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Abstract
Oocyte meiotic progression and maternal-to-zygote transition are accompanied by dynamic

epigenetic changes. The functional significance of these changes and the key epigenetic

regulators involved are largely unknown. Here we show that Setdb1, a lysine methyltrans-

ferase, controls the global level of histone H3 lysine 9 di-methyl (H3K9me2) mark in growing

oocytes. Conditional deletion of Setdb1 in developing oocytes leads to meiotic arrest at the

germinal vesicle and meiosis I stages, resulting in substantially fewer mature eggs.

Embryos derived from these eggs exhibit severe defects in cell cycle progression, progres-

sive delays in preimplantation development, and degeneration before reaching the blasto-

cyst stage. Rescue experiments by expressing wild-type or inactive Setdb1 in Setdb1-
deficient oocytes suggest that the catalytic activity of Setdb1 is essential for meiotic progres-

sion and early embryogenesis. Mechanistically, up-regulation of Cdc14b, a dual-specificity

phosphatase that inhibits meiotic progression, greatly contributes to the meiotic arrest phe-

notype. Setdb1 deficiency also leads to derepression of transposons and increased DNA

damage in oocytes, which likely also contribute to meiotic defects. Thus, Setdb1 is a mater-

nal-effect gene that controls meiotic progression and is essential for early embryogenesis.

Our results uncover an important link between the epigenetic machinery and the major sig-

naling pathway governing meiotic progression.

Author Summary

During oogenesis, oocytes accumulate transcripts and proteins that support meiotic mat-
uration and early embryogenesis. Although a number of such maternal-effect factors
have been identified, our knowledge about the molecular machinery that drives meiotic
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progression and maternal-to-zygotic transition is still limited. In particular, the func-
tional significance of epigenetic changes, which accompany meiotic maturation and
early embryogenesis, and the key epigenetic regulators involved are largely unknown.
Here, we identify Setdb1, a lysine methyltransferase specific for the repressive histone
H3 lysine 9 (H3K9) methylation, as a maternal-effect factor that is essential for meiotic
progression in oocytes and mitotic cell divisions in early embryos in mouse. We show
that Setdb1 is highly expressed in growing oocytes and directly represses the expression
Cdc14b, a phosphatase that inhibits meiotic progression. Setdb1 is also required to
repress retrotransposons and maintain genomic stability in oocytes. Embryos derived
from Setdb1-depleted oocytes show severe defects in cell cycle progression, progressive
delays in preimplantation development, and degeneration before reaching the blastocyst
stage. The roles of Setdb1 in meiotic progression and preimplantation development
require its catalytic activity. Our findings demonstrate that Setdb1 is an important regu-
lator of Cdc14b, thus uncovering a molecular link between the epigenetic machinery and
the major signaling pathway that drives meiotic progression.

Introduction
Mammalian development begins with fertilization, when the haploid sperm and egg fuse to
form the diploid zygote. Although both gametes have equal genetic contributions to the off-
spring, the early embryo is almost entirely dependent on the egg for the supply of subcellular
organelles and macromolecules for initial survival and development [1]. These maternal com-
ponents are encoded by maternal-effect genes, which are transcribed in oocytes and their prod-
ucts (RNA or protein) are present in early embryos before expression of zygotic genes is
initiated. Since the identification of the first mammalian maternal-effect genes in 2000 [2,3],
multiple such genes have been reported [4]. Genetic studies in mice suggest important roles of
maternal-effect genes in developmental processes, including epigenetic reprogramming,
zygotic genome activation (ZGA), and cell specification [4]. Despite the progress, the molecular
machinery and regulatory mechanisms involved in meiotic progression and maternal-to-
zygotic transition are not well understood.

In females, meiosis is initiated during fetal development, and oocytes are arrested at pro-
phase I around the time of birth. During subsequent folliculogenesis, the diameters of oocytes
increase dramatically, even though prophase I arrest remains in effect. Transcription of the
maternal genome occurs predominantly during oocyte growth. Some transcripts are trans-
lated immediately into proteins, and others are stored for later activation [1]. Prophase I arrest
is sustained until puberty when luteinizing hormone (LH) induces resumption of meiosis.
The first visible sign of meiotic resumption is nuclear envelope (called germinal vesicle, GV)
breakdown (GVBD). Following GVBD, a metaphase I spindle forms and stable microtubule-
kinetochore interactions are established in all chromosome bivalents before proceeding to
anaphase I and telophase I. After completion of meiosis I (MI), as indicated by the extrusion
of the first polar body, oocytes enter directly into meiosis II without an intervening S-phase
and arrest again at metaphase II (Met II). Fertilization triggers resumption and completion of
meiosis II [5].

Meiotic progression is governed by the maturation-promoting factor (MPF), which con-
sists of cyclin-dependent kinase 1 (Cdk1, also known as Cdc2) and a regulatory subunit
Cyclin B1. In prophase I-arrested GV oocytes, Cdk1 is inactivated by Wee2-mediated phos-
phorylation on Thr14 and Tyr15, and Cyclin B1 is constantly degraded by the anaphase-
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promoting complex/cyclosome (APC/C), a multisubunit E3 ubiquitin ligase. The preovula-
tory LH surge triggers meiotic resumption by alleviating Cdk1 phosphorylation and inducing
Cyclin B1 accumulation [6].

Other kinases and phosphatases also participate in meiotic progression. These include
Cdc14b, a highly conserved dual-specificity phosphatase that counteracts the activity of Cdk1
[7]. In somatic cells, Cdc14b has been implicated in multiple cellular processes, including
nuclear organization, spindle assembly, mitotic exit, and DNA damage response and repair [7].
In oocytes, Cdc14b is a negative regulator of meiotic progression. Oocytes overexpressing
Cdc14b are significantly delayed in resuming meiosis and fail to progress to the Met II stage.
Conversely, depletion of Cdc14b in GV oocytes leads to premature meiotic resumption [8].
Cdc14b is also present in preimplantation embryos. Overexpression of Cdc14b in 1-cell
embryos has been shown to cause mitotic arrest and inhibit ZGA [9]. These findings suggest
that proper regulation of Cdc14b expression is important for meiosis and early embryogenesis.
However, little is known about how Cdc14b expression is regulated.

Meiotic progression and early embryogenesis are accompanied by drastic chromatin remod-
eling and epigenetic reprogramming [10,11]. Epigenetic events, including posttranslational
modifications of histones, are believed to play crucial roles during meiosis and embryogenesis.
Indeed, progress has been made in documenting epigenetic states in these processes. For exam-
ple, during meiotic maturation, histone H3 and H4 are globally deacetylated, whereas H3 lysine
9 di- and tri-methyl (H3K9me2/me3) marks remain constantly high [12,13]. However, the
functional relevance of epigenetic events and the key epigenetic regulators involved during
oogenesis and early embryogenesis remain largely unknown.

Setdb1, also known as Eset and KMT1E, is a lysine methyltransferase (KMT) specific for
the repressive histone H3 lysine 9 di- and tri-methyl (H3K9me2/me3) marks [14,15]. It is
associated with transcriptional repression of euchromatic genes and maintenance of hetero-
chromatin structure [14,15,16]. Recent evidence suggests that Setdb1 also plays a critical role
in silencing retrotransposons in undifferentiated embryonic stem (ES) cells, as well as in early
embryos and primordial germ cells (PGCs), where DNA methylation levels are low due to epi-
genetic reprogramming [17,18]. DNA methylation is required for retrotransposon silencing
in somatic cells [19]. Setdb1 is an evolutionally conserved gene. Its Drosophila ortholog
dSetdb1 (also known as dEset and Eggless) is involved in multiple developmental processes,
including oogenesis [20,21,22]. Mouse embryos lacking Setdb1 die at the peri-implantation
stage (around 3.5–5.5 days post coitum (dpc)) [23], which is significantly earlier than the phe-
notypes of mice deficient for other H3K9 KMTs, such as Suv39h1/Suv39h2 (developmental
defects after ~12.5 dpc) [24] and G9a (lethality at ~9.5 dpc) [25]. Setdb1 is present at high lev-
els in oocytes and zygotes and persists through preimplantation development [26,27]. How-
ever, expression of zygotic Setdb1 is undetectable until the blastocyst stage [23,26]. These
observations suggest that maternal Setdb1 may play important roles in oogenesis and/or early
embryogenesis.

Here, we show that maternal Setdb1 is essential for meiotic progression in oocytes and
mitotic cell cycle progression in early embryos. Conditional deletion of Setdb1 in growing
oocytes leads to severe defects in meiotic resumption and maturation, largely due to up-regula-
tion of Cdc14b, resulting in the production of considerably fewer Met II oocytes. Although
these Met II oocytes are fertilizable, the resulting embryos display impaired cell cycle progres-
sion, progressive delays in preimplantation development, and degeneration before reaching the
blastocyst stage. The functions of Setdb1 in these processes require its catalytic activity. Our
work identifies Setdb1 as a maternal-effect gene essential for fertility and uncovers a functional
link between Setdb1 and the signaling pathway governing meiotic progression.
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Results

Setdb1 is expressed and controls global H3K9me2 levels in growing
oocytes
Although previous work detected Setdb1 transcript and protein in isolated oocytes
[23,26,27], its expression during oogenesis has not been characterized. We examined Setdb1
expression in the ovary, taking advantage of the availability of the Setdb13lox allele (schemati-
cally shown in S1 Fig), which expresses the lacZ -galactosidase reporter under the control of
the regulatory elements of endogenous Setdb1 [28]. X-gal (5-bromo-4-chloro-3-indoyl-D-
galactoside) staining of paraffin-embedded sections of ovaries from 4-week-old Setdb13lox/+

(heterozygous) mice detected strong lacZ signal in growing oocytes, with little staining in
granulosa cells (Fig 1A). The lacZ signal was specific, because no staining was observed in
ovaries from wild-type (WT) mice (Fig 1A). Quantitative RT-PCR (qRT-PCR) and Western
blot analyses confirmed the presence of Setdb1 transcript and protein in fully-grown GV
oocytes (Fig 1B and 1C). These results demonstrated that Setdb1 is actively transcribed and
translated during oocyte growth.

Zygotic Setdb1 is essential for embryonic development [23]. To determine the role of mater-
nal Setdb1, we conditionally deleted exon 16 of Setdb1 in oocytes. Deletion of exon 16 would
remove 209 amino acids in the catalytic bifurcated SET domain and create a stop codon, thus
resulting in a functionally null allele [28]. To maximize the deletion efficiency, heterozygous
mice bearing a null allele, Setdb11lox, were first crossed with Zp3-Cre transgenic mice, which
express the Cre recombinase exclusively in growing oocytes [29], and the resulting Setdb11lox/+/
Zp3-Cre+male mice were then crossed with female mice homozygous for the Setdb1 condi-
tional allele, Setdb12lox (see S1 Fig for breeding scheme). Setdb12lox/1lox/Zp3-Cre+ female mice
were used as the experimental group and, for simplicity, will be referred to as Setdb1 knockout
(KO) mice hereafter. Mice of the other genotypes (Setdb12lox/+/Zp3-Cre-, Setdb12lox/1lox/
Zp3-Cre-, and Setdb12lox/+/Zp3-Cre+) produced from the breeding scheme showed no defect in
fertility and other phenotypic abnormalities, and Setdb12lox/+/Zp3-Cre- female mice were used
as the control group. Genotypes were determined by PCR analysis of tail DNA samples (see S1
Fig for examples). qRT-PCR andWestern blot analyses confirmed the complete elimination of
Setdb1 transcript and protein in Setdb1 KO GV oocytes (Fig 1B and 1C).

Consistent with previous findings that Setdb1 is the predominant H3K9 KMT in oocytes
and it catalyzes di- and tri-methylation [14,27], immunofluorescence (IF) and immunohis-
tochemistry (IHC) analyses revealed that the global level of H3K9me2 significantly decreased
and that of H3K9me3 slightly decreased in Setdb1 KO oocytes, whereas the levels of H3K9me1
and H3K4me2 showed no alterations (Fig 1D and 1E and S2 Fig). These results indicated that,
in oocytes, Setdb1 controls the global level of H3K9me2 mark and its effect on H3K9me3 could
be loci-specific.

Setdb1 KO oocytes show severe defects in meiotic resumption and
maturation
To determine the impact of maternal Setdb1 depletion on fertility, six Setdb1 KO females were
mated with WTmales for 5 months. Although vaginal plugs were frequently observed, none of
the mice produced pups, indicating that maternal Setdb1 is essential for fertility.

The infertility phenotype could be due to defects in oogenesis, embryogenesis, or both. We
first examined Setdb1 KO ovaries and found that they were morphologically and histologically
indistinguishable from control ovaries, with the presence of follicles at various stages (S3 Fig).
Fully-grown GV oocytes isolated from Setdb1 KOmice also appeared normal in morphology
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and number (S3 Fig). These observations indicated that Setdb1 depletion had no effect on folli-
culogenesis and oocyte growth.

We then assessed whether Setdb1 deficiency affected meiotic resumption and maturation.
After superovulation, the vast majority (>90%) of oocytes collected from the oviducts of con-
trol mice, as expected, were arrested at the Met II stage, judged by the presence of a polar body.

Fig 1. Setdb1 is expressed and controls global H3K9me2 in growing oocytes. (A) X-gal staining of paraffin-embedded sections of ovaries from 4-week-
old Setdb13lox/+ or wild-type (WT) mice. One follicle is enlarged, and the oocyte nucleus is indicated by an arrow. Scale bars, 50 μm. (B) qRT-PCR analysis of
Setdb1 transcript. Shown are relative levels of Setdb1mRNA in control and Setdb1 KOGV oocytes (mean ± SEM of triplicate assays). (C)Western blot
analysis of Setdb1 in control and Setdb1 KOGV oocytes, with α-tubulin as a loading control. Each lane contains 150 GV oocytes. (D, E) IF analysis of H3K9
methylation in oocytes. Fully-grown GV oocytes harvested from control and Setdb1 KOmice were immunostained with antibodies specific for H3K9 mono-,
di- and tri-methyl (H3K9me1, H3K9me2, and H3K9me3) marks and counterstained with DAPI. (D) Representative images of H3K9me1, H3K9me2, and
H3K9me3marks (green) and DAPI (blue). The nuclei of the oocytes are circled. Note that H3K9me1 is enriched in the nucleoli, H3K9me2 exhibits a punctate
staining pattern throughout the nuclei, and H3K9me3 is enriched in constitutive heterochromatin. Scale bars, 10 μm. (E)Quantification of fluorescence
intensity of H3K9me1, H3K9me2, and H3K9me3marks in oocytes. Fifteen oocytes for each genotype were stained by each antibody, and the data are
presented as the mean ± SEM. Statistical comparisons were made using unpaired t-test. ** P < 0.01.

doi:10.1371/journal.pgen.1005970.g001

Maternal Setdb1 Is Required for Meiosis and Embryogenesis in Mice

PLOS Genetics | DOI:10.1371/journal.pgen.1005970 April 12, 2016 5 / 26



Although similar numbers of oocytes were recovered from the oviducts of superovulated
Setdb1 KOmice, much smaller fractions were at the Met II stage, varying from ~20% to ~60%
in different litters. The rest was arrested at the GV stage (~15–40%), based on the presence of
an intact GV, and at MI (~15–40%), as evidenced by the absence of both GV and polar body,
or were abnormal (~10–20%) (Fig 2A and 2B). These observations suggested that a significant
fraction of Setdb1 KO oocytes failed to develop to the Met II stage before being released at
ovulation.

To verify the meiotic arrest phenotype, we isolated GV oocytes and performed in vitromei-
otic maturation assays. Fully-grown GV oocytes, when removed from their follicular environ-
ment, undergo spontaneous meiotic resumption, which can be reversibly inhibited by cyclic
adenosine monophosphate (cAMP) phosphodiesterase inhibitors such as 3-isobutyl-1-methyl-
xanthine (IBMX). Control and Setdb1 KO GV oocytes were initially collected in IBMX-con-
taining medium and then cultured in the absence of IBMX for various periods of time.
Examination at 2 and 5 hours after IBMX removal revealed that Setdb1 KO oocytes underwent
GVBD significantly more slowly than control oocytes (Fig 2C). Following 20 hours of culture,
~90% of control oocytes resumed meiosis, and ~80% progressed to the Met II stage. In con-
trast, nearly 30% of Setdb1 KO oocytes remained arrested at the GV stage, ~25% arrested at
MI, only less than 30% reached the Met II stage, and a considerable fraction (~20%) was abnor-
mal (Fig 2D). These results were consistent with the in vivo data (Fig 2A and 2B), thus confirm-
ing that Setdb1 depletion in growing oocytes led to severe defects in meiotic resumption and
maturation.

A substantial fraction of Setdb1 KO oocytes underwent GVBD but failed to progress to the
Met II stage in vivo and in vitro (Fig 2A–2D), suggesting that they were arrested at MI. We
therefore assessed whether Setdb1 deficiency affected spindle formation and chromosome
dynamics during MI. To this end, GV oocytes were cultured in maturation medium for 5
hours, and the spindle and chromosome structures were examined with α-tubulin and DAPI
(4',6-diamidino-2-phenylindole) staining. By the time of examination, the majority of control
oocytes that had undergone GVBD were at the metaphase I stage, and a small fraction was at
prometaphase I. Most of them exhibited normal spindle and chromosome structures (Fig 2E
and 2F). Consistent with the delay in meiotic resumption (Fig 2C), ~50% of Setdb1 KO oocytes
remained arrested at the GV stage, and the ones that had resumed meiosis were mostly at the
prometaphase I stage. Nearly 60% of Setdb1 KOMI oocytes had obvious spindle abnormalities,
including dispersed, tread-like, non-polar, and multiple spindles, and ~30% also exhibited
defects in chromosome congression or alignment (Fig 2E and 2F). These defects likely played
an important part in meiotic arrest at MI. Taken together, our results provided genetic evi-
dence that Setdb1 is critical for meiotic resumption and maturation of mouse oocytes.

Cdc14b up-regulation contributes to meiotic arrest in Setdb1 KO oocytes
Given the important role of Setdb1 in transcriptional repression, it is likely that the observed
defects in meiotic progression were due to aberrant expression of essential genes. Indeed, previ-
ous ChIP-Seq analysis in mouse embryonic stem (ES) cells [30] revealed Setdb1 binding, as
well as H3K9me3 enrichment, in several genes involved in meiosis, including Cdc14b, Cdc25b,
Bub1b, and Ppp2cb (S4 Fig). We performed qRT-PCR analysis to compare the expression of
these genes, as well as other important meiosis genes Cdk1, Ccnb1 (encoding Cyclin B1),Wee2,
and Fzr1 (encoding Cdh1), in Setdb1 KO and control GV oocytes. The level of Cdc14bmRNA
was substantially elevated in Setdb1 KO oocytes (~2.8 fold relative to control), whereas the
expression of the other genes tested showed no alterations (Fig 3A). Western blot and IF analy-
ses also confirmed the increase in Cdc14b protein in Setdb1 KO oocytes (Fig 3B–3D). Notably,
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Fig 2. Setdb1KO oocytes show severemeiotic arrest. (A, B)Oocytes harvested from the oviducts of control and Setdb1 KOmice at 16 hours post-hCG
injection. (A) Representative bright-field microscope images of control and Setdb1 KO oocytes. Arrowheads and arrows indicate the polar bodies
(characteristic of Met II oocytes) and the prominent nucleoli (characteristic of GV oocytes), respectively. Scale bars, 50 μm. (B)Quantification of oocytes at
different meiotic stages. Oocytes were classified as being GV arrested (GV), meiosis I (MI), metaphase II (Met II), or abnormal (Abnl, including those showing
abnormal morphologies or undergoing degeneration). A representative oocyte of each type is shown at the bottom. Scale bars, 50 μm. Plotted are the
average numbers of oocytes (mean ± SEM) at different stages from 12 control mice (306 oocytes in total) and 13 KOmice (364 oocytes in total). Statistical
comparisons were made using unpaired t-test. **P < 0.01; ***P < 0.001. (C, D) In vitro oocyte maturation assays. Fully-grown GV oocytes from 6-week-old
control and Setdb1 KOmice were collected in M2 medium containing IBMX (200 μM) and, following IBMX washout, cultured in IBMX-free M16 medium. (C)
The GVBD rates at 2 hours and 5 hours after IBMX removal. Plotted are data from 4 control mice (142 oocytes in total) and 4 KOmice (160 oocytes in total).
Statistical comparisons were made using unpaired t-test. ***P < 0.001. (D) The percentages of oocytes at different meiotic stages after 20 hours of culture.
Plotted are data from 6 control mice (238 oocytes in total) and 6 KOmice (265 oocytes in total). (E, F) Spindle and chromosome defects in Setdb1 KOMI
oocytes. Fully-grown GV oocytes harvested from control and Setdb1 KOmice were cultured in maturation medium for 5 hours, and the oocytes were
immunostained with α-tubulin antibody and DAPI to examine spindle and chromosome structures, respectively. (E)Representative IF images showing
normal spindle (α-tubulin, green) and chromosome (DAPI, blue) morphologies in control MI oocytes and common abnormalities in KOMI oocytes. Spindle
defects include dispersed, tread-like, non-bipolar, and multiple spindles. Chromosome defects include decondensed, lagging, and misaligned chromosomes.
Scale bars, 25 μm. (F) Frequencies of spindle and chromosome defects (mean ± SEM) in MI oocytes. In total, 253 control MI oocytes and 232 KOMI oocytes
were examined. Statistical comparisons were made using unpaired t-test. **P < 0.01; ***P < 0.001.

doi:10.1371/journal.pgen.1005970.g002
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the meiotic phenotypes of Setdb1 KOmice, including meiotic arrest, spindle and chromosome
perturbations (Fig 2), were highly similar to the consequences of Cdc14b overexpression [8].
These observations led us to hypothesize that Cdc14b up-regulation may contribute to the mei-
otic defects associated with Setdb1 deficiency.

Cdc14b has been shown to negatively regulate meiotic resumption by promoting APC/C-
mediated degradation of Cyclin B1 [8]. We assessed whether Cyclin B1 level was altered in
Setdb1 KO oocytes. Western blot analysis revealed that Cyclin B1 was present at low levels in
control GV oocytes, but hardly detectable in Setdb1 KO GV oocytes. Following in vitromatura-
tion, both control and KO oocytes that had undergone GVBD exhibited Cyclin B1 accumula-
tion. However, Setdb1 KO GVBD oocytes had ~40% lower levels of Cyclin B1 compared to
their control counterparts (Fig 3E). Thus, Cdc14b up-regulation in Setdb1 KO oocytes corre-
lated with low levels of Cyclin B1. Indeed, the ability of Setdb1 KO GV oocytes to undergo
GVBD was substantially restored when treated with the proteosome inhibitor MG132 (S5 Fig),

Fig 3. Cdc14b is up-regulated in Setdb1KO oocytes. (A) qRT-PCR analyses of Setdb1, Cdc14b, Cdc25b, Bub1b, Ppp2cb, Cdk1, Ccnb1 (encoding
cyclin B1),Wee2, and Fzr1 (encoding Cdh1) transcripts in GV oocytes. Shown are relative mRNA levels in control and Setdb1 KO oocytes (mean ± SEM of
triplicate assays). (B)Western blot analysis of Setdb1 and Cdc14b in control and Setdb1 KOGV oocytes, with α-tubulin as a loading control. Each lane
contains 100 GV oocytes. Relative band intensities were quantified with the ImageJ software and normalized to the α-tubulin signal. (C, D) IF analysis of
Cdc14b expression in GV oocytes. (C) Representative images of control and Setdb1 KO oocytes stained with anti-Cdc14b (red) and DAPI (blue). The
boundaries of the oocytes are defined by circles. Scale bars, 35 μm. (D)Quantification of fluorescence intensity of Cdc14b. Thirty control and 30 Setdb1 KO
oocytes were analyzed, and the data are presented as the mean ± SEM. Statistical comparisons were made using unpaired t-test. **P < 0.01. (E)Western
blot analysis of Cyclin B1 in GV and GVBD oocytes. GV oocytes were harvested from control and Setdb1 KOmice. GVBD oocytes were isolated by
morphology after culturing GV oocytes in maturation medium for 5 hours. The samples were analyzed by immunoblotting with Cyclin B1 or α-tubulin
antibodies. Each lane contains 150 GV oocytes or 85 GVBD oocytes, respectively. Relative band intensities were determined as described above, with the
values in control samples being arbitrarily designated as 1.0.

doi:10.1371/journal.pgen.1005970.g003
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consistent with the notion that enhanced Cyclin B1 degradation contributed to the defect in
meiotic resumption.

ChIP-Seq analysis of mouse ES cells identified a major Setdb1-binding and H3K9me3
enrichment peak centered at the transcriptional start site (TSS) of Cdc14b [30] (S4 Fig), raising
the possibility that Setdb1 may directly repress Cdc14b transcription by depositing H3K9
methylation marks. We assessed the impact of Setdb1 depletion on H3K9me3 enrichment at
the Cdc14b locus, as well as Cdc14b expression, in ES cells. Because Setdb1-null ES cells are not
viable [23], we used an inducible approach to deplete Setdb1. Setdb12lox/1lox ES cells expressing
tamoxifen-inducible Cre (known as Cre-ERT2, a fusion protein consisting of Cre and a mutant
form of the estrogen receptor (ERT2) ligand-binding domain) were treated with 4-hydroxyta-
moxifen (4-OHT), which induces translocation of Cre-ERT2 to the nuclei, resulting in excision
of exon 16 of the conditional Setdb12lox allele [28]. In agreement with our previous work [28],
Setdb1mRNA and protein was hardly detectable after 4 days of 4-OHT treatment (Fig 4A and
4B), while the cells (referred to as Setdb1 KO after treatment) were still viable and looked
healthy. In Setdb1 KO ES cells, both Cdc14bmRNA and protein were considerably elevated
(Fig 4A and 4B), consistent with the effect of Setdb1 depletion in oocytes (Fig 3A–3D). Chro-
matin immunoprecipitation coupled to quantitative real-time PCR (ChIP-qPCR) analysis con-
firmed Setdb1 binding and H3K9me3 enrichment at a region (R1) spanning the Cdc14b TSS,
but not at a region (R2, negative control) in intron 1 (Fig 4C). Setdb1 depletion led to a signifi-
cant reduction in H3K9me3 at the R1 region (Fig 4C), indicating that Setdb1 is responsible for
H3K9me3 enrichment at the Cdc14b TSS. Collectively, these results suggest that Cdc14b is a
direct transcriptional target of Setdb1.

To test the hypothesis that excess Cdc14b played a key role in inducing meiotic arrest of
Setdb1 KO oocytes, we assessed the effect of Cdc14b depletion on meiotic resumption and mat-
uration. Setdb1 KO GV oocytes were microinjected with either Cdc14b or control small inter-
fering RNA (siRNA), and the injected oocytes, as well as control GV oocytes, were incubated in
IBMX-containing medium for 24 hours to allow Cdc14 depletion to occur while maintaining
GV arrest. The oocytes were then released of GV arrest at the same time by washing out IBMX,
followed by in vitromaturation for 20 hours. Analyses at 24 hours post-injection revealed that
Cdc14b siRNA led to substantial decreases in Cdc14bmRNA (by ~70%) and protein (by ~55%)
(Fig 5A–5C). Before the initiation of in vitromaturation, almost all oocytes injected with either
Cdc14b siRNA or control siRNA remained arrested at the GV stage. Following 20 hours of in
vitromaturation, the majority of Cdc14b-depleted oocytes resumed meiosis, with over 50%
reaching the Met II stage, whereas microinjection of control siRNA had no effect on the mei-
otic arrest phenotype (Fig 5D and 5E, compare with Fig 2D). The improvement in meiotic pro-
gression appeared to be partially due to the amelioration of spindle defects during MI, as
examination of Cdc14b-depeleted oocytes after 6 hours of in vitromaturation revealed a signifi-
cant lower proportion of MI oocytes exhibiting abnormal spindles (S6 Fig). Taken together,
up-regulation of Cdc14b, to a large extent, contributed to the defects in meiotic resumption
and maturation in Setdb1 KO oocytes.

Setdb1 KO oocytes show derepression of retrotransposons and DNA
damage
A subset of retrotransposons, including long terminal repeat (LTR)-containing endogenous
retroviruses (ERVs) and non-LTR long interspersed nuclear element 1 (Line1), maintain the
ability to retrotranspose and thus need to be actively suppressed [19]. Recent studies have dem-
onstrated that Setdb1 is essential for retrotransposon silencing in undifferentiated ES cells,
early embryos, and PGCs [17,18]. To determine whether Setdb1 is also required to silence
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Fig 4. Setdb1 disruption in mouse ES cells leads to decreased enrichment of H3K9me3 at theCdc14b
transcriptional start site and increasedCdc14b expression.WT and Setdb12lox/1lox/CreERT2 ES cells
were treated with 2 μM of 4-hydroxytamoxifen (4-OHT) for 4 days, and the cells (referred to as WT and
Setdb1 KO, respectively, after 4-OHT treatment) were then used for experiments. (A) qRT-PCR analysis of
Setdb1 andCdc14b transcripts in WT and Setdb1 KO ES cells (mean ± SEM of triplicate assays). (B)
Western blot analysis of Setdb1 and Cdc14b in WT and Setdb1 KO ES cells, with β-actin as a loading control.
Relative band intensities were determined as described in Fig 3. (C) ChIP-qPCR analyses. Shown at the top
is a portion of the Cdc14b locus, including exons 1 and 2 and the proximal promoter, which contains a major
Setdb1-binding and H3K9me3 enrichment region (from ChIP-Seq data by Bilodeau et al. [30]). The regions
(R1 and R2) analyzed by qPCR are indicated. The data are presented as the relative enrichment of Setdb1,
H3K9me3, and control IgG at R1 and R2, with the values of Setdb1 KO samples being arbitrarily designated
as 1.0.

doi:10.1371/journal.pgen.1005970.g004
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Fig 5. Cdc14b depletion in Setdb1 KO oocytes alleviates meiotic arrest.GV oocytes were harvested
from control and Setdb1 KOmice. Setdb1 KO oocytes were microinjected with either control siRNA or
Cdc14b siRNA. These oocytes, as well as control GV oocytes, were incubated in IBMX-containing medium
for 24 hours to allow siRNA-mediatedCdc14b depletion to occur, followed by in vitromaturation in IBMX-free
medium for 20 hours. (A) qRT-PCR analysis of Cdc14bmRNA 24 hours after microinjection. Shown are
relativeCdc14bmRNA levels in oocytes injected with control siRNA andCc14b siRNA (mean ± SEM of
duplicate assays). (B, C) IF analysis of Cdc14b 24 hours after microinjection. (B) Representative IF images of
oocytes injected with control siRNA or Cdc14b siRNA. Scale bars, 35 μm. (C)Quantification of fluorescence
intensity of Cdc14b. Twenty oocytes injected with control siRNA and 20 oocytes injected with Cdc14b siRNA
were analyzed, and the data are presented as the mean ± SEM. Statistical comparisons were made using
unpaired t-test. **P < 0.01. (D, E) Determination of meiotic stages after 20 hours of in vitromaturation. (D)
Representative bright-field microscope images of control oocytes and Setdb1 KO oocytes injected with
control siRNA or Cdc14b siRNA. Arrowheads and arrows indicate the polar bodies (characteristic of Met II
oocytes) and the prominent nucleoli (characteristic of GV oocytes), respectively. Scale bars, 50 μm. (E)
Percentages of oocytes at different meiotic stages (GV arrested, MI, Met II, and abnormal). In total, 200 KO
oocytes were injected with control siRNA and another 200 with Cdc14b siRNA, and 172 and 181 of them,
respectively, survived.

doi:10.1371/journal.pgen.1005970.g005
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retrotransposons in growing oocytes, we measured the transcript levels of retrotransposons in
Setdb1 KO and control GV oocytes. As shown in Fig 6A, Setdb1 depletion led to marked up-
regulation of Line1 and several ERV elements, including intracisternal A particles (IAP),
mouse transposon A (MTA), and the type D murine LTR retrotransposon (MusD).

Fig 6. Setdb1KO oocytes show derepression of retrotransposons and increased DNA double-strand
breaks. (A) qRT-PCR analysis of retrotransposon transcripts in control and Setdb1 KOGV oocytes. The
data are presented as the mean ± SEM of triplicate assays. IAP, intracisternal A particles; Line1, long
interspersed nuclear element 1;MTA, mouse transposon A;MusD, the type D murine LTR retrotransposon.
(B, C)GV oocytes were examined for DNA double-strand breaks (DSBs) with anti-γ-H2AX staining. (B)
Representative γ-H2AX (red) and DAPI (blue) images of control and Setdb1 KO oocytes. The nuclei of
oocytes are circled, and the γ-H2AX foci are indicated by arrowheads. Scale bars: 10 μm. (C) The proportions
of oocytes with various numbers of γ-H2AX foci in the nuclei. In total, 178 control oocytes and 194 KO
oocytes were examined.

doi:10.1371/journal.pgen.1005970.g006
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Derepression of retrotransposons could lead to genomic instability [31]. Changes in global
H3K9me2 levels could also impair chromatin structure and genome stability [24]. We mea-
sured DNA double-strand breaks (DSBs) by phosphorylated H2AX (γ-H2AX) immunostain-
ing and found that Setdb1 KO oocytes had substantially more γ-H2AX foci than control
oocytes (Fig 6B and 6C). DNA DSBs have been shown to adversely affect oocyte meiotic pro-
gression [32,33]. It is thus likely that DNA damage induced by Setdb1 depletion also played a
role in the meiotic arrest phenotype.

Embryos derived from Setdb1 KO oocytes exhibit progressive
developmental delays and fail to reach the blastocyst stage
Despite the defects in meiotic resumption and maturation, a considerable fraction of Setdb1
KO oocytes was able to develop to the Met II stage (Fig 2A, 2B and 2D). To assess the fertiliz-
ability and developmental competence of these oocytes, superovulated Setdb1 KO females were
mated with WTmales, and embryos (referred to as Setdb1m-z+ for maternal deficient and
zygotic wild-type) were collected at various time points. Examination of the embryos/oocytes
collected at 0.5 dpc (E0.5) suggested that most Setdb1 KOMet II oocytes were fertilizable, as
the number of zygotes (~44%) recovered (Fig 7A and 7B) was similar to that of Met II oocytes
collected from the oviducts of superovulated Setdb1 KOmice (Fig 2B), and only a small num-
ber of unfertilized Met II oocytes (~4%) were observed (Fig 7B). Consistent with the meiotic
arrest phenotype, considerable numbers of GV (~16%), MI (~10%), and abnormal (~26%)
oocytes were also present at E0.5 (Fig 7A and 7B). At E2.5, the vast majority of control embryos
(referred to as Setdb1m+z+) were at the 8-cell and morula stages (~48% and ~44%, respectively).
In contrast, considerable fractions of Setdb1m-z+ embryos remained at the 1-cell (~20%), 2-cell
(~15%) and 4-cell (~28%) stages, and only ~19% developed to the 8-cell stage and very few
(~5%) appeared to be morulae with abnormal morphologies (Fig 7A and 7B). At E3.5, Setdb1m-

+z+ embryos were predominantly at the blastocyst stage (~84%), as expected, whereas the small
numbers of Setdb1m-z+ embryos recovered (3.2 per litter on average) were all undergoing
degeneration (Fig 7A and 7B). These data revealed that, although Setdb1-depleted Met II
oocytes were fertilizable, embryos lacking maternal Setdb1 exhibited progressive delays in
development, with most of them undergoing degeneration prior to the morula stage and none
of them reaching the blastocyst stage.

To confirm the embryonic phenotype, we isolated morphologically “normal” Setdb1m+z+

and Setdb1m-z+ zygotes at E0.5 and cultured them for 24–72 hours in vitro. As shown in Fig 7C
and 7D, the results were generally consistent with the in vivo data (Fig 7A and 7B), thus
strengthening the conclusion that the development of Setdb1m-z+ embryos was severely delayed
and defective.

Setdb1m-z+ zygotes display impaired mitotic cell cycle progression
The male and female pronuclei form shortly after fertilization and then expand and migrate
toward each other before the first mitosis (Fig 8A). In examining E0.5 embryos, we noticed
that the pronuclear (PN) stages of Setdb1m-z+ zygotes were frequently less advanced, as com-
pared to Setdb1m+z+ zygotes. To exclude the possibility that the delayed PN maturation dis-
played by Setdb1m-z+ zygotes were due to different timing of fertilization, we carried out in
vitro fertilization experiments. Met II oocytes from Setdb1 KO and control mice were fertilized
with WT sperm, and the PN stages were determined by DAPI staining at 5 hours post-fertiliza-
tion (hpf). Setdb1m-z+ zygotes were generally delayed in PN maturation. Whereas the vast
majority (~85%) of Setdb1m+z+ embryos reached the PN2-3 stages at 5 hpf, only less than 40%
of Setdb1m-z+ embryos did, and the rest was mostly at the PN1 stage (Fig 8B and 8C).
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Fig 7. Embryos lackingmaternal Setdb1 exhibit progressive developmental delays and fail to develop to blastocysts. (A, B) Superovulated control
and Setdb1 KO females were mated with WTmales, and embryos (as well as unfertilized GV, MI, and Met II oocytes) were collected at E0.5, E2.5, and E3.5,
respectively, and their developmental stages determined by morphologies. Shown are representative images (A) and percentages of embryos, as well as
unfertilized oocytes, at different stages (B). Abnormal embryos/oocytes included those exhibiting abnormal morphologies and undergoing degeneration. The
total numbers of embryos/oocytes examined for each genotype at each time point are indicated. (C, D). Embryo culture in vitro. Superovulated control and
Setdb1 KO females were mated with WTmales, and morphologically normal Setdb1m+z+ and Setdb1m-z+ zygotes were isolated at E0.5. The embryos were
cultured for 24, 48, and 72 hours in vitro, and their developmental stages determined by morphologies. Shown are representative images (C) and
percentages of embryos at different stages (D). The total numbers of embryos examined for each genotype at each time point are indicated.

doi:10.1371/journal.pgen.1005970.g007
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Delayed PNmaturation could reflect impaired cell cycle progression. We therefore measured
M-phase entry of zygotes. Control and Setdb1 KO females were mated withWTmales, and
zygotes collected at E0.5 were cultured for 18 hours in the presence of colcemid, which depoly-
merizes microtubules and arrests zygotes at mitosis. Most Setdb1m+z+ zygotes (~85%) arrested
at the M phase with mitotic condensed chromosomes. In contrast, a much smaller fraction
(~27%) of Setdb1m-z+ zygotes reached the M phase, and the majority (nearly 60%) remained in
the interphase (Fig 8D and 8E). Collectively, these results indicated that Setdb1m-z+ embryos
had severe defects in progressing through the first mitotic cell cycle. It is likely that subsequent
cell cycles were also impaired, given the progressive developmental delays exhibited by these
embryos.

Fig 8. Setdb1m-z+ zygotes show severe delays in pronuclear maturation and entry into the first mitosis. (A) Schematic representation of the timing of
cell cycle phases of 1-cell and 2-cell stage embryos. (B, C) Determination of pronuclear (PN) stages after in vitro fertilization. Met II oocytes from Setdb1 KO
and control mice were fertilized in vitro with sperm fromWTmice, and at 5 hours post-fertilization (hpf), the zygotes (Setdb1m-z+ and Setdb1m+z+,
respectively) were stained with DAPI (blue) to determine their PN stages. (B) Representative zygotes at PN1, PN2, and PN3 stages. The boundaries of the
zygotes are defined by circles, and the male and female pronuclei are indicated. Pb, polar body. Scale bars, 30 μm. (C) The percentages of PN1, PN2-3, and
abnormal zygotes. The total numbers of embryos examined are indicated. (D, E) Setdb1 KO and control females were mated with WTmales, zygotes
(Setdb1m-z+ and Setdb1m+z+, respectively) collected at E0.5 were incubated in the presence of colcemid for 18 hours and then stained with DAPI to
determine the cell cycle stages. (D) Representative zygotes at interphase and M phase. The boundaries of the zygotes are defined by circles. Pb, polar body.
Scale bars, 30 μm. (E) The percentages of interphase, M phase, and abnormal zygotes. The total numbers of embryos examined are indicated.

doi:10.1371/journal.pgen.1005970.g008

Maternal Setdb1 Is Required for Meiosis and Embryogenesis in Mice

PLOS Genetics | DOI:10.1371/journal.pgen.1005970 April 12, 2016 15 / 26



Restoration of Setdb1 activity in Setdb1 KOGV oocytes partially
rescues the meiotic and embryonic defects
To determine whether the meiotic and embryonic phenotypes can be rescued by Setdb1 re-
expression and whether its catalytic activity is required, Setdb1 KO GV oocytes were microin-
jected with mRNA encoding Flag-taggedWT Setdb1 (Flag-Setdb1) or Setdb1 with a point muta-
tion altering cysteine 1243 to alanine (Flag-C1243A). The C1243A mutation is located in the
bifurcated SET domain (Fig 9A) and abolishes the catalytic activity [14,15]. The mRNAs for
microinjection were produced by in vitro transcription (with Poly(A) tailing) using plasmid
constructs as templates (S7 Fig). IF analysis, performed 2 hours post-injection, confirmed the
expression of Flag-tagged Setdb1 proteins (Fig 9B). Following 18 hours of in vitromaturation,
the vast majority of Setdb1 KO oocytes expressing Flag-Setdb1 resumed meiosis, with over 50%
reaching the Met II stage, albeit the meiotic defects were not completely prevented, as compared
to control oocytes. In contrast, the expression of inactive Setdb1 (Flag-C1243A) had no effect on
the meiotic arrest phenotype, with ~30% of oocytes remaining arrested at the GV stage and only
~20% reaching the Met II stage, similar to uninjected Setdb1 KO oocytes (Fig 9C and 9D).

To assess the effect of Setdb1 re-expression on embryonic defects, the Met II oocytes
obtained from the in vitromaturation experiments (described above) were inseminated with
WT sperm, and the embryos were cultured for 48 hours. In all four groups, the majority of
oocytes were fertilized, although small fractions (~10%) of unfertilized Met II oocytes were
observed. After 48 hours of in vitro development, most embryos derived from control oocytes
developed to the morula (~55%) or 8-cell (~20%) stages (Fig 9E and 9F), similar to the results
from in vitro development of Setdb1m+z+ embryos (Fig 7C and 7D). Among the embryos
derived from Setdb1 KO oocytes, injected or uninjected, considerable fractions (~30–35%)
were morphologically abnormal or undergoing degeneration, indicating that the developmen-
tal competence of mature eggs derived from Setdb1-expressing oocytes were still severely com-
promised. However, in the Flag-Setdb1 group, nearly 20% of the embryos reached the morula
stage, and another ~10% developed to the 8-cell stage, albeit substantial fractions were arrested
at the 1-cell (22%) or 2-cell (16%) stages. In contrast, in the uninjected group, none of the
embryos developed beyond the 4-cell stage, and in the Flag-C1243A group, ~50% of embryos
were arrested at the 1-cell stage and only a small fraction reached the 2-cell stage (Fig 9E and
9F). It is also noteworthy that Setdb1m-z+ zygotes derived from natural mating failed to develop
beyond the 8-cell stage in vitro, even with 72 hours of culture (Fig 7C and 7D). Thus, restora-
tion of Setdb1 activity in Setdb1 KO GV oocytes not only facilitated meiotic progression but
also improved the ability of mature oocytes to support early embryogenesis. The partial effects
on meiotic and embryonic phenotypes could be because the Setdb1 levels were not optimal or
some genomic/chromatin defects that had already occurred could not be remedied by Setdb1
re-expression.

Discussion
In summary, we demonstrated that, in mouse, maternal Setdb1 controls global H3K9me2 level
in developing oocytes, plays crucial roles in meiotic progression, and is essential for preimplan-
tation development. Conditional deletion of Setdb1 in growing oocytes resulted in inhibition of
meiotic resumption and impairment of meiotic progression following GVBD, largely due to
up-regulation of Cdc14b, a negative regulator of meiotic progression. Other consequences of
Setdb1 depletion and altered H3K9 methylation, including derepression of retrotransposons,
increased DNA damage, aberrant expression of additional genes, and chromatin defects, likely
also contributed to the meiotic arrest phenotype (Fig 10). Although some Setdb1-deficient
oocytes developed to fertilizable eggs, embryos derived from these eggs were severely defective
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Fig 9. Expression of WT, but not inactive, Setdb1 in Setdb1 KOGV oocytes partially rescues the meiotic and embryonic defects. (A) Structure of the
Setdb1 protein showing the major functional domains. Tud and Tud, tandem Tudor domain; MBD, methyl-CpG-binding domain; pre-S, pre-SET domain; S
and ET, bifurcated SET domain. The location of the point mutation altering cysteine 1243 to alanine (C1243A) is indicated. TheWT and mutant Setdb1
proteins expressed in oocytes have an N-terminal Flag tag. (B-D) Fully-grown GV oocytes were harvested from control and Setdb1 KOmice. Setdb1 KO
oocytes were injected with mRNAs encoding Flag-taggedWT Setdb1 (Flag-Setdb1) or catalytically inactive Setdb1 (Flag-C1243A). The injected oocytes, as
well as uninjected control and Setdb1 KO oocytes, were incubated in IBMX-containing medium for 2 hours to allow the expression of Flag-tagged Setdb1
proteins, followed by in vitromaturation in IBMX-free medium for 18 hours. (B) Representative IF images showing expression of Flag-Setdb1 proteins (green)
2 hours after mRNA injection. The nuclei were stained with DAPI (blue). The boundaries of the oocytes are defined by circles. Scale bars, 35 μm. (C)
Representative bright-field microscope images of uninjected oocytes and oocytes expressing Flag-Setdb1 or Flag-C1243A following 18 hours of in vitro
maturation. Arrowheads and arrows indicate the polar bodies (characteristic of Met II oocytes) and the prominent nucleoli (characteristic of GV oocytes),
respectively. Scale bars, 50 μm. (D) Percentages of oocytes at different meiotic stages (GV arrested, MI, Met II, and abnormal) following 18 hours of in vitro
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in cell cycle progression and failed to reach the blastocyst stage. Importantly, re-expression of
WT Setdb1, but not catalytically inactive Setdb1, in Setdb1 KO GV oocytes partially rescued
the meiotic and embryonic defects, suggesting that the catalytic activity of maternal Setdb1 is
essential for meiotic progression and early embryogenesis. Nevertheless, further work is
required to determine how depletion of maternal Setdb1 leads to severe defects in preimplanta-
tion development. The consequences of Setdb1 deficiency, including decreased H3K9 methyla-
tion, altered gene expression, and genomic and chromatin defects, and/or the lack of maternal

maturation. The total numbers of oocytes examined are indicated. (E, F)Met II oocytes derived from in vitromaturation (described above) were inseminated
with sperm fromWTmice and then cultured for 48 hours. (E) Representative images of embryos derived from the indicated Met II oocytes. Scale bars, 50 μm.
(F) Percentages of different stages of preimplantation embryos, as well unfertilized oocytes (Met II), are shown. The total numbers of embryos/oocytes
examined are indicated.

doi:10.1371/journal.pgen.1005970.g009

Fig 10. Proposed effects of Setdb1 depletion onmeiotic progression and preimplantation development. Setdb1 depletion in growing oocytes leads to
decreases in H3K9-methyl marks. One consequence is elevated expression of Cdc14b, which leads to Cyclin B1 degradation and inhibition of meiotic
resumption. Cdc14b upregulation also contributes to subsequent spindle and chromosomal abnormalities and meiotic arrest at meiosis I. Other
consequences of decreases in H3K9 methylation, including derepression of retrotransposons, DNA damage, altered gene expression, and chromatin
defects, likely also play important roles in inducing spindle and chromosome defects at meiosis I. The mechanisms by which Setdb1 depletion leads to
preimplantation development defects remain to be determined. The consequences of Setdb1 depletion (e.g. H3K9 methylation decreases, altered gene
expression, and genomic and chromosomal instability) and/or the lack of maternal Setdb1 itself may affect essential cellular processes during
preimplantation development.

doi:10.1371/journal.pgen.1005970.g010

Maternal Setdb1 Is Required for Meiosis and Embryogenesis in Mice

PLOS Genetics | DOI:10.1371/journal.pgen.1005970 April 12, 2016 18 / 26



Setdb1 itself may affect essential cellular processes (Fig 10). Our work demonstrates that
Setdb1 is a maternal-effect gene essential for fertility.

Meiotic progression is accompanied by epigenetic changes. However, little is known about
the functional significance of these changes, as well as the key epigenetic regulators involved.
The finding that Setdb1, the predominant histone H3K9 KMT in oocytes, regulates the
expression of Cdc14b, a phosphatase that counteracts Cdk1 activity [7], uncovers a functional
link between the epigenetic machinery and the major signaling pathway that governs meiotic
progression. While the roles of Cdc14b, as well as the mechanisms involved, in meiosis are
not fully understood, there is evidence that Cdc14b promotes Cyclin B1 degradation and reg-
ulates meiotic spindle dynamics [8]. Setdb1-deficient oocytes had elevated Cdc14b levels,
which correlated with Cyclin B1 reduction, meiotic arrest in GV and MI stages, and abnor-
mal meiotic spindles. Importantly, siRNA-mediated knockdown of Cdc14b in Setdb1-defi-
cient oocytes considerably alleviated the defects in meiotic resumption and maturation.
These findings led us to conclude that excess Cdc14b was largely responsible for the meiotic
defects in Setdb1-deficient oocytes. Our results suggest that Setdb1, by keeping Cdc14b below
a threshold level, plays important roles in controlling the timing of meiotic resumption and
in regulating spindle formation and function following GVBD. The limited number of
oocytes one can obtain makes it difficult to determine whether Setdb1 directly or indirectly
regulates Cdc14b expression. We performed ChIP analysis in mouse ES cells instead, because
Setdb1 depletion leads to identical effect on Cdc14b expression in oocytes and ES cells. Our
results confirmed that Setdb1 binds to and deposits the repressive H3K9me3 mark at a region
spanning the Cdc14b TSS, thus strongly suggesting that Setdb1 directly represses Cdc14b
transcription.

Because a subset of retrotransposons remains active, regulatory mechanisms have evolved
to suppress their expression. DNA methylation and Setdb1-mediated H3K9 methylation have
been shown to silence retrotransposons in somatic cells and undifferentiated cells (ES cells,
early embryos, and PGCs), respectively [17,18,19]. Our finding that Setdb1 is also required for
suppressing retrotransposons in developing oocytes suggests a more general role for Setdb1--
mediated H3K9 methylation in retrotransposon silencing. Derepression of retrotransposons is
often detrimental to the genome. Indeed, Setdb1-deficient oocytes showed increased DNA
damage, which likely contributed to the meiotic and embryonic defects.

Due to meiotic arrest, Setdb1 KO female mice produced considerably fewer Met II oocytes,
which were mostly fertilizable. However, embryos lacking maternal Setdb1 (Setdb1m-z+) exhib-
ited progressive developmental delays, with the vast majority being degenerated prior to the
morula stage and none reaching the blastocyst stage. The significantly more severe phenotype
and earlier lethality of Setdb1m-z+ embryos, compared to embryos deficient for zygotic Setdb1
(Setdb1-/- embryos develop to the blastocyst stage and die at 3.5–5.5 dpc) [23], suggest that pre-
implantation development mainly (if not entirely) relies on maternal Setdb1.

We showed that the progression of the first mitotic cell cycle was severely impaired in
Setdb1m-z+ embryos, suggesting that maternal Setdb1 may be important for the transitioning
from meiotic to mitotic divisions. Based on the progressive developmental delays of these
embryos, it is highly likely that subsequent cleavage divisions were also impaired. While the
molecular mechanisms underlying these defects remain to be determined, our results suggest
that the catalytic activity of maternal Setdb1 is essential for early embryogenesis. Because
many cell cycle regulators regulate both meiosis and mitosis [5], one possibility is that misre-
gulated genes in Setdb1-deficient oocytes not only led to meiotic arrest, but also contributed
to the defects in mitotic cell cycle progression in early embryos. Previous studies have shown
that Cdc14b is a component of the G2 checkpoint that prevents entry into mitosis following
DNA damage and that Cdc14b overexpression in zygotes causes mitotic arrest at the 1- and
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2-cell stages and inhibits ZGA [9,34]. However, the phenotype of Setdb1m-z+ embryos was
much less severe, as compared to Cdc14b-overexpressing embryos [9]. In mouse, ZGA occurs
at late two-cell stage and is essential for further development. The fact that a significant frac-
tion of Setdb1m-z+ embryos developed to the 4-cell stage and beyond argues against a general
failure in ZGA as the major cause of preimplantation development defects. It is therefore
unlikely that Cdc14b elevation played a major role in the developmental defects of Setdb1m-z+

embryos. It is also possible that Setdb1-deficient mature oocytes, albeit fertilizable, had chro-
matin and genomic defects that impair cellular processes in preimplantation embryos. Mater-
nal Setdb1 persists through preimplantation development and exhibits dynamic localization
patterns, implying multiple roles during early embryogenesis [35]. Thus, another possibility
is that the lack of Setdb1 activity in early embryos, rather than changes in gene expression
and chromatin in oocytes, was mainly responsible for the embryonic defects. These possibili-
ties are not mutually exclusive, and they may all have contributed to the phenotypic
abnormalities.

Methods

Mice
Experimental mice were maintained on a C57BL/6-129Sv hybrid background and used in
accordance with the National Institutes of Health Guide for the Care and Use of Laboratory
animals, with Institutional Care and Use Committee-approved protocols at The University of
Texas MD Anderson Cancer Center (MDACC). The Setdb13lox, Setdb12lox (conditional), and
Setdb11lox (null) alleles (schematically shown in S1 Fig) were described previously [28].
Zp3-Cre transgenic mice were used to disrupt Setdb1 in growing oocytes (the breeding scheme
is shown in S1 Fig). Mice were genotyped by PCR, and the primers used are listed in S1 Table.

LacZ staining
Ovaries from 4-week-old Setdb13lox/+ and WTmice were fixed in 2% paraformaldehyde-0.1%
glutaraldehyde in phosphate buffered saline (PBS) for 1 hour on ice and permeabilized in
Rinse buffer (2mMMgCl2, 0.01% sodium deoxycholate, 0.02% NP-40 in PBS) three times (30
min each) at room temperature. The tissues were then incubated in X-gal solution (1mg/ml X-
gal, 5mM potassium ferricyanide and 5mM potassium ferrocyanide in Rinse buffer) overnight
at 37°C, post-fixed in 10% formalin at room temperature, and embedded in paraffin using stan-
dard protocols. Ovary sections were deparaffinized and counterstained with nuclear fast red
(Sigma) and mounted.

Oocyte collection and in vitromaturation
Fully-grown GV oocytes were obtained from the ovaries of 4–6 week-old female mice 48 hours
after intra-peritoneal injection of 5 IU of pregnant mare’s serum gonadotrophin (PMSG,
Sigma). Ovaries were placed in a Petri dish with pre-warmed (37°C) M2 medium (Invitrogen)
supplemented with 200 μM of 3-isobutyl-1-methylxanthine (IBMX, Sigma) so as to prevent
oocytes from undergoing GVBD. GV oocytes were released by puncturing antral follicles with
a fine needle on the stage of a dissecting microscope. To obtain Met II oocytes, 5 IU of human
chorionic gonadotrophin (hCG, Sigma) was administered 48 hours after PMSG injection. Mice
were euthanized the following morning, and oocytes were collected from the oviducts and
released into a hyaluronidase/M2 solution for removal of the cumulus cells. For in vitromatu-
ration, oocytes were washed and cultured in IBMX-free M16 medium (Millipore) for various
periods of time at 37°C in 5% CO2 atmosphere.
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In vitro fertilization
Epididymis was dissected into pre-warmed (37°C) Human Tubal Fluid (HTF). 4 μl of fresh
sperm were added to a 200 μl HTF drop covered with mineral oil and capacitated for 2 hours
in the incubator. Then Met II oocytes, either obtained from superovulated mice or derived
from in vitromaturation, were added directly to the sperm suspension. After incubating for a
maximum of 5 hours at 37°C, 5% CO2 in HTF, eggs were washed with KSOMmedium and
incubated for various periods of time in KSOMmedium at 37°C in 5% CO2 atmosphere.

Embryo collection and in vitro development
Setdb1 KO and control mice were superovulated and mated with WTmales. Fertilized oocytes
(zygotes) were collected from the oviducts at E0.5 and released into a hyaluronidase/M2 solu-
tion for dissociation. E2.5 embryos were flushed out the infundibulum of the oviducts, and
E3.5 embryos were flushed out of the uterus. For in vitro embryo development, zygotes were
cultured in KSOMmedium at 37°C in 5% CO2 atmosphere for 24–72 hours.

Gene knockdown and ectopic expression in GV oocytes
To knockdown Cdc14b or express Flag-tagged Setdb1 proteins in Setdb1 KO GV oocytes, siR-
NAs or mRNAs were introduced by microinjection. Briefly, fully-grown GV oocytes were iso-
lated 48 hours after PMSG injection, kept in M2 medium containing IBMX (200 μM), and
injected with either 4 μM of siRNA (Cdc14b or control) or 10 pl of mRNA (Flag-Setdb1 or
Flag-C1243A, 0.2 μg/μl) with a FemtoJet microinjector. The injected oocytes were incubated in
IBMX-containing medium either for 24 hours after siRNA injection or for 2 hours after
mRNA injection, followed by in vitromaturation in IBMX-free medium. The Silencer Select
Cdc14b siRNA (s104254) and Silencer Select Negative Control No. 1 siRNA (4390843) were
purchased from Life Technologies. ARCA (Anti-Reserve Cap Anaolog) capped and poly(A)
tailed mRNAs encoding Flag-Setdb1 and Flag-C1243A were produced by in vitro transcription
using HiScibe T7 ARCAmRNA kit (with tailing) from New England Biolabs (E2060S). The
templates for in vitro transcription were generated by cloning Flag-Setdb1 and Flag-C1243A
cDNAs, respectively, in pBluescript KS (see S7 Fig for cloning strategy). The C1243A mutation
was introduced by PCR. Primers used for molecular cloning are listed in S1 Table. All plasmid
constructs were confirmed by DNA sequencing.

Histological analysis and immunohistochemistry
Ovaries were collected and fixed in formalin overnight, processed, and embedded in paraffin
by the Pathology Core Services Facility at MDACC using standard protocols. Ovaries were
serially sectioned at 5 μm and stained with hematoxylin and eosine (H&E) or with periodic
acid-Schiff (PAS)-hematoxylin. For IHC analysis, paraffin sections were deparaffinized and
hydrated in xylene followed by 100% and 95% ethanol. Endogenous peroxidase activity was
blocked with 3% H2O2 in water for 10 min. Antigen retrieve was done with 10 mM Citrate
Buffer pH 6.0 in a microwave oven for 3 min. After blocking slides with Biocare Blocking
Reagent (BS966M) for 10 min, slides were incubated with respective primary antibodies
(listed in S2 Table) for 1 hour at room temperature. After incubating with appropriate horse-
radish peroxidase (HRP)-conjugated secondary antibodies (indicated in S2 Table) for 30
minutes at room temperature, slides were incubated with DAB monitoring staining develop-
ment for viewing.
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Immunofluorescence
Isolated oocytes were washed in PBS containing 1% polyvinylpyrrolidine (PVP), fixed in 3.7%
paraformaldehyde in PBS for 30 min, permeabilized for 15 min in 0.1% Triton X-100 in PBS,
and then stained with respective primary antibodies (listed in S2 Table) overnight at 4°C. After
washing three times with PBS containing 1mg/ml BSA, the oocytes were incubated for 1 hour
with appropriate secondary antibodies conjugated to Fluorescein Isothiocyanate (FITC), Texas
Red or Alexa Fluor 488 (indicated in S2 Table), followed by incubation with DAPI.

Western blot
Western blot analysis of GV oocytes or ES cells was performed using standard procedures. GV
oocytes were collected, washed in PBS containing 1% PVP, and boiled in sodium dodecyl sul-
fate (SDS) sample buffer. For comparisons, the same numbers of oocytes were used to assure
equal loading. ES cells were lyzed in lysis buffer (20 mM Tris-HCl pH7.9, 25% glycerol, 150
mMNaCl, 1.5 mMMgCl2, 0.1% NP-40, 0.2 mM EDTA, and 0.5 mMDTT) supplemented with
protease inhibitor cocktail (1861279, Nalgene) and phosphatase inhibitor cocktail (78427, Nal-
gene). The cells were then sonicated, centrifuged, and the supernatants were measured for pro-
tein concentrations using a protein assay kit (500–0116, Bio-Rad) and boiled in SDS sample
buffer. For comparisons, equal amount (25 μg) of total proteins were loaded. The blots were
probed with respective primary antibodies (listed in S2 Table) by overnight incubation at 4°C,
followed by 1-hour incubation at room temperature with appropriate HRP-conjugated second-
ary antibodies (indicated in S2 Table). Protein bands were detected by Western Lightning ECL
Pro detection reagent (NEL121001EA, PerkinElmer).

qRT-PCR
Total RNA was extracted from 50–100 GV oocytes using the PicoPure RNA Isolation Kit (Life
Technologies) according to the manufacturer's instruction, followed by reverse transcription
(RT) using Superscript RT kit (Bio-Rad) to generate cDNA libraries. qRT-PCR was performed
using iTaq Universal SYBR Green Supermix with ABI 7900 Real-Time PCR system (Applied
Biosystems) using primers (listed in S1 Table) for the following genes and transposons: Setdb1
(NM_1163641), Cdc14b (NM_172587), Cdc25b (NM_023117), Bub1b (NM_009773), Ppp2cb
(NM_017374), Cdk1 (NM_007659), Ccnb1 (NM_172301),Wee2 (NM_201370), Fzr1
(NM_019757), IAP,MTA,MusD, and Line1.

ChIP-qPCR analysis
ChIP assay was performed as previously described [36], using rabbit polyclonal antibodies
to Setdb1 and H3K9me3 or normal rabbit IgG as negative control (see S2 Table for informa-
tion about the antibodies). Briefly, Setdb12lox/1lox mouse ES cells transfected with pCAG-Cre-
ERT2 [28], as well as WT ES cells, were treated with 2 μM of 4-OHT for 4 days, and the
treated cells (referred to as Setdb1 KO and WT ES cells, respectively) were fixed with freshly
prepared 1% paraformaldehyde for 10 min at room temperature. The cells were harvested
and their nuclei extracted, lyzed, and sonicated. The samples were immunoprecipitated with
8 μg of Setdb1, H3K9me3, or normal IgG antibodies. The eluted protein:DNA complex was
reverse-crosslinked at 65°C overnight. DNA was recovered after proteinase and RNase A
treatment and then analyzed by real-time PCR using primers for the Cdc14b locus (listed in
S1 Table).
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Statistical analysis
Statistical comparisons between samples were made using unpaired t-test or one-way
ANOVA, and P< 0.05 was considered statistically significant.

Supporting Information
S1 Fig. Oocyte-specific deletion of Setdb1. (A) Schematic diagrams of the Setdb1 alleles.
Exons are shown as black bars. Exon 16, flanked by loxP sites (shown as triangles) in the condi-
tional allele, encodes part of the catalytic bifurcated SET domain. The locations of the primers
used for genotyping (F1, F2, and R1) are indicated. (B)Mating scheme used to produce Setdb1
knockout (KO) and control mice. (C) Representative PCR genotyping results using tail-tip
genomic DNA. For each sample, the left lane (lane 1, 3, 5, or 7) is Cre PCR, and the right lane
(lane 2, 4, 6, or 8) is Setdb1 allele PCR.
(PDF)

S2 Fig. Decease in H3K9me2 in Setdb1 KO growing oocytes. Ovarian sections of 2-month-
old control and Setdb1 KOmice were analyzed by immunohistochemistry (IHC) for H3K9me2
(A), H3K9me1, H3K9me3 (B), or H3K4me2 (C), as indicated. Representative staining patterns
of growing oocytes are shown, and their nuclei are indicated by arrows. Scale bars, 50 μm.
(PDF)

S3 Fig. Setdb1 deficiency has no effect on oocyte growth. (A) Periodic acid-Schiff (PAS)-
hematoxylin staining showing the histological features of ovaries from 2-month old control
and Setdb1 KOmice. CL, corpus luteum. Scale bar, 500 μm. (B) Quantification of follicles from
control and Setdb1 KO ovaries. Ovarian sections were examined by microscopy, and follicles of
various stages were determined by morphology and counted. The data are presented as the
mean ± SEM of 8 ovarian sections from 2 mice for each genotype. (C) Representative bright-
field microscope images of control and Setdb1 KO fully-grown GV oocytes showing no differ-
ence in morphology. Arrows indicate the prominent nucleoli characteristic of GV oocytes.
Scale bar, 50 μm. (D) The numbers of fully-grown GV oocytes harvested from the ovaries of
control and Setdb1 KOmice are presented as the mean ± SEM (data from 5 control and 6
Setdb1 KOmice).
(PDF)

S4 Fig. Setdb1 binding and H3K9me3 enrichment in meiosis genes in mouse ES cells.
Shown are genome browser screenshots of the Cdc14b, Cdc25b, Bub1b, and Ppp2cb loci show-
ing Setdb1 and H3K9me3 ChIP-Seq data in mouse ES cells (from Bilodeau et al. 2009 [30]).
(PDF)

S5 Fig. MG132 improves GVBD rate of Setdb1 KO oocytes. Control and Setdb1 KO GV
oocytes were collected in M2 medium supplemented with 200 M of IBMX so as to prevent
oocytes from undergoing GVBD. Setdb1 KO oocytes were treated with DMSO or MG132
(10 μM) for 4 hours. After washing, control and Setdb1 KO oocytes were cultured in IBMX-
free M16 medium for 2 hours. (A) Representative bright-field microscope images of control
oocytes and Setdb1 KO oocytes treated with or without MG132. Arrows indicate the prominent
nucleoli characteristic of GV oocytes. Scale bars, 50 μm. (B) The percentages of GV, GVBD/
MI, and abnormal oocytes. The numbers of oocytes analyzed are indicated.
(PDF)

S6 Fig. Effect of Cdc14b knockdown on spindle phenotype during MI. GV oocytes were har-
vested from control and Setdb1 KOmice. Setdb1 KO oocytes were microinjected with either
control siRNA or Cdc14b siRNA. The injected oocytes, as well as control GV oocytes, were
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incubated in IBMX-containing medium for 24 hours to allow siRNA-mediated Cdc14b deple-
tion to occur while maintaining GV arrest and, following IBMX washout, were allowed to
mature in vitro for another 6 hours. Oocytes were immunostained for α-tubulin (green) and
DNA (blue) to examine spindle and chromosome structures. (A) Representative IF images
showing MI oocytes with normal and abnormal spindle structures. (B) Percentages of MI
oocytes with spindle defects in the indicated groups. The total number of MI oocytes examined
were: 32 control, 30 Setdb1 KO injected with control siRNA, and 34 Setdb1 KO injected with
Cdc14b siRNA. Statistical comparisons were made using one-way ANOVA. �P< 0.05;
��P< 0.01.
(PDF)

S7 Fig. Plasmid constructs used as templates for in vitro transcription for the production
of mRNAs encoding Flag-tagged WT Setdb1 or catalytically inactive Setdb1 (C1243A).
Flag-Setdb1 or Flag-C1243A cDNA was inserted into the SpeI-EcoRI sites of pBluescript KS.
The constructs were linearized with SalI digestion before being used for in vitro transcription.
The location of the C1243A point mutation is indicated.
(PDF)

S1 Table. PCR primers. All primers used in this study are listed, including their sequences and
applications.
(PDF)

S2 Table. Antibodies. All antibodies used in this study are listed, including the vendors, cata-
logue numbers, dilutions, and applications.
(PDF)
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