

Fig 5. PCD patient missense mutations in highly conserved regions of Gas8. (A) Sanger Sequence trace and
amino acid sequence of human mutations. (B) ClustalOmega amino acid alignment indicates the high conservation
of the missense mutant residues found in patients which are indicated by black boxes.

doi:10.1371/journal.pgen.1006220.g005
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cilia with disorganized microtubule doublets in Gas8GT mutant mice when compared to
Gas8WT mice. Altered cilia microtubules were recently also recently observed in human Gas8
patients [12,13]. Together these data suggest that defects in the mammalian N-DRC may not
always be detectable using traditional TEM averaging of cross-sections. The inability to observe
ultrastructural defects in human PCD patients could be attributed to having only one N-DRC
per 96nm repeat. Future studies using better imaging approaches such as cryo-electron tomog-
raphy and image averaging of longitudinal sections to assess the human N-DRC will likely con-
tinue to reveal structural and functional differences similar to those described for the radial
spokes by Lin, et al 2014.

Most Gas8GT mutant cilia failed to move, however those that were observed moving dis-
played a modest decrease in beat frequency. The most distinguishable phenotype observed in
the cilia that moved was a very rigid and short wave pattern. This pattern has also been
observed in other cilia motility mutants thought to affect the NDRC [10–12]. These changes in
waveform and the lack of overall motility result in the defective fluid flow observed in these
mice. Previous data show a complex relationship between planar cell polarity (PCP) and fluid

Fig 6. A391V is a potential pathogenic allele. (A) Sanger Sequence confirmation of the 1172 C>T point mutation in
Gas8AV mice reproducing the A391V missense mutation found in the human patient. (B) Ciliary beat frequency analysis on
tracheal cilia of Gas8GT/WT and Gas8GT/AV mice shows no difference between controls and compound heterozygotes (n = 86
points from 3 trachea for Gas8GT/WT (13.04 Hz), n = 76 points from 3 tracheas for Gas8GT/AV (13.34 Hz)). (C) Tracking of red
fluorescent latex beads added to lateral ventricles shows a trending but not significant decrease in ability of Gas8GT/AV cilia
to move fluid. (n = 3 for Gas8GT/WT (163.7μm/sec), n = 2 for Gas8GT/AV (135.9μm/sec)). (D) Nissl stained brains of 10 week
old Gas8GT/WT, Gas8WT/AV, and Gas8GT/AV mice. Mild to moderate hydrocephalus is present in the Gas8GT/AV brains. Scale
is 1mm (Arrowhead indicates mild, arrow indicates moderate) (n = 4). (E) Swim speed quantification of rescue of
DRC4-D198K construct in pf2 deficientChlamydomonas. “pf2” denotes pf2 deficientChlamydomonas, “DK-GFP” denotes
pf2 deficientChlamydomonas expressing the DRC4-D198K-GFP construct, “DRC4-GFP” denotes pf2 deficient
Chlamydomonas expressing the DRC4-GFP wild-type construct. * = significant difference fromWT (p<0.05), # = significant
difference from pf2 (p<0.05), § = significant difference between DK-GFP and DRC4-GFP (p<0.05) (n = 390 for WT
(123.9μm/sec), n = 271 for pf2 (40.1μm/sec), n = 180 for DK-GFP (108.3μm/sec), n = 299 for DRC4-GFP (120.9μm/sec)).

doi:10.1371/journal.pgen.1006220.g006
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flow in establishing motile cilia orientation [34,35]. Gas8GT cilia show a more random distribu-
tion of cilia orientation than their Gas8WT counterparts supporting the necessity of proper
fluid flow in establishing cilia orientation.

Variants in Gas8 were recently identified in human PCD patients. These mutations resulted
in a similar, albeit not significant, decrease in beat frequency along with an abnormally rigid
ciliary waveform [12,13]. This motility phenotype is similar to our observation in the mutant
mice. Here we identified an additional independent missense mutation, c.1172C>T A391V, in
PCD patients as well as a variant c.595G>A E199K that appears to have minimal effect on cilia
motility. The A391V mutations lies in close proximity to the other published mutants, C309�,
A334�, and G357� suggesting that this area is critical for GAS8 function. Similarly, the genetrap
cassette in the Gas8GT allele was inserted in close proximity (K337) to the A334� mutation. The
E199K mutation also affects a highly conserved region within Gas8 that is proposed to be a
Microtubule Association Domain (GMAD) [36].

To test pathogenicity of the A391V allele, we used CRISPR/CAS9 homology driven repair
(HDR) to generate a mouse line mimicking the human mutation. Mice compound heterozy-
gous for the Gas8GT and Gas8AV mutations develop age dependent, mild hydrocephalus, but
did not present with situs defects (n = 6 Gas8GT/AV mice). The phenotype was associated with a
reduced ability of ependymal cilia to move fluid. Interestingly, beat frequency was not signifi-
cantly altered from that of controls, suggesting that the defect lies within a subtle waveform dif-
ference or in cilia orientation. These data suggest that the A391V allele is pathogenic though
more in-depth analysis of ciliary defects will be necessary to determine the precise mechanism.
Data from the Chlamydomonas rescue experiments suggest that the E199K allele may have
very subtle effects on motility. The D198K rescued strain in Chlamydomonas showed a small
but statistically significant reduction in forward swim velocity of approximately 10 percent.
While statistically significant, additional work is needed to determine whether such small
changes might impact ciliary motility and have pathogenic consequences in different tissues
and different organisms. As this variant is commonly found in Latino populations, it seems
more likely that this variant is a benign polymorphism.

Gas8 was previously implicated as a modulator of the Hh pathway. In vitro data indicated
that the C-terminal region of Gas8 binds to Smoothened (Smo) and acts at the base of primary
cilia as a regulator of Smo entry into the cilium following Hh pathway activation [19]. These
data showed that in the absence of Gas8, Smo accumulation in the cilium is abrogated and that
it cannot activate the Gli transcription factors and turn on downstream genes. Based on these
in vitro findings, we expected to see Hh defects in our mutant mice. However, the Gas8
mutants survive to birth and have normal digit number and patterning as well as normal neural
tube dorsal ventral patterning. Furthermore, there were no significant differences in Smo accu-
mulation in cilia between Gas8WT and Gas8GT MEFs after SAG stimulation, suggesting that in
this mutant model, Gas8 does not act as a regulator for Smo entry. The role that Gas8 plays at
the base of primary cilia remains uncertain; however, we do not see any other pathologies that
would suggest there is a defect in primary cilia such as cystic kidney disease.

The data presented here solidify GAS8 as a disease causing gene in humans and elucidate
the mechanisms by which loss of Gas8 causes disease. We identified new independent,
homozygous missense mutations and used model systems to test the pathogenicity of the
alleles. Importantly, these results suggest the A391V allele is pathogenic while the E199K var-
iant is not. Our results demonstrate the importance of testing the potential pathogenicity of
human alleles in easily amenable model systems such as Chlamydomonas and further reveal
the ease with which CRISPR/Cas9 has now made it possible to conduct similar tests in mouse
models.
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Materials and Methods

Mice
The Gas8 mutant mouse line was generated using embryonic stem cell line CH0760 (BayGe-
nomics) in which a β-galactosidase neomycin resistance fusion cassette was inserted into intron
7 of Gas8. The insertion site was confirmed by genomic PCR and sequence analysis. PCR prim-
ers for genotyping were designed based on the insertion site and are as follows 5’-GGGACAA
GCAGATTCTGGTC-3’, 5’-CAGGGTTACACACAGAGAAACC-3’, and 5’-CCGCAAACT
CCTATTTCTG-3’. The Gas8GT embryonic stem cells were from the 129P2/OlaHsd genetic
background and were injected into C57BL/6 blastocysts using standard procedures. Chimeras
were bred with albino C57BL/6 females and germline transmission was confirmed by coat
color and subsequent PCR genotyping.

Ethics statement
All experimental procedures were approved by the Institutional Animal Care and Use Com-
mittee (IACUC) regulations at the University of Alabama at Birmingham under the animal
protocol number (130208061).

RT-PCR
RNA was isolated from Gas8WT, Gas8GT/WT, and Gas8GT mouse embryonic fibroblasts using
Trizol reagent according to the manufacturer’s protocol (cat# 15596–026, Thermo-Fisher Sci-
entific). cDNA was generated using Verso cDNA kit (cat# AB-1453/B, Thermo-Fisher Scien-
tific). 5’ Gas8 RT-PCR was performed using the following primers spanning exons 3 and 4:
5’-GAATCGAAGAATACCACCATC-3’ and 5’-CTGAGAAGATGGCTATGTAG-3’. 3’ Gas8
RT-PCR was performed with primers spanning exons 9 and 10: 5’-CTGGACCCCACAGCAT
TAAC-3’ and 5’-CTTGATGGTGGTATTCTTCG-3’. Actin control primers: 5’-ATGGGTCA
GAAGGACTCCTA-3’ and 5’-GGTGTAAAACGCAGCTCA-3’ were used in all samples.

Tissue preparation
Animals were anesthetized by a 0.1 ml per 10 g of body weight intraperitoneal injection of
2.5% tribromoethanol (cat# T48402, Sigma–Aldrich), killed by cardiac puncture, and perfused
with PBS followed by 4% paraformaldehyde (cat# 19943, Thermo-Fisher Scientific). The brains
were further fixed in 4% paraformaldehyde 1h at room temperature followed by successive
dehydration through 1 hour alcohol incubations at 30% and 50% and placed finally in 70%
overnight. Tissues were further dehydrated through 1 hour alcohol incubations at 80%, 95%,
and finally 100%. Tissues were placed in xylenes for 1 hour and then placed in a 50/50 xylenes/
paraffin mix for 1 hour at 60°C under vacuum followed by a final paraffin penetration in paraf-
fin at 60°C under vacuum for 1 hour and then paraffin embedded. The brains were sectioned at
10μm and stained with Cresyl Violet stain as previously described [37].

Immunoblotting
Fresh tracheas were extracted from p21 Gas8WT, Gas8GT/WT, and Gas8GT mice. Samples were
submerged in ice cold RIPA (10mM Tris pH7.5, 150mMNaCl, 1%NP-40, 1% sodium deoxy-
cholate, 0.1% SDS) mixed with one cOmplete Protease Inhibitor tablet (cat# 11 836 170 001,
Roche Diagnostics) per 10mL at 300uL per 5mg of tissue. Tissues were sonicated 3x for 10 sec-
onds each. After sonication, tissues were placed on a rotary agitator for 2 hours at 4°C and then
spun for 20 minutes at 12,000rpm at 4°C. Supernatant was removed and protein levels were
assayed using a BioRad DC protein assay kit (cat# 5000111, Bio-Rad). Approximately 20μg per
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sample was used for SDS-PAGE with a 12% Tris-Glycine gel (cat# 00252562, Thermo—Fisher
Scientific). Proteins were transferred overnight to nitrocellulose. The membrane was blocked
for 45 minutes in 5% milk in PBS and incubated with primary antibody in 5% milk in PBS with
0.02% Tween-20 overnight at 4°C. Primary rabbit anti-Gas8/DRC4 antibody was used at
1:20000 [6]. Primary mouse anti-GAPDH was used as a loading control at 1:1000 (cat#
ab8245, Abcam, Cambridge UK). Blots were washed 5x for 5 minutes each in 0.02%
PBS-Tween-20. Secondary antibody in 5% milk in 0.02% PBS-Tween-20 was added and the
blot was incubated for 1 hour at room temperature with the following secondary antibodies:
anti-mouse IRDye 800CW (cat# 827–08364, LI-COR, Lincoln NE USA) and anti-rabbit IRDye
680RD (cat# 926–68071, LI-COR). Blots were washed 5x for 5 min each in 0.02% PBS-Tween-
20 and then dried. Images were taken on a LI-COR Odyssey CLx imaging system (LI-COR).

Mouse embryonic fibroblast generation
Mouse embryonic fibroblasts (MEFs) were generated from E14.5 embryos and cultured in
DMEM growth medium with High Glucose, 0.05mg/ml Penicillin/Streptomycin, 2mM L-Glu-
tamine, 0.2mM β-mercaptoethanol, and 20% Fetal Bovine Serum (FBS). Prior to immunolabel-
ing, MEFs were cultured in reduced serum medium containing 0.5% FBS for 48 hours to
induce primary cilia formation as previously described [38].

Immunofluorescence
Cells were fixed in 4% paraformaldehyde and permeabilized with 0.1% Triton X-100 in PBS
with 2% donkey serum, 0.02% sodium azide and 10 mg/ml bovine serum albumin (BSA). Cells
were labeled with anti-acetylated α-tubulin, 1:1000 (cat# T-6793, Sigma-Aldrich), anti-SmoN,
1:1000 (gift from Dr. Matthew Scott, Stanford University). Sections from E10.5 neural tubes
were immunolabeled with the following antibodies from Developmental Studies Hybridoma
Bank (University of Iowa, Iowa City, IA): anti-ShhN 1:1000 (5E1), anti-FoxA2 1:1000 (74.5a5),
anti-Mnr2 1:1000 (81.5C10), anti-Pax7 1:1000 (Pax7), and anti-Msx1+2 1:1000 (4G1) as previ-
ously described [38]. Trachea sections were labeled with anti-Gas8/DRC4, 1:2000 [6]. All incu-
bations and washes were carried out in PBS with 2% normal donkey serum, 0.02% sodium
azide and 1% BSA. Primary antibody incubations were performed for 16–24 hours at 4°C and
secondary antibody incubations were performed for 1 hour at room temperature. Secondary
antibodies all from Thermo-Fisher Scientific include the following: Alexa Fluor-594 donkey
anti-mouse (cat# A21203), Alexa Fluor-488 donkey anti-mouse (cat# A21202), Alexa Fluor-
594 donkey anti-rabbit (cat# A21207), and Alexa Fluor-488 donkey anti-rabbit (cat# A21206).
Nuclei were visualized by Hoechst nuclear stain. Coverslips were mounted using Immu-Mount
(cat# 9990402, Thermo-Fisher Scientific). Fluorescence imaging was performed using a Nikon
TE-2000U inverted microscope (Melville, KY) outfitted with a PerkinElmer UltraVIEW ERS
6FE-US spinning disk laser apparatus (Shelton, CT) and a Hamamatsu C9100.

DIC images of p14 trachea prepared for IF were used for length analysis. Images were cap-
tured with a 40x objective (Plan-Fluor, 1.3NA). Length was measured manually by drawing a
line from the tip of the cilium to the base using Volocity v6.3.

Smoothened trafficking assay
Gas8WT and Gas8GT MEFs were grown to confluency on 0.17mm coverslips and serum
starved for 48 hours to induce ciliation. Cells were treated with 150nM Smoothened agonist
(SAG) (cat#566660, CALBIOCHEM) for 2 hours in low serum media to induce Hedgehog
pathway activation and Smoothened translocation. Cells were fixed and stained as described in
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the immunofluorescence section and imaged by spinning disk confocal. Amount of Smooth-
ened per cilia volume was measured using Volocity v6.3 software.

Transmission electron microscopy
Postnatal day 14 (P14 mice were anesthetized and perfused with PBS followed by a perfusion
of 2% glutaraldehyde in 0.1M cacodylate buffer pH 7.4. Tracheas were extracted and fixed
overnight at 4°C in 2% glutaraldehyde in 0.1M cacodylate buffer pH 7.4. Samples were then
washed thoroughly four times for 15 minutes each in 0.1M cacodylate Buffer pH 7.4. A post fix
in 1% OsO4 in 0.1M cacodylate buffer pH 7.4 was performed. Samples were washed two times
for 10 minutes each in 0.1 M cacodylate pH 7.0. Samples were then prepped in 1% tannic acid
in 0.1M cacodylate Buffer pH 7.0; 30 minutes followed by 1% NaSO4 in 0.1M cacodylate Buffer
pH 7.0; 5 minutes. Dehydrate the samples in 50%, 75%, and 95% at 4°C for 20 minutes each
and finally 100% EtOH for 20 minutes; warm to RT°. Dehydrate samples totally with four
washes of 100% EtOH 15 minutes each. Infiltrate the sample with Propylene Oxide for 30 min-
utes. Mix the EMbed 812 according to instructions from EMS and Infiltrate with 25% Embed
in propylene oxide for 30 minutes, 50% for 40 minutes, 75% overnight, 100% for four hours,
100% for 1 hour and harden at 60°C. Samples were sliced at 90nm and imaged on a Phillips
CM110 Electron Microscope.

TEM averaging of doublets was performed by isolating individual doublets from cilia and
importing the doublets into Photoshop CS5. Individual doublets were aligned to a single tem-
plate doublet and then averaged and flattened.

TEMs were used to determine cilia orientation. Cilia orientation was determined by measur-
ing the angle of central pairs by drawing a line across the central doublets and measuring the
angle relative to the image. Each angle was normalized to the average (or most common angle)
after setting the average angle to 0°. The frequency of angles in each image was measured and
plotted.

Bead flow analysis
Brains of experimental mice were extracted, sliced in half to expose the ependymal of the lateral
ventricles and placed in pre-warmed, pre-oxygenated artificial cerebrospinal fluid (125mM
NaCl, 2.5mM KCl, 1.25mM NaH2PO4, 2mM CaCl2, 1mMMgCl2, 25mM NaHCO3, 25mM
Glucose, pH 7.35). Brains were placed on a Zeiss Axioskop microscope and imaged with a 5x
objective (Plan-Neofluor, 0.15NA) and a 10x objective (Fluor, 0.5NA) using a Photometrics
CoolSnap HQ CCD camera at 30fps. Red fluorescent latex beads (cat# L3530-1mL, Sigma-
Aldrich) were diluted 1:100 from stock and 10μL of diluted beads was added to the ventricles.
Bead tracking analysis was performed using the MTrack2 plugin in FIJI.

High speed video microscopy
Mice trachea were dissected out into fresh PBS and cut lengthwise into strips. Trachea were
kept in warm media (DMEM F/12, 20% FBS, and Pen-Strep and allowed to adapt for 20 min-
utes in an environmental chamber (37°C, 45% relative humidity, and 5% CO2) before imaging
with Differential Interference Contrast (DIC). All high speed video was captured at 240fps
using a modified Casio Exilim EX-ZR100 attached to a Nikon TE-200 using a 60x water objec-
tive (Plan-ApoWI NA = 1.2). Videos saved as quick time files were then extracted into individ-
ual frames using VirtualDub 1.10.4 software and all analysis was performed in ImageJ.

Kymographs were created using Metamorph v6.1. A line was drawn from the tip of the cil-
ium to the base and kymographs were made from the results.
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Generation of Chlamydomonas lines
To make the D198K mutation in Chlamydomonas, the DRC4-GFP plasmid [6] was used as
template for PCR with the primers 5’-CAGTGCTGTGAGCCTGACG and 5’-AAACCAAAG
CACCTTGAGCG to generate a 1483bp product that contains the restriction sites BclI and
ClaI flanking the desired mutation site. The PCR product was cloned into pGEM-T-Easy (cat#
A1360, Promega Corp) to generate the plasmid pf2-Y1-A. This plasmid was further digested
with KpnI and SpeI to removed repetitive DNA and subcloned into pBlueScript to generate the
plasmid pf2-Y1-B. The D198K mutation was introduced into pf2-Y1-B using the primers
5’-GAAGATGCTGCGAGACaAaATGGAGCTGCGGAGAAAG-3’ and 5’-CTTCTACGACG
CTCTGtTtTACCTCGACGCCTCTTTC-3’ and the QuickChange II kit (Agilent Technologies)
to generate the plasmid pf2-Y1-C. After sequence verification by Genewiz, the pf2-Y1-C plas-
mid was digested with KpnI and SpeI and subcloned back into pf2-Y1-A to generate the plas-
mid pf2-Y1-D. The pf2-Y1-D plasmid was digested with BclI and ClaI to release the 1483 bp
fragment now carrying the D198K mutation. This fragment was subcloned back into the origi-
nal DRC4-GFP plasmid by Genewiz. The completed plasmid, DRC4-D198K-GFP, was linear-
ized with EcoRI for transformation into the pf2-4 strain [6]. Transformants were screened as
described above. RT-PCR confirmed that the D198K mutation was expressed in the rescued
strains without any other sequence modification. Forward swimming velocity was recorded
and measured as previously described [6]. For transformations with the control DRC4-GFP
plasmid, rescued colonies were recovered at a frequency of 5–15%

Generation of the Gas8AV mouse allele
CRISPR/sgRNA target sequences were queried using the MIT CRISPR server. Three sites most
proximal to the desired SNP change were selected to test nuclease efficiency. CRISPR1: 5’- CT
TCTCCACAGCAGCGTTCA GGG-3’ (reverse strand), CRISPR2: 5’-GGTGCTGGCCGCCTC
CAACC TGG-3’ (forward strand), CRISPR3: 5’-GACACAAGCGTTAATGCTGTGGG-3’ (re-
verse strand). Pronuclear injections were performed with Cas9 mRNA (100 ng/ul), CRISPR3/
sgRNA (50 ng/ul) and ssODN (200 ng/ul). Efficiency of nuclease activity was assessed using a
blastocyst assay. In brief, injected zygotes were cultured to the blastocyst stage and lysed to
obtain genomic DNA. Genomic DNA was used in PCR and the amplicons (215 bp) were
resolved by heteroduplex mobility assay (HMA). CRISPR3 was found to be most efficient and
was used to generate the SNP edited mouse (C57Bl/6 background). Injected zygotes were cul-
tured to 2-cell stage in KSOMmixed with the NHEJ inhibitor SCR7 at a final concentration of
10 mM. The 2-cell stage embryos were transferred to psuedopregnant recipient female mice,
which gave birth to 13 pups. The SNP was introduced with the help of a 154 nt single stranded
oligo DNA (ssODN) HDR template. Since the PAM sequence (CCC>Pro) could not be modi-
fied without changing the amino acid, multiple silent changes were made in the protospacer
(sgRNA binding) sequence (indicated by small letters in the sequence below). These changes
were made to eliminate the chances of the sgRNA binding to the repaired allele. The SNP
change introduced a restriction enzyme recognition enzyme site (BsmBI/Esp3I) and the silent
changes introduced two new restriction enzyme recognition sites (BtgI and HaeII). HaeII sites
were used to distinguish the wildtype and the modified alleles. Specific primers were also
designed that can preferentially amplify the modified allele. HDR template (ssODN) 5’-GGCC
CTGAACGCTGCTGTGGAGAAGAGAGAGGTTCAGTTCAATGAGGTGCTGGCCGTCT
CCAACCTGGACCCCACgGCgcTgACGtTgGTGTCCCGCAAACTTGAGGTAGGTGCCCT
CCTGTCCTGTGCTGTGGTACGCCTTCTTGGGTGGCAC-3’. After the initial characteriza-
tion of the F0 litter by PCR, the 215 bp amplicons were cloned, and selected individual clones
were subjected to Sanger sequencing. Sequence analysis of the 13 pups revealed that 2 had

Growth Arrest Specific 8 in Motile Cilia Function and Disease

PLOS Genetics | DOI:10.1371/journal.pgen.1006220 July 29, 2016 15 / 18



complete knock-in of the edited/repair sequence, 1 pup had incorporated the silent changes
but did not have the desired SNP change, and 1 pup had indels. F0 animals were bred with
wildtype C57Bl/6 mice to test germline transmission of the desired alleles. All alleles were suc-
cessfully transmitted through the germline, and the positive F1 animals were used to create
homozygous and compound heterozygous F2 animals.

Statistical analysis
Cilia length analysis, bead flow tracking, cilia orientation, and cilia beat frequency were tested
with Student’s t-test and graphed in Microsoft Excel. Smoothened trafficking assay and Chla-
mydomonas swim speeds were tested by ANOVA followed by Student’s t-test with a Bonfer-
roni correction and graphed in Microsoft Excel. All error is represented in Standard Error of
Means (SEM).

Supporting Information
S1 Fig. DRC4-DK-GFP is expressed and localizes to the axoneme.Western Blot of Chlamy-
domonas flagellar axonemes showing that pf2 cells transformed with DRC4-DK-GFP (DK)
have proper localization of the protein product. The DRC4-GFP fusion proteins are detected
by a DRC4 antibody (top panel) and a GFP antibody (bottom panel). An IC69 antibody against
an outer arm dynein intermediate chain serves as a loading control for the blot (bottom panel).
(TIF)

S1 Movie. Cilia in Gas8WT trachea display normal beat frequency and waveform (Captured
at 240 fps and played back at 30 fps).
(AVI)

S2 Movie. Cilia in Gas8GT trachea display slower beat frequency and a rigid waveform
(Captured at 240 fps and played back at 30 fps).
(AVI)
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