
RESEARCH ARTICLE

The Dynamic Genome and Transcriptome of
the Human Fungal Pathogen Blastomyces
and Close Relative Emmonsia
José F. Muñoz1,2☯, Gregory M. Gauthier3☯, Christopher A. Desjardins4☯, Juan E. Gallo1,5,
Jason Holder4, Thomas D. Sullivan6, Amber J. Marty3, John C. Carmen6¤, Zehua Chen4,
Li Ding7, Sharvari Gujja4, Vincent Magrini7, Elizabeth Misas1,2, Makedonka Mitreva7,
Margaret Priest4, Sakina Saif4, Emily A. Whiston8, Sarah Young4, Qiandong Zeng4, William
E. Goldman9, Elaine R. Mardis7, JohnW. Taylor8, Juan G. McEwen1,10, Oliver K. Clay1,11,
Bruce S. Klein3,6,12, Christina A. Cuomo4*

1 Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia,
2 Institute of Biology, Universidad de Antioquia, Medellín, Colombia, 3 Department of Medicine, University of
Wisconsin, Madison, Madison, Wisconsin, United States of America, 4 Broad Institute of MIT and Harvard,
Cambridge, Massachusetts, United States of America, 5 Doctoral Program in Biomedical Sciences,
Universidad del Rosario, Bogotá, Colombia, 6 Department of Pediatrics, University of Wisconsin, Madison,
Madison, Wisconsin, United States of America, 7 The Genome Institute, Washington University School of
Medicine, St. Louis, Missouri, United States of America, 8 Department of Plant and Microbial Biology,
University of California, Berkeley, Berkeley, California, United States of America, 9 Department of
Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill,
North Carolina, United States of America, 10 School of Medicine, Universidad de Antioquia, Medellín,
Colombia, 11 School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia,
12 Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Madison,
Wisconsin, United States of America

☯ These authors contributed equally to this work.
¤ Current address: Department of Biological Sciences, Northern Kentucky University, Highland Heights,
Kentucky, United States of America
* cuomo@broadinstitute.org

Abstract
Three closely related thermally dimorphic pathogens are causal agents of major fungal dis-

eases affecting humans in the Americas: blastomycosis, histoplasmosis and paracoccidioi-

domycosis. Here we report the genome sequence and analysis of four strains of the

etiological agent of blastomycosis, Blastomyces, and two species of the related genus

Emmonsia, typically pathogens of small mammals. Compared to related species, Blasto-
myces genomes are highly expanded, with long, often sharply demarcated tracts of low

GC-content sequence. These GC-poor isochore-like regions are enriched for gypsy ele-
ments, are variable in total size between isolates, and are least expanded in the avirulent B.
dermatitidis strain ER-3 as compared with the virulent B. gilchristii strain SLH14081. The

lack of similar regions in related species suggests these isochore-like regions originated

recently in the ancestor of the Blastomyces lineage. While gene content is highly conserved

between Blastomyces and related fungi, we identified changes in copy number of genes

potentially involved in host interaction, including proteases and characterized antigens. In

addition, we studied gene expression changes of B. dermatitidis during the interaction of

the infectious yeast form with macrophages and in a mouse model. Both experiments
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highlight a strong antioxidant defense response in Blastomyces, and upregulation of dioxy-

genases in vivo suggests that dioxide produced by antioxidants may be further utilized for

amino acid metabolism. We identify a number of functional categories upregulated exclu-

sively in vivo, such as secreted proteins, zinc acquisition proteins, and cysteine and trypto-

phan metabolism, which may include critical virulence factors missed before in in vitro
studies. Across the dimorphic fungi, loss of certain zinc acquisition genes and differences in

amino acid metabolism suggest unique adaptations of Blastomyces to its host environment.

These results reveal the dynamics of genome evolution and of factors contributing to viru-

lence in Blastomyces.

Author Summary

Dimorphic fungal pathogens including Blastomyces are the cause of major fungal diseases
in North and South America. The genus Emmonsia includes species infecting small mam-
mals as well as a newly emerging pathogenic species recently reported in HIV-positive
patients in South Africa. Here, we synthesize both genome sequencing of four isolates of
Blastomyces and two species of Emmonsia as well as deep sequencing of Blastomyces RNA
to draw major new insights into the evolution of this group and the pathogen response to
infection. We investigate the trajectory of genome evolution of this group, characterizing
the phylogenetic relationships of these species, a remarkable genome expansion that
formed large isochore-like regions of low GC content in Blastomyces, and variation of gene
content, related to host interaction, among the dimorphic fungal pathogens. Using RNA-
Seq, we profile the response of Blastomyces to macrophage and mouse pulmonary infec-
tion, identifying key pathways and novel virulence factors. The identification of key fungal
genes involved in adaptation to the host suggests targets for further study and therapeutic
intervention in Blastomyces and related dimorphic fungal pathogens.

Introduction
Blastomyces is a genus of a thermally dimorphic fungal pathogen, which is the etiological agent
of blastomycosis, a lung infection that can become a systemic mycosis. In North America, Blas-
tomyces is endemic in the Ohio and Mississippi river valleys, the Great Lakes region, and the
St. Lawrence River [1]. Within Blastomyces, two lineages of B. dermatitidis have been recog-
nized [2], with recent work providing evidence that one lineage is a distinct species, B. gilchristii
[3]. Both species can infect humans, and vary in morphology, virulence and immune responses
by the host. The primary mode of infection is inhalation of conidia and the subsequent conver-
sion of these conidia into parasitic yeast [4,5]. Clinical manifestations range from asymptom-
atic infection to symptomatic disease and include pneumonia, acute respiratory distress
syndrome, and a rapidly progressive dissemination involving multiple organ systems that is
often fatal [5,6]. Diagnosis is often complicated by the similarity of symptoms to those of viral
or bacterial respiratory infection and by the aforementioned variety of manifestations [7].

As a thermally dimorphic fungus, Blastomyces has the remarkable ability to switch
between two different morphologies in response to external stimuli, predominantly tempera-
ture [5]. At 22–25°C, Blastomyces grows as septate hyphae that produce infectious conidia
and at 37°C it grows as a budding yeast [8]. Blastomyces is part of a larger group of dimorphic
fungal pathogens, including Histoplasma, Paracoccidioides, and Coccidioides, all belonging to
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the order Onygenales. The dimorphic fungi collectively are the most common cause of inva-
sive fungal disease worldwide and account for several million infections each year [8]. Unlike
opportunistic fungi, such as Candida albicans, Cryptococcus neoformans, or Aspergillus fumi-
gatus, the dimorphic fungi can infect immunocompetent and immunocompromised hosts
[6,9–11].

Previous work has shown that in Blastomyces, the temperature-dependent switch from
hyphae to yeast along with upregulation of yeast-phase specific genes is critical for virulence
[12–14]. The dimorphism-regulating kinase-1 (DRK1) promotes the temperature-dependent
conversion from mold to yeast, and its deletion renders Blastomyces avirulent during experi-
mental murine pulmonary infection [12]. The upregulation of yeast-phase specific genes, such
as the Blastomyces yeast-phase specific gene 1 (BYS1) [15] and the Blastomyces adhesion-1
gene (BAD1) [13,14], is also important for the adaptive response of the yeast cells in the host
environment. BAD1 is considered an essential virulence factor in Blastomyces, since it binds
yeast cells to host tissue and impairs host immune defenses by inhibiting the production of
tumor necrosis factor-α and blocking CD4+ T lymphocyte activation [13].

Within the Onygenales, Blastomyces, Histoplasma and Paracoccidioides belong to the family
Ajellomycetaceae. Also within Ajellomycetaceae is the genus Emmonsia, which includes E. cres-
cens and E. parva, the etiological agents of adiaspiromycosis, a pulmonary disease of small
mammals and occasionally of humans [16]. Recently, a cluster of systemic infections of HIV-
positive patients in South Africa were shown to be caused by Emmonsia isolates [17]. While E.
crescens and E. parva also undergo a dimorphic shift at high temperature, they transform into
large, thick-walled adiaspores rather than yeast cells [18] (S1 Table). Two phylogenetic studies
using 18S ribosomal DNA sequences found that E. parva was the sister species to Blastomyces
[19,20]. The positioning of E. crescens was less clear; in one analysis it was a sister group to
Paracoccidioides [19] while in the other analysis it was grouped with Blastomyces and E. parva
[20]. In neither phylogeny was the alternative positioning of E. crescens strongly supported.

To further investigate the genomic basis of differences observed among the Ajellomyceta-
ceae in terms of pathogenicity, morphology, and the infection process, we sequenced six
genomes of Blastomyces and Emmonsia, as well as sequencing the B. dermatitidis transcriptome
during macrophage co-cultivation and in vivo pulmonary infection. The newly sequenced
genomes included three representative strains of B. dermatitidis (ER-3, ATCC18188, and
ATCC26199), and one strain of each of B. gilchristii (SLH14081), E. parva (UAMH139), and E.
crescens (UAMH3008). Blastomyces dermatitidis ER-3 was isolated from a woodpile located in
a highly endemic region of Wisconsin and is hypovirulent in mice [21,22]. The ATCC18188
strain is the only current example of the 'a' mating type (MAT1-1 locus) available for B. derma-
titidis [23]. ATCC26199 is a clinical isolate from South Carolina that is commonly used for in
vitro and in vivo laboratory assays [14]. Blastomyces gilchristii SLH14081 is a human clinical
isolate that is highly virulent in a murine model of blastomycosis [22,24]. Both Emmonsia
strains were isolated from small mammals, E. parva from a weasel in Ravelli County, Montana,
and E. crescens from lungs of a rodent (Arvicola terrestris) in Norway.

Utilizing this genomic data, we find that the Blastomyces genomes are much larger than
those of their close relatives, and are characterized by large, isochore-like GC-poor regions
overrun by repetitive elements. Our whole-genome analyses provide further evidence for the
phylogenetic relationships between Blastomyces and Emmonsia and other Onygenales. Finally,
we identify novel sets of candidate virulence factors through comparison of the Blastomyces
transcription during in vivo pulmonary infection to growth in co-culture with macrophages or
in different media or temperature. This combination of genomic and transcriptomic analysis
provides a foundation and new candidate genes to further characterize the underlying
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molecular differences that determine the infectious potency of Blastomyces strains and give rise
to the clinical profiles attributable to blastomycosis.

Results

Expanded genomes of Blastomyces species
We sequenced and assembled the genomes of three Blastomyces dermatitidis strains and one B.
gilchristii strain, and representatives of two Emmonsia species. The Blastomyces strains were
sequenced using either Sanger technology or a hybrid of Sanger and 454 technologies. The
Emmonsia strains were sequenced using Illumina technology, and de novo assemblies were
generated for each strain (Methods). Comparison of the genomes of four Blastomyces strains,
SLH14081, ER-3, ATCC18188 and ATCC26199, revealed they were over twice the size of all
other Onygenales. The Blastomyces assemblies range in size from 66.6 Mb for B. dermatitidis
strain ER-3 to 75.4 Mb B. gilchristii strain SLH14081 (Table 1). These assemblies were over
twice as large as those of other dimorphic pathogens in the order Onygenales including the
Emmonsia species (30.4 Mb), although the use of only short reads from a single library for the
two Emmonsiamay under-represent repetitive sequence (Fig 1). The assemblies of two Blasto-
myces strains, SLH14081 and ER-3, were sequenced to a higher depth than the other two
strains, and as a result contain nearly all of the assembled sequence in a relatively small number
of scaffolds, 100 and 25 scaffolds respectively. As an independent assessment of genome size
and structure, we generated an optical map of the SLH14081 strain (S1 Fig). Consistent with
our assembly of this strain, the map had an estimated size of 79.6 Mb, arranged in eighteen
linkage groups. In addition, a total of 65.9 Mb of the 75.4 Mb of the SLH14081 assembly was
anchored to the optical map (S2 Table).

The total number of predicted genes in Blastomyces, Emmonsia, and other related fungi was
similar despite the large difference in genome size. In Blastomyces, the number of predicted
genes varied between 9,180 in ATCC26199 to 10,187 in ATCC18188; for E. parva and E. cres-
cens the counts were similar, 8,563 and 9,444, respectively (Table 1), as were those of other
sequenced Onygenales (Fig 1). High representation of core eukaryotic genes in each genome
provides evidence that their gene sets are nearly complete; E. parva includes 88% of core
eukaryotic genes, while the E. crescens and Blastomyces gene sets include 96–98% (S2 Fig).

Phylogenetic position of Blastomyces, Emmonsia parva and E. crescens
To compare gene content and conservation, we identified orthologous gene clusters in the six
genomes sequenced here, 10 additional Onygenales genomes, including three other pathogenic
species (Histoplasma, Paracoccidioides, and Coccidioides), and three Aspergillus genomes.
Using 2,062 single copy core genes present in all strains, we estimated a phylogeny of these

Table 1. Assembly and annotation statistics for Blastomyces and Emmonsia genomes. Bd: B. dermatitidis, Bg: B. gilchristii, Ep: E. parva, Ec: E.
crescens.

Total assembly length Scaffolds Scaffold N50 GC-content (%) Genes Coding (%) Intergenic length Repeat (%)

Bg SLH14081 75.35 Mb 100 2.44 Mb 35.8 9,692 16.9 7.2 kb 63.0

Bd ER-3 66.57 Mb 25 5.55 Mb 37.1 9,755 19.2 6.0 kb 60.0

Bd ATCC18188 73.58 Mb 4,159 0.40 Mb 36.7 10,187 17.4 4.2 kb 56.6

Bd ATCC26199 71.52 Mb 3,282 0.29 Mb 36.6 9,180 17.5 4.5 kb 58.5

Ep UAMH139 30.35 Mb 2,682 31.17 kb 44.7 8,563 35.6 1.4 kb 9.9

Ec UAMH3008 30.36 Mb 1,150 95.15 kb 45.4 9,444 41.8 1.4 kb 5.4

doi:10.1371/journal.pgen.1005493.t001
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organisms using RAxML ([25]; Fig 1). This analysis strongly supports the clustering of Blasto-
myces with E. parva (100% of bootstrap replicates and 100% Gene Support Frequency (GSF)
[26]) as previously reported [19,20]. In contrast to prior work, Histoplasma is strongly sup-
ported as sister group to Blastomyces and E. parva (100% of bootstrap replicates and 90% GSF),
with E. crescens strongly supported as a sister group to that clade (100% of bootstrap replicates
and 100% GSF), and with Paracoccidioides in a basal position (Fig 1). The polyphyletic nature
of Emmonsia suggests that the Ajellomycetaceae have undergone multiple evolutionary transi-
tions allowing the infection of humans and other mammals. Within Blastomyces, we found
support for strain SLH14081 as an outgroup relative to the other three strains (S3 Fig). This is
consistent with the placement of strain SLH14081 within the newly described species B. gil-
christii [3]; the other three strains sequenced here are still classified as B. dermatitidis.

Blastomyces genomes show a bimodal GC distribution
A bimodal distribution of GC-content observed in all Blastomyces sequenced, which was less
pronounced in E. parva and E. crescens and absent in other Ajellomycetaceae, suggests that

Fig 1. Phylogeny and gene conservation ofBlastomyces and Emmonsia spp.Maximum likelihood tree inferred from concatenated protein alignments of
2,062 core genes based on 1,000 replicates; all bootstrap values (top value for each node) were 100% except for one node within B. dermatitidis, which was
88%. Branch order was also well supported by the consensus of individual gene trees (GSF, lower value for each node). A bar plot of orthology classes is
shown to the right, where core genes found in all genomes are shown in green, shared genes present in more than one but not all genomes in blue, genes
specific to Blastomyces genomes in red, and genes that were unique to only one of the 19 genomes in yellow. Finally, genome size is plotted for each
genome along the x-axis, which ranges from 20 to 80 Mb.

doi:10.1371/journal.pgen.1005493.g001
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these genomes are organized in large isochore-like regions of high and low GC-content. This
finding for nuclear DNA explains the GC-poor fraction of the Blastomyces genome initially
identified using CsCl gradient analytical ultracentrifugation [27], which the authors hypothe-
sized was due to a large proportion of GC-poor mitochondrial DNA in Blastomyces cells.
Examining the genome wide GC content revealed a bimodal distribution for all strains of Blas-
tomyces including ER-3 and SLH14081, the smallest and largest assembly, respectively (Fig 2),
and was observed for all window sizes ranging from 2 kb to 256 kb (S4 Fig). The detection of a
bimodal signal in larger windows supports the organization of the genomes in large isochore-
like regions, with average GC content of 29.6% and 31.0% in GC-poor regions and 45.9% and
46.6% for the rest of the genome in B. gilchristii strain SLH14081 and B. dermatitidis strain ER-
3, respectively (Table 2). Analysis of the related pathogens H. capsulatum, P. lutzii, and C.
immitis showed no evidence for bimodality of GC content, while both E. parva and E. crescens
revealed small peaks of low GC sequence. Read-based analysis and using smaller window sizes
(e.g. 128 bp) supported these findings, suggesting they are not due to differences in assembly
completeness (S5 Fig).

To further examine the organization of GC-content across the genome, we next defined the
boundaries of low GC content regions in Blastomyces. In the smallest assembly, of the ER-3
strain, we identified 221 GC-poor tracts with an average size of 186.0 kb, encompassing a total
size of 41.1 Mb (Tables 2 and S3). In the largest assembly, of the SLH14081 strain, we identified
350 GC-poor tracts with an average size of 140.2 kb, encompassing a total size 49.1 Mb (Tables
2 and S3). The 8 Mb difference between the total size of GC-tracts in the genomes of B. derma-
titidis ER-3 and B. gilchristii SLH14081 accounts for nearly all of the 8.8 Mb difference in
assembly size. Notably, GC-poor tracts in Blastomyces can be quite long, and reach maximal
lengths of 1.3 Mb. In the assemblies of E. parva, E. crescens and other Ajellomycetaceae, long
GC-poor tracts were rarely observed (e.g., a total of only 4 GC-poor regions larger than 10 kb

Fig 2. GC frequency distributions (histograms) of overlapping fragments (windows, of 32 kb) of the genome assemblies ofBlastomyces
dermatitidis ER-3,B. gilchristii SLH14081, Emmonsia parva (UAMH139), E. crescens (UAMH3008), Histoplasma capsulatum (WU24),
Paracoccidioides lutzii (Pb01),Coccidioides immitis (RS3), and Leptosphaeria maculans (v23.1.3). The bin size of the histograms is approximately
0.1%GC. Horizontal axes show GC% and vertical axes show relative frequencies.

doi:10.1371/journal.pgen.1005493.g002
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in E. parva were found adjacent to a long GC-rich region in the same scaffold, and just 1 in E.
crescens), corresponding to the less pronounced bimodal GC distribution of the genome assem-
bly. However, more contiguous assemblies would be needed to reveal the overall extent of long
GC-poor tracts. The only other fungal genome noted to have an isochore-like structure, Lepto-
sphaeria maculans [28], contains a smaller expansion of GC-poor regions (Fig 2); individual
tracts were on average half the size (70.4 kb) of those in Blastomyces, and encompassed a
smaller fraction (36%) of the L.maculans genome [28]. This difference is consistent with the
lower fraction of long AT blocks we observe by comparing windows of different sizes in Blasto-
myces and L.maculans (S4 Fig).

The GC-poor regions include nearly all the repetitive elements in the genome and conse-
quently have a lower density of predicted genes (e.g., see Fig 3). In ER-3, 93.7% of repetitive
sequence is found in GC-poor regions (Table 2). The gypsy elements that dominate repetitive
sequence in the Blastomyces genomes have low GC-content; on average those in ER-3 and
SLH14081 have respective GC-content of 31.0% and 29.9%, matching the overall GC level of
the GC-poor regions (Table 2). GC-poor tracts of Blastomyces contain only approximately one
fifth of the predicted protein-coding gene set, including some notable genes such as 1,3-beta-
glucan synthase component (FKS1), Blastomyces yeast phase-specific gene (BYS1), and one of
two BYS1-like proteins we identified (S6 Fig and S4 Table). By contrast, BAD1, which encodes
an essential virulence factor involved in host cell interaction and immune evasion [13], is
found within a GC-rich region. Intergenic regions are also larger here than for other genes in
the genome; the average intergenic region for ER-3 is 18.5 kb in GC-poor regions, a 3-fold
expansion compared to the 6.0 kb genome-wide average (Table 2 and Figs 3 and S6).

The GC-poor regions also show lower synteny between the Blastomyces genomes compared
to other regions with more typical GC content (e.g., see Fig 3). Overall, B. dermatitidis strain
ER-3 and B. gilchristii strain SLH14081 shared 125 syntenic blocks including 93.8% and 94.5%
of genes, encompassing only 69.5% and 69.3% of each assembly. These percentages are much
smaller than those observed among strains of related species (such as 95% and 93% synteny
between strains of P. brasiliensis [29]). The lower synteny among Blastomyces strains is largely
explained by the proportion of genes found in repeat-rich, GC-poor regions (Table 2 and Fig
3). Nearly all (99%) of genes in GC-rich regions are highly syntenic across Blastomyces strains,
even between B. dermatitidis strain ER-3 and B. gilchristii strain SLH14081. However, the GC-
poor regions have more limited synteny even within strains of Blastomyces encompassing 74 to
76% of genes in those regions (Table 2 and Fig 3).

Table 2. Gene and repeat features of BlastomycesGC-rich and GC-poor regions compared to Histoplasma.

Blastomyces Histoplasma

GC-poor GC-rich

ER-3 SLH14081 ER-3 SLH14081 WU24

Total size (Mb) 41.1 49.1 25.4 26.2 33

Total genes 1,990 1,858 7,765 7,834 9,251

Gene length (bp) 1,549 1,471 2,737 2,716 1,686

Intergenic distance (bp) 18,523 22,983 1,212 1,400 1,850

GC content (%) 31 29.6 46.6 45.9 46.2

Gene GC content (%) 48 46.9 51.8 51.8 51.2

Coding (%) 7.5 5.6 83.4 80.9 35.9

Syntenic genes (%) 73.4 76.1 99 98.8 NA

Repeat (%) 93.7 95.2 6.2 4.8 15.4

doi:10.1371/journal.pgen.1005493.t002
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Overall, the function, expression, and selective pressure of genes in GC-poor regions appear
similar to those genes found elsewhere in the genome. Despite the lower synteny, GC-poor
regions are not significantly enriched for Blastomyces-specific genes, nor did they show much
functional enrichment (S1 Text, S5 Table). Comparing selection pressure on the 7,228 single
copy orthologs present in all four Blastomyces genomes also did not find a significant difference
in the number of genes with high omega values (omega> 1) (Methods). These analyses suggest
that despite the dynamic reorganization due to invading gypsy elements, the GC-poor regions
do not appear to be fast evolving by these measures. Furthermore, there is no large-scale differ-
ence in the expression levels of genes in GC-poor regions. Comparing transcript levels for
genes in GC-poor and GC-rich regions, we found that genes in both GC classes show similar
expression levels (S7 Fig), again supporting the general similarity of genes found in these two
genomic neighborhoods.

Characterization of repetitive sequence expansion
The 2-fold larger size of the Blastomyces genomes compared to other dimorphic fungi is due
largely to an expansion of repetitive sequence. The proportions of the Blastomyces genome
assemblies that were covered by repeats ranged from 56.6% (41.6 Mb) for B. dermatitidis
ATCC18188 to 63.0% (47.5 Mb) for B. gilchristii SLH14081. SLH14081 had the highest repeat
content and the largest assembly size. The E. parva and E. crescens assemblies both had a lower
repeat content, 9.9% (3.0 Mb) and 5.4% (1.6 Mb), respectively (Table 1). In all genomes, a

Fig 3. Correspondence of GC content and synteny for Blastomyces. Comparison of GC content (top panel) and genome synteny (lower panel) for a 5.2
Mb region of B. dermatitidis strain ER-3 (scaffold (sc) 1, coordinates from 4.5 to 9.7 Mb) and corresponding syntenic regions of B. gilchristii strain SLH14081
andHistoplasma capsulatum strain WU24. Location of genes (blue boxes) and gypsy elements (green boxes) are depicted across each genomic region.
Orthologs between genomes are connected in pink, which are organized into syntenic regions that are disrupted by GC-poor regions in both Blastomyces
genomes.

doi:10.1371/journal.pgen.1005493.g003
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Fig 4. Relative contributions from known repeat categories to Blastomyces and Emmonsia genomes.
(A) Repetitive elements were identified in each assembly using a combination of de novo classified elements
and known elements. The total amount of genome sequence for each element class (top panel) and the
relative frequency of known elements (bottom panel) are shown for B. dermatitidis (BD; ATCC26199,
ATCC18188, ER-3), B. gilchristii (BG; SLH14081), E. crescens (EC; UAMH3008), and E. parva (EP;

Genome and Transcriptome of BlastomycesDermatitidis
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small number of transposable element classes as well as AT-rich simple sequence regions were
highly represented (Fig 4A).

More specifically, the genome expansion in Blastomyces strains has resulted from a prolifer-
ation of gypsy LTR retrotransposons, including both ancestral and lineage-specific prolifera-
tion. In the Blastomyces genomes, Gypsy elements account for almost all repetitive DNA, with
a lower frequency of sequences similar to the non-LTR Tad1 and copia LTR retroelements
(Figs 4A and S8). In all Blastomyces and Emmonsia genomes the most frequent Gypsy element
subtype matches the “ACa” (Ajellomyces or Histoplasma capsulatum) Gypsy element from
Repbase [30] (Fig 4A and 4B). Further phylogenetic characterization of 2,331 Gypsy elements
identified four subtypes that appear specific to Blastomyces (S1 Text and Figs 4 and S9). Some
subtypes had diversities that were primarily the result of ancestral duplication, resulting in
large numbers of orthologous elements between strains (e.g., Fig 4B), while other subtypes
appeared to predominantly contain strain-specific paralogous expansions, consistent with the
cryptic speciation in the Blastomyces genus (e.g., Fig 4C). Gypsy elements were also detected in
the Emmonsia and Histoplasma assemblies, but in far fewer copies (Figs 3 and 4), consistent
with the recent expansion in Blastomyces. Gypsy elements are frequently observed in fungal
genomes [31], including Coccidioides [32] and Paracoccidioides [29] but in far fewer copies.

Gene family evolution of Blastomyces and other Ajellomycetaceae
To identify gene content that could play a role in the evolution of the dimorphism and patho-
genesis within the family Ajellomycetaceae, we searched for expansions or contractions in
functionally classified genes compared to the other fungi from the order Onygenales (S6
Table). We identified PFAM domains, KEGG pathways, Gene Ontology (GO) terms, or kinase
families that were significantly enriched or depleted. Domains associated with polyketide
synthases were depleted in the Ajellomycetaceae, and an independent prediction of secondary
metabolite enzymes confirmed that Blastomyces and other fungi from the Ajellomycetaceae
contain fewer PKS gene clusters than other Onygenales (S7 Table, S1 Text). Other differences
between the Ajellomycetaceae and other Onygenales include fewer copies of multiple classes of
peptidases (M36, M43, S8) as well as an associated inhibitor (I9, inhibitor of S8 protease), vari-
able copy number of LysM-domain proteins potentially involved in chitin binding, which are
most expanded in dermatophytes but at next highest levels among the human pathogens in
Blastomyces, and a higher number of protein kinases (S6 Table and S10 Fig), including an
expansion of the FunK1 family similar to that previously noted in Paracoccidioides [29].

We next identified 140 gene clusters conserved in Blastomyces, Emmonsia,Histoplasma,
and Paracoccidioides, but absent from other Onygenales and Aspergillus (S8 Table). These gene
clusters include a predicted heme oxygenase (BDBG_02689), which could produce free iron
from host heme. In addition to the 140 gene clusters, we also identified conserved genes in sub-
sets of the Ajellomycetaceae including homologs of two previously typed antigens; a gene simi-
lar to the 27 kDa antigen of Paracoccidioides [33] is present in Blastomyces and one
Histoplasma genome, and a gene cluster specific to Blastomyces and Paracoccidioides shares
similarity with the antigenic Aspergillus cell wall mannoprotein [34].

UAMH139). (B, C). Phylogenetic relationship of two subgroups of gypsy elements was inferred using
FastTreeDP from alignments of reverse transcriptase domains. The largest subgroup of 922 sequences (B)
includes domains from the Blastomyces strains ER-3 and SLH14081, E. parva strain UAMH139, and the
Repbase ACa Gypsy element, whereas the other subgroup of 544 sequences (C) is specific to the two B.
dermatitidis and B. gilchristii. The outer ring indicates strain specific duplications of four or more sequences.

doi:10.1371/journal.pgen.1005493.g004
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Genes depleted in or absent from Emmonsia with possible roles in
virulence or phase transitions
To identify potential genetic features of the Ajellomycetaceae pathogenic to immunocompetent
humans (Blastomyces,Histoplasma, and Paracoccidioides) relative to E. parva and E. crescens,
we conducted a second enrichment analysis as described above (S9 Table). The primary patho-
gens showed enrichment of only two PFAM domains, a phosphorylase and endonuclease (S9
Table). The phosphorylase domain over-represented in Blastomyces is associated with nucleo-
side phosphorylases; many of these proteins also contain Ankyrin repeats and NACHT
domains. Phosphorylases are involved in nucleotide and amino acid salvage, and could allow
pathogens greater metabolic versatility when certain building blocks are unavailable. The
absence of any larger pattern of gain or loss of functional classes suggests that smaller changes
in gene content, independent gain and loss between the species, or expression differences may
account for differences in pathogenesis.

We then identified specific orthologs present in all four strains of Blastomyces but absent
from both non-pathogenic Emmonsia species. Comparing the ortholog set of Blastomyces to E.
parva and E. crescens, we found a total of 552 ortholog clusters that were present in all Blasto-
myces strains but absent in both Emmonsia genomes (S10 Table). Most of these (393 clusters)
were present only in Blastomyces, and while most of these proteins (92% in B. gilchristii strain
SLH14081) had no PFAM domain assignment, the set did include the Blastomyces yeast phase-
specific protein 1 (BYS1). This gene is a marker of the phase transition to and from the yeast
phase [15], although it has recently been shown not to be required for virulence in studied
strains [24].

While both E. parva and E. crescens are not reported to be primary human pathogens, phy-
logenetic analysis suggests that the transition to this lifestyle may have been independent,
resulting in differential gene loss. One of the genes absent only in E. crescens is the siderophore
iron transporter mirB (MIRB). Many pathogenic microorganisms have evolved high affinity
iron acquisition mechanisms, which include the production and uptake of siderophores. In B.
dermatitidis, the expression of genes involved in the biosynthesis of siderophores and uptake of
siderophores, including two iron transporters (MIRB andMIRC), are induced under iron-poor
conditions [35]. WhileMIRB appears to be absent in E. crescens, siderophore uptake may be
still enabled by the second transporter,MIRC, which is conserved in this species.

Transcriptional profiling of Blastomyces in macrophages
To better understand which Blastomyces genes play roles in pathogenicity and virulence, we car-
ried out RNA-Seq of B. dermatitidis strain ATCC26199 to profile expression under varying tem-
perature, nutrient availability, and infection status. Combining this data allowed us to
disambiguate expression variability due solely to differences in temperature and media-specific
nutrient availability from those specific to macrophage interactions in vitro or host infection in
vivo. Five conditions were sampled: 37°C with macrophages in RPMI media, 37°C in RPMI
media, 37°C in HMMmedia, 22°C in HMMmedia, and in vivo pulmonary infection with yeast
in a mouse model (Fig 5A). For each condition, two biological replicates were performed, and
the read counts per transcript were highly correlated between replicates (R> 0.99, S11 Fig).
Gene expression levels and mapping statistics are presented in S11 and S12 Tables, respectively.

When B. dermatitidis yeast cells were co-cultured with human bone marrow derived macro-
phages, the majority of yeast cells (59%) were internalized by macrophages. Comparison of
yeast co-cultured with and without macrophages identified 140 genes differentially expressed
between these two conditions, 112 of which were upregulated in the presence of macrophages
(S13 Table). This upregulation suggested a small, specific response to macrophages in this
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experiment. Examination of this set of genes revealed numerous genes that have the potential
to facilitate adaptation to the host environment. The 20 most significantly upregulated genes
(Table 3) include a predicted secreted endo-1,3(4)-β-glucanase (BDFG_03060) involved in cell
separation after cytokinesis in C. albicans [36], transporters, including an ABC transporter
(BDFG_05060) homologous to Aspergillus fumigatus MDR1 and a zinc transporter
(BDFG_02462) similar to the vacuolar zinc transporter ZRT3 in S. cerevisiae, dehydrogenases

Fig 5. Transcriptional response of B. dermatitidis strain ATCC26199 to infection. (A) Schematic of samples compared by RNA-Seq analysis and (B)
Heatmap of differentially expressed genes, where the cluster of genes specifically induced in vivo during mouse infection is highlighted.

doi:10.1371/journal.pgen.1005493.g005

Table 3. Blastomyces transcripts most significantly induced duringmacrophage infection.

Locus Predicted function FDR Fold Change

BDFG_03193 hypothetical protein, secreted 0 3.63

BDFG_03060 beta-1,3-glucanase,secreted 6.40E-196 2.04

BDFG_06058 transcription factor 6.68E-152 1.90

BDFG_05060 ABC transporter 5.07E-131 1.86

BDFG_04440 transcription factor 2.07E-118 1.54

BDFG_04186 hypothetical protein 1.92E-104 1.58

BDFG_06466 succinate dehydrogenase, iron-sulfur subunit 5.27E-101 1.23

BDFG_06207 vacuolar iron transporter 1.71E-92 1.98

BDFG_04494 succinate dehydrogenase, cytochrome b560 subunit 4.51E-90 1.20

BDFG_01343 electron-transferring-flavoprotein dehydrogenase 5.35E-87 1.17

BDFG_02965 catalase, CATP 4.69E-86 1.30

BDFG_00760 pyruvate decarboxylase 1.26E-84 1.66

BDFG_04269 Eukaryotic cytochrome b561 2.68E-78 1.09

BDFG_04739 hypothetical protein 8.97E-76 3.62

BDFG_02901 cytochrome P450 alkane hydroxylase 1.69E-75 1.05

BDFG_09499 cytochrome c 1.98E-73 1.15

BDFG_04995 hypothetical protein, secreted 3.69E-73 1.54

BDFG_01204 Cu-Zn superoxide dismutase, SOD3, secreted 1.51E-66 1.03

BDFG_02462 Metal ion transporter, ZRT3-like 5.43E-66 1.26

BDFG_04916 hypothetical protein 8.63E-66 1.14

doi:10.1371/journal.pgen.1005493.t003
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involved in amino acid catabolism, and antioxidants peroxisomal catalase (CATP,
BDFG_02965) and superoxide dismutases (SOD3, BDFG_01204; SOD2, BDFG_07895), which
may protect against reactive oxygen species (ROS). The induction of endo-1,3(4)-β-glucanase
and CATP in the presence of macrophages was also confirmed by qRT-PCR (S12 Fig and
Methods).

Transcriptional profiling of Blastomyces in a mouse model
We also identified gene expression changes specific to in vivomurine pulmonary infection
from our transcriptomic data of B. dermatitidis strain ATCC26199. By k-means clustering of
expression values, we identified a set of 72 genes that are upregulated in vivo during mouse
infection relative to all other conditions, regardless of temperature, media, and in vitromacro-
phage interactions (Fig 5B and S14 Table). Using all conditions for this comparison helped
eliminate from consideration differences observed, for example, between the yeast samples cul-
tured in different media. Genes in this set with greater than 2-fold upregulation in vivo are
highlighted in Table 4, and primarily fell into five functional categories: 1) secreted proteins, 2)
zinc acquisition, 3) antioxidants and oxygenases, 4) amino acid metabolism, and 5)
transporters.

The most highly expressed gene in vivo was BAD1 (BDFG_03370; S11 Table), which
encodes a yeast-phase specific virulence factor that facilitates adhesion to host cells and evasion
of host immune defenses [13]. BAD1 also had the highest transcript abundance for yeast co-
cultured with macrophages and yeast without macrophages at 37°C (S13 Table). Thus, BAD1
was not identified among the set of 72 differentially expressed genes because the transcription
of BAD1 is influenced by temperature [37]. The effect of temperature during the mold to yeast
transition on the transcriptome of dimorphic fungal pathogens has been the topic of previous
studies [38–41] and was therefore not further evaluated here.

A total of nine secreted proteins were identified in this set of 72, including five of the ten
most highly upregulated genes by fold change, potentially playing roles in host-pathogen inter-
actions. Another highly up-regulated secreted protein (BDFG_00717) contains a predicted
CFEM domain as well as a GPI-anchor; these features, as well as small size (236 amino acids),
are shared with member of the haemoglobin-receptor gene family in C. albicans [42]. The most
highly upregulated gene, BDFG_05357, encodes a HRXXH domain-containing secreted pro-
tein that may function as a zinc scavenging protein (Tables 4 and S14). This gene is present in
the genomes of Blastomyces and Coccidioides, but absent from those of Emmonsia,Histoplasma
and Paracoccidioides. BDFG_05357 is a homolog of C. albicans PRA1 (pH-regulated antigen-
1) [43] and S. cerevisiae ZPS1 (zinc-pH-regulated protein). In C. albicans, the transcription of
PRA1 and ZPS1 is induced under alkaline pH and zinc-deplete conditions [44,45], and PRA1 is
co-regulated with its upstream gene, ZRT1, which encodes a high-affinity zinc transporter that
interacts with zinc-bound PRA1 [45]. Similarly, the B. dermatitidis homolog of ZRT1,
BDFG_09159, is highly expressed in vivo; the induced expression of both PRA1 and ZRT1 was
confirmed by qRT-PCR (S12 Fig). However unlike in C. albicans, ZRT1 is not adjacent to
PRA1 in the B. dermatitidis genome. While PRA1 is conserved in all four Blastomyces genomes,
there is no copy of this gene inHistoplasma as previously noted [45], nor in Emmonsia or Para-
coccidioides, suggesting differences in how zinc is acquired within the Ajellomycetaceae.

In addition to PRA1/ZPS1 and ZRT1, a larger module of genes that regulate zinc acquisition
is co-regulated in Blastomyces. The transcript abundance of BDFG_07269, which encodes a
low-affinity zinc transporter (ZRT2), is also significantly upregulated in the mouse model. In S.
cerevisiae, the zinc-responsive transcription factor ZAP1 regulates expression of ZRT1 and
ZRT2, along with ZPS1. We identified the ortholog of ZAP1 in strain ATCC26199 as
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BDFG_07048, which was also significantly upregulated in vivo relative to all other conditions
(S14 Table) despite not being identified by k-means clustering. These results suggest that zinc
acquisition and homeostasis may play a critical role for survival of B. dermatitidis in vivo.

Genes that convert reactive oxygen species to dioxygen and dioxygen to metabolites were
also highly upregulated in vivo. These include two superoxide dismutases (SOD3:
BDFG_01204 and SOD2: BDFG_07895), which were even more upregulated in vivo than in
macrophages. Four dioxygenases (BDFG_04184, BDFG_04185, BDFG_08059, BDFG_06504)
were also upregulated in vivo, representing almost half of the dioxygenases found in the
genome, which utilize dioxygen to drive amino acid catabolism. This set includes

Table 4. Blastomyces genes induced duringmouse infection*

Locus Predicted function Functional
categories

Mouse vs
Mac

Mouse vs
NoMac

Mouse vs
Yeast

Mouse vs
Mold

Average fold
change

BDFG_02039 cysteine synthase cysteine 0 0 0 0 9.03

BDFG_05357 HRXXH domain protein secreted, zinc 0 0 0 0 8.11

BDFG_09329 secreted hypothetical protein secreted 0 0 0 0 7.80

BDFG_02038 MFS transporter transport 0 0 0 7.28E-304 6.30

BDFG_06873 secreted hypothetical protein secreted 0 0 0 2.18E-164 5.96

BDFG_09159 zinc transporter, ZRT1 zinc, transport 0 0 3.27E-248 2.57E-312 5.12

BDFG_08433 glycerate kinase 5.28E-208 6.66E-275 1.46E-196 1.30E-83 4.60

BDFG_01204 superoxide dismutase, SOD3 zinc, redox 1.75E-216 0 0 4.67E-223 4.13

BDFG_07895 superoxide dismutase, SOD2 redox 1.99E-168 0 1.82E-316 4.13

BDFG_04319 oxidoreductase redox 0 0 7.70E-205 1.31E-156 3.66

BDFG_01073 MaoC-like dehydratase 8.90E-77 1.11E-30 0 0 3.34

BDFG_04176 BYS1-like secreted 6.92E-18 8.39E-53 1.14E-191 0 3.30

BDFG_09115 short chain dehydrogenase redox 4.76E-90 7.17E-103 3.50E-79 3.98E-126 3.22

BDFG_07137 RNA ligase-like domain protein 8.80E-54 1.60E-44 3.29E-156 1.18E-219 2.82

BDFG_08059 cysteine dioxygenase redox, cysteine 1.75E-52 5.95E-118 8.41E-294 4.36E-48 2.72

BDFG_05427 cation/proton antiporter transport 3.58E-82 9.67E-115 0 2.70

BDFG_08334 secreted hypothetical protein secreted 5.02E-76 1.31E-191 3.21E-31 1.73E-104 2.62

BDFG_00028 2-oxoisovalerate dehydrogenase E1
component, alpha subunit

redox 4.20E-56 2.69E-200 5.14E-285 2.66E-74 2.59

BDFG_02611 acetyl-coenzyme A synthetase 2.18E-108 4.00E-139 4.48E-116 4.64E-120 2.42

BDFG_07269 zinc transporter, ZRT2 zinc, transport 2.20E-162 6.94E-210 9.85E-44 5.74E-117 2.36

BDFG_00760 pyruvate decarboxylase 3.01E-15 1.22E-124 1.11E-272 9.32E-55 2.26

BDFG_05654 2-oxoisovalerate dehydrogenase E2
component

redox 1.63E-35 3.81E-135 7.75E-167 1.18E-87 2.24

BDFG_06615 Sodium:neurotransmitter symporter
family

transport 4.85E-62 4.13E-80 3.43E-56 3.56E-119 2.18

BDFG_04184 phenylpyruvate dioxygenase redox 1.08E-12 9.55E-99 9.00E-211 6.53E-70 2.16

BDFG_00717 CFEM domain protein secreted 7.48E-15 1.60E-38 1.86E-106 1.27E-32 2.13

BDFG_01386 methionine sulfoxide reductase redox 2.69E-140 5.79E-137 9.73E-218 2.50E-71 2.13

BDFG_06042 MFS transporter transport 2.72E-56 2.47E-81 1.90E-31 6.36E-35 2.12

BDFG_03316 MFS transporter transport 3.98E-44 4.94E-59 7.45E-99 4.48E-84 2.11

BDFG_03902 2-oxoisovalerate dehydrogenase, E1
component, beta subunit

redox 8.15E-37 2.56E-123 2.70E-135 1.48E-105 2.06

BDFG_05401 BTB/POZ-domain protein 9.74E-64 2.92E-88 2.59E-38 9.34E-62 2.02

*Genes with predicted PFAM domains or secretion signals, and greater than 2-fold higher expression during mouse infection are listed; full list of all

significant genes in S14 Table.

doi:10.1371/journal.pgen.1005493.t004
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4-hydroxyphenylpyruvate dioxygenase, (4-HPPD; BDFG_04184) and homogentisate 1,2-diox-
ygenase (BDFG_04185), which are involved with tyrosine catabolism [46]. Other upregulated
oxygenases include indoleamine 2,3-dioxygenase (BDFG_06504) and squalene monooxygen-
ase (ERG1—BDFG_07857), which are involved with tryptophan catabolism and ergosterol bio-
synthesis respectively. ERG1 is a target of current antifungal drugs, including terbinafine. High
in vivo expression of this gene may suggest that drugs targeting it may be more effective in vivo
than in vitro.

Genes involved in cysteine biosynthesis and catabolism were highly upregulated during
infection including cysteine synthase A (BDFG_02039) and cysteine dioxygenase
(BDFG_08059). Cysteine synthase A may provide a large pool of synthesized cysteine for B.
dermatitidismetabolism; the induced expression during infection was confirmed by
qRT-PCR (S12 Fig). Based on orthology analysis, cysteine synthase A is absent from the
genome of H. capsulatum, and previous studies have shown that Histoplasma yeast are auxo-
trophic for cysteine [47,48]. Cysteine dioxygenase catabolizes cysteine to L-cysteinesulfinic
acid, an intermediate that can be used for taurine biosynthesis or metabolized to sulfite and
pyruvate. A homolog of C. albicans SSU1 (BDFG_06814), which encodes a sulfite efflux
pump and is co-regulated with cysteine dioxygenase in C. albicans [49], was also upregulated
in B. dermatitidis.

Transporters in fungi have been associated with an enhanced ability to remove harmful
products as well as to survive on diverse nutrient sources, both of which could contribute to
virulence and pathogenicity. Of the 72 genes upregulated in vivo during mouse infection, 11
are predicted transporters. These included the major facilitator type (MFS; BDFG_06068 –
unknown function, BDFG_06042 –glycose transport, BDFG_02038 –unknown function),
amino acid transporters (BDFG_02310, BDFG_07447) and metal transporters (zinc/iron
transporters discussed above, BDFG_09159, BDFG_07269, and NIC1 nickel transporter,
BDFG_02449; S14 Table). This upregulation potentially reflects differences in metabolite and
cofactor availability in the host relative to in vitro conditions.

Discussion

Phylogenetic position of Blastomyces spp. and Emmonsia parva and E.
crescens
Our whole-genome based phylogenetic analysis recovered a sister-group relationship between
Blastomyces spp. and Emmonsia parva, as previously reported from ribosomal DNA sequences
[19,20]. However, our study placed Histoplasma as the next most basal species, and uniquely
placed E. crescens between Histoplasma and the basal Paracoccidioides with strong bootstrap
support. This more external position of Paracoccidioides compared toHistoplasma agrees with
an earlier rDNA tree without Emmonsia [50]. Furthermore, gene support frequencies (GSF)
were relatively high, and increased when we subsampled only well-supported genes, providing
additional support for the topology presented here.

The polyphyletic nature of the non-human pathogen Emmonsia suggests substantial plastic-
ity in regard to human pathogenesis in this group. Ancestral variation in the ability of these
species to infect other mammals could then be associated with exaptation to human hosts.
Additional diversity of Emmonsia, including the third described species, E. pasteuriana [51,52]
and other closely related isolates [17] suggests that the full breadth of the Emmonsia genus may
not be captured by the two isolates sequenced here. Interestingly, both E. pasteuriana and
related isolates produce yeast cells at high temperature, rather than the adiaspores produced by
E. parva and E. crescens. Further sequencing of Emmonsia species and other related strains
may reveal additional patterns and trends in the evolution of the dimorphic fungi.
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Genome expansion and segmentation: GC-poor isochore-like regions
The mosaicism observed here in the genome of Blastomyces differs substantially from that
observed in other fungi and larger eukaryote genomes. While isochore-like GC-poor regions are
unprecedented at this scale in fungal genomes described to date, there are parallels to the organi-
zation of L.maculans, though GC-poor regions occupy a smaller fraction of that genome [28].
Longer GC-poor isochores of more than 300 kb are commonly found inmammals and other ver-
tebrates [53–55]. GC-poor isochores in vertebrates are often more stable over long evolutionary
times [55,56] and have other properties such as lower gene expression [55] that do not appear to
be shared by the GC-poor tracts of B. dermatitidis and B. gilchristii (S1 Text).

Characterization of repetitive sequence in GC-poor regions suggests these originated with a
dramatic expansion of elements of the LTR/Gypsy category. Phylogenetic analysis suggests
these elements swept through a lineage leading to the present-day B. dermatitidis and B. gil-
christii, and to a lesser extent Emmonsia parva, and have further expanded during the diversifi-
cation of Blastomyces. While H. capsulatum does not have such an expanded genome, or a
sizable GC-poor component, and so appears less affected by gypsy expansion, Histoplasma
may alternatively have more robust defense against repetitive elements or be less able to accom-
modate large amounts of repeats in its genome.

While GC-poor tracts have been particularly dynamic areas due to Gypsy element insertions
during the recent evolution of Blastomyces, these regions appear typical in gene content and
expression. Perhaps due to their recent origin, the GC-poor regions do not appear to have seques-
tered particular classes of genes such as secreted proteins or have other hallmarks of rapidly evolv-
ing gene content. The long GC-poor regions also include some well characterized genes involved
in phase transitions and pathogenesis, including the Blastomyces yeast-specific gene BYS1, a
marker of the phase transition to and from the yeast phase [15,24]. Reduced levels of synteny in
the GC poor regions between B. dermatitidis and B. gilchristii could prevent effective meiotic
recombination between the two lineages, further supporting their designation as separate species.

Functional diversity of gene content in Blastomyces and the other
Ajellomycetaceae
Despite the large increase in genome size in Blastomyces, the total number of protein coding
genes is only modestly expanded. Blastomyces and other sequenced species from the Ajellomy-
cetaceae family, including the human primary pathogens Histoplasma and Paracoccidioides,
have similar gene content with only a few gene loss or gain events that map to common func-
tional classes. This stability suggests that more modest differences in gene content and
sequence, as well as potential divergence of gene regulation, contribute to phenotypic differ-
ences between the species. Larger differences exist between the Ajellomycetaceae and other
more divergent members of the Onygenales. There is no expansion of degradative proteases as
previously noted for Coccidioides [57]; in fact, three peptidase families (M36, M43, and S8) are
present at lower copy number in Blastomyces and the other Ajellomycetaceae. While Blasto-
myces contains a higher number of LysM proteins than the dimorphic Onygenales, the number
is small relative to that found in Dermatophytes [58]. This analysis also identified candidate
genes involved in host interaction, including proteins homologous to antigens in related fungi
and a heme oxygenase that could release iron from host heme.

Features of Blastomyces gene expression in macrophages and in vivo
For yeast co-cultured with macrophages and yeast in vivo, some aspects of the transcriptional
response were shared including response to oxidative stress and amino acid catabolism. Yeast
co-cultured with macrophages showed upregulation of numerous genes involved in oxidative
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reduction, which may play a major role in protecting Blastomyces from ROS. The macrophage
phagosome is poor in glucose and amino acids, but rich in ROS [59,60]. Blastomyces is rela-
tively resistant to ROS and virulence correlates with the ability to minimize ROS generation in
innate immune cells [61,62]. The upregulation of superoxide dismutases (SOD3, SOD2) and
catalase P may protect B. dermatitidis yeast against oxidative stress. InH. capsulatum, extracel-
lular SOD3 and intracellular catalase P, contribute to survival within macrophages [63,64].
Moreover, SOD3 promotes H. capsulatum virulence in a murine model of pulmonary infection
[63]. The upregulation of 4-HPPD, which is involved with pyomelanin biosynthesis, contrib-
utes to antioxidant defense and intracellular survival of Penicillium marneffei [65]. Inhibition
of 4-HPPD in P. brasiliensis and P.marneffei blocks the phase transition to yeast at 37°C
[65,66]. Furthermore, in vivo numerous dioxygenases were upregulated, suggesting that diox-
ide produced in response to ROS may be utilized for amino acid metabolism.

Changes in amino acid metabolism were prevalent in both the macrophage co-cultured and
in vivo Blastomyces, suggesting the recycling of amino acids as an energy source (Results, S1
Text). In particular, the very specific increase in cysteine catabolism (cysteine dioxygenase) and
biosynthesis (cysteine synthase A) during in vivo infection suggests that cysteine may be critical
to virulence. In mice, deletion of cysteine dioxygenase (CDG1) in C. albicans results in attenu-
ated virulence [49]. Furthermore, upregulation of sulfite efflux pump (SSU1), which is co-regu-
lated with CDG1 in C. albicans, could play a role in B. dermatitidis virulence during in vivo
infection. Exported sulfite can destabilize host proteins by reducing disulfide bonds and facili-
tates the growth of dermatophytes on keratinized tissue [67]. How breakdown of tryptophan
by indoleamine 2,3-dioxygenase (IDO), which can supply de novo nicotinamide adenine dinu-
cleotide (NAD+), alters the fungal-host interaction is unknown. In cancer, tumor cells with
increased expression of IDO may facilitate tryptophan depletion in the microenvironment to
suppress the host immune response [68]. Infection with H. capsulatum, P. brasiliensis, and C.
albicans upregulates host IDO activity, reduces fungal growth, impairs Th17 T-cell differentia-
tion, and blunts excessive tissue inflammation [69–71].

The specific in vivo upregulation of genes that encode secreted proteins as well as those
involved with transmembrane transport (e.g., amino acids, glucose), amino acid metabolism (e.g.,
cysteine), and metal acquisition (e.g., zinc, nickel) highlights virulence factors potentially being
missed by in vitro studies and the importance of understanding nutrient and co-factor availability
in any study system. Uptake of zinc and nickel, which serve as enzyme co-factors, contribute to
virulence in C. albicans and Cryptococcus neoformans respectively [45,72]. PRA1 encodes a
secreted “zincophore” under alkaline and zinc-poor conditions that acts in concert with ZRT1 to
promote zinc acquisition and facilitate endothelial cell damage by C. albicans [45]. NIC1-mediated
nickel uptake is critical for urease activity, which contributes to C. neoformans invasion of the cen-
tral nervous system [72]. In C. posadasii, urease induces host tissue damage [73]. While genes
involved with the acquisition of zinc (e.g., ZRT1, ZRT2, ZAP1 homologs) and nickel (e.g.,NIC1
homolog) are largely conserved with other fungi, the absence of PRA1 inHistoplasma, Paracocci-
dioides, and Emmonsia highlights recent evolutionary changes in zinc acquisition mechanisms in
the family Ajellomycetaceae. This, in conjunction with differences in cysteine metabolism between
Blastomyces andHistoplasma, suggest that despite the many common elements of dimorphism
and pathogenesis, each genus of dimorphic fungi likely has unique nutritional requirements.

Methods

Selection of isolates for sequencing
Four strains of Blastomyces were sequenced: SLH14081 representing the new species B. gilchris-
tii, and ER-3, ATCC18188 and ATCC26199 representing B. dermatitidis. The SLH14081 strain
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is a highly virulent, clinical isolate that can cause disease in immunocompetent persons, while
ER-3 was isolated from a woodpile and is hypovirulent in mice [21,22]. The remaining two
strains are strain ATCC18188, a representative MAT 'alpha' isolate, and ATCC26199, a com-
monly used laboratory isolate.

Two species that are closely related to Blastomyces, that can cause pulmonary disease in
rodents (adiaspiromycosis), were also sequenced: Emmonsia parva UAMH139 and Emmonsia
crescens UAMH3008. These isolates were chosen for comparison as these species are not typi-
cally human pathogens, yet they are closely related to the three pathogenic dimorphic genera
Blastomyces,Histoplasma and Paracoccidioides, with which they form a clade that is nested
within the order Onygenales and represents the Ajellomycetaceae family [20].

Sequencing of Blastomyces, E. parva and E. crescens
Genomic DNA for sequencing was prepared from mycelial or yeast culture, using phenol/chlo-
roform extraction. For the Blastomyces SLH14081 and ER-3 strains, whole genome shotgun
sequence was obtained using Sanger technology on an ABI 3730 from a Fosmid (epiFOS) and
two plasmid (pJAN and pOT) libraries. For B. dermatitidis ATCC18188, whole genome shot-
gun sequence was obtained from two small insert libraries (fragment and 1.5 kb) using Roche
454 technology and from a Fosmid library using Sanger technology. For B. dermatitidis
ATCC26199 20X of sequence was generated using 454 technology from a small insert fragment
library. In addition, a plasmid (pOT) and Fosmid (epiFOS) library were constructed and
sequenced using Sanger technology by the Washington University Genome Center, generating
a total of roughly 3.6X coverage.

For each Emmonsia species, a single library was used to generate 101 bp paired-end reads
using Illumina technology on a Genome Analyzer II generating a total of 116X coverage for E.
parva UAMH139 and 163X coverage for E. crescensUAMH3009. Libraries of average insert
size of 639 bp for E. parva and of 686 bp for E. crescens were chosen based on the electrophero-
grams obtained from Bioanalyzer. Sequencing of both Emmonsia genomes was performed at
the Genomic Sequencing Laboratory, University of California, Berkeley.

Genome assemblies
Blastomyces strains SLH14081 and ER-3 were assembled with Arachne [74] (Assemblez Build
20080911). For B. dermatitidis ATCC18188, a hybrid assembly was generated with Newbler ver-
sion 2.3. For B. dermatitidis ATCC26199, a hybrid assembly of the Sanger and 454 data was gen-
erated with Newbler version "MapAsmResearch-03/15/2010" with options-rip and -scaffold.

For the Emmonsia genomes, assemblies were generated using multiple programs, including
the SOAPdenovo / GapCloser package [75], ABYSS [76] and Velvet [77]. SOAPdenovo assem-
blies were selected based on quality metrics. While assemblies with high k values increased the
fraction of GC-poor regions represented in the assembly, optimal assembly of gene sequences
were achieved using lower k values, based on comparing each assembly to gene sets of Blasto-
myces and other related dimorphic fungi using TBlastN. The assemblies for the Emmonsia
genomes (k = 27 for E. parva and k = 29 for E. crescens) were processed using the program
GAEMR (http://www.broadinstitute.org/software/gaemr/), where overall assembly metrics
were used to select the best assembly considering both continuity and completeness, though
these measures were lower than for genomes assembled from multiple libraries.

Optical mapping of Blastomyces
To validate the assembly of strain SLH14081 and anchor it onto chromosomes, we constructed
an optical map, a single-molecule based ordered restriction map. The map of B. gilchristii strain
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SLH14081 was constructed by OpGen using the restriction enzyme BsiWI (C^GTACG). The
optical map consists of 16 linkage groups, with size ranging from 9.728 Mb to 730 kb. The total
size of the map was estimated as 79.64 Mb in size, slightly larger than the 75.35 Mb genome
assembly, likely due to repetitive element sequence missing from the assembly. A total of 36
assembly scaffolds covering 68.9 Mb were mapped based on shared restriction sites to the opti-
cal linkage groups (S2 Table).

RNA-Seq of ATCC26199 from yeast, mold, and infection conditions
To enable more accurate gene prediction and analyze gene expression, RNA was prepared and
deeply sequenced from five conditions (yeast with or without macrophages in RPMI media, in
vivo during murine pulmonary infection, and in vitro yeast and mold inHistoplasmamacro-
phage media (HMM)) with two biological replicates per condition.

ATCC26199 yeast cells were co-cultured with bone marrow derived murine macrophages
from C57BL/6 mice in RPMI media with 10% heat inactivated FBS and supplemented with peni-
cillin (100 U) and streptomycin (100 ug) or incubated in this media alone. Yeast andmacrophages
were co-cultured using a ratio of one yeast for every two macrophages (MOI 0.5). The use of alve-
olar macrophages was precluded due to the large numbers of mice that would be needed to har-
vest these cells. Following inoculation of cell culture flasks with B. dermatitidis yeast, the co-
cultures were incubated at 37°C for 24 hrs. The majority of the yeast were either single cells or
cells with one bud (average 89%). The extent of macrophage internalization of yeast was mea-
sured using Uvitex staining to differentiate between extracellular and intracellular yeast. A total of
1,976 cells were counted across seven individual fields of view, with an average of 59% Uvitex neg-
ative (intracellular) and 41% Uvitex positive (extracellular). The majority of B. dermatitidis cells
exhibited yeast morphology (> 96%); pseudohyphal growth occurred in 2.4% of co-cultured yeast
and 3.7% of yeast grown in RPMI media without macrophages. Harvested yeast cells were flash
frozen in liquid nitrogen, ground with a mortar and pestle into a fine powder, and RNA extracted
using the phenol-guanidium thiocyanate-1-bromo-3-chloropropane extraction method [78].

For in vivo transcriptional profiling, C57BL/6 mice were infected with 2 x 103 B. dermatitidis
ATCC26199 yeast cells intratracheally and monitored for signs and symptoms of infection
[79]. Mice with euthanized by carbon dioxide at 17 days post infection and yeast were isolated
from murine lung tissue using the technique developed by Marty et al. [80]. Briefly, excised
lungs were homogenized in pre-chilled (4°C) double-distilled, sterile water (ddH2O) supple-
mented with DNase I 10 μg/ml (Roche) using an Omni TH tissue homogenizer (Omni Interna-
tional, Kennesaw, GA), passed through a 40 μm cell strainer (ThermoFisher Scientific,
Waltham, MA), and centrifuged at 770g for 5 minutes at 4°C. The supernatant and interface
were removed using a serologic pipette and yeast pellet was washed with ice-cold ddH2O and
rapidly frozen in liquid nitrogen for RNA extraction. Time ex vivo was less than 30 minutes
and samples were near-freezing (4°C) during all isolation steps. Quality control analyses using
qRT-PCR demonstrated that the short ex vivo time (< 30 minutes) at 4°C minimized changes
in transcript abundance that would have occurred if the samples were processed at higher tem-
peratures or for a longer duration [80]. Total RNA isolated from B. dermatitidis yeast during
pulmonary infection was divided into 2 pools of 5 mice each (pool #1 and pool #2).

In vitro yeast were incubated in liquid Histoplasmamacrophage media (HMM) at 37°C
while shaking [81]. The majority of cells had yeast morphology; less than 3.25% of cells grew as
pseudohyphae. To generate mycelia, yeast cells were incubated in liquid HMM for 14 days at
22°C while shaking. Harvested yeast and mycelial cells were flash frozen in liquid nitrogen,
ground with a mortar and pestle into a fine powder, and RNA extracted using the phenol-gua-
nidium thiocyanate-1-bromo-3-chloropropane extraction method [78].
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Total B. dermatitidis RNA from all samples (in vivo, in vitro, co-cultures) was treated with
TurboDNase (Bio-Rad, Hurcules, CA) and cleaned using an RNeasy column (Qiagen). RNA
integrity and quality was assessed using Nanodrop spectrophotometry, 0.8% agarose gel elec-
trophoresis, and an Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA). RNA integ-
rity numbers (RIN) for in vivo samples were> 7.5 (7.6 for pool #1, 7.8 for pool #2). RIN values
for in vitro and co-cultures (including yeast only RPMI) were� 8.7.

For RNA-Seq, poly-A mRNA was purified for each total RNA sample and strand-specific
libraries prepared as previously described [82,83]; each library was sequenced using Illumina
Technology, generating an average of 65,174,908 101 bp reads per sample. RNA-Seq was incor-
porated into gene prediction and used to detect differentially expressed transcripts as described
below.

Genome annotation
For initial gene sets, a total of 38,405 ESTs generated from yeast and mycelial samples of
ATCC26199 (Washington University) and from a normalized cDNA library of SLH14081
(Broad Institute) were used for gene prediction. To achieve better transcript coverage, strand-
specific RNA-Seq data from 10 samples representing the above yeast, mold, and infection
stages was assembled with the Inchworm component of Trinity [84] and processed with PASA
[85] to generate a set of transcripts for gene prediction. Gene sets were generated by using Evi-
denceModeler (EVM) [85] to select the best gene call for a given locus from the gene prediction
programs SNAP, Augustus, Geneid, and Genewise and from PASA RNA-Seq transcripts as
previously described [85,86].

Project numbers and locus tag prefixes assigned to gene sets are as follows: B. gilchristii
SLH14081 (PRJNA41099, locus tag prefix BDBG), B. dermatitidis ER-3 (PRJNA29171, prefix
BDCG), ATCC18188 (PRJNA39265, prefix BDDG), and ATCC26199 (PRJNA39263, prefix
BDFG); the E. parva UAMH139 (PRJNA178178, prefix EMPG) and E. crescens UAMH3008
(PRJNA178252, EMCG).

Expression profiling
RNA-Seq reads were aligned to the transcript sequences of B. dermatitidis strain ATCC26199
using Bowtie [87]. Transcript abundance was estimated using RSEM [88], TMM-normalized
FPKM for each transcript were calculated, and differentially expressed transcripts were identi-
fied using edgeR [89], all as implemented in the Trinity package version r2013-2-25 [90]. To
identify GO term enrichment of differentially expressed genes, we classified transcripts using
Blast2GO [91] and then performed comparisons with Fisher’s exact test. A 2-fold difference in
FPKM values and a false discovery rate below 0.05 were used as a criteria for significant differ-
ential expression. To identify possible functions of the gene products of significantly differen-
tially expressed parasitic-phase genes, protein homologs were assigned based on BLAST, Gene
Ontology (GO) terms and protein family domains (PFAM, TIGRFAM).

Quantitative real-time PCR (qRT-PCR)
Total RNA was extracted from B. dermatitidis yeast as described above. One microgram of
DNase-treated total RNA was converted to cDNA using iScript cDNA synthesis kit (Bio-Rad).
qRT-PCR was performed with SsOFast EvaGreen Supermix (Bio-Rad) using a MyiQ real-time
PCR detection system (Bio-Rad). Reactions were performed in triplicate using the following con-
ditions: 1 cycle 95°C x 30 sec, followed by 40 cycles at 95°C for 5 sec, 60°C for 10 sec. Transcript
abundance for genes of interest were normalized relative to the transcript abundance of GAPDH.
Relative expression (RE) was calculated as RE = 2-ΔCt, ΔCt = Ctgene of interest−CtGAPDH [92].
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Primer sequences used were as follows: AATCCTTTGACAGTGAAAC (forward) and
CCATAAATCTGCTACAACAG (reverse) for BDFG_03060, ACTGTCGGTGGAGAGAAG
(forward) and ACTGGGGTGTTGTTGAAG (reverse) for BDFG 02965, GACTATCCCATC
CACAAC (forward) and TACAGAGCGGAATCTTTG (reverse) for BDFG 05357,
TTTGGCACTGGAGTTATG (forward) and TGCTTCGTAGTCTAAAGTC (reverse) for
BDFG 09159, GTGCTACAACGGAGATAC (forward) and GATAACCACCACGAACAC
(reverse) for BDFG 02039, ACCCCCGCTCCTCCATCTTC (forward) and GAGTAGCCC
CACTCGTTGTCATACC (reverse) for BDBG_07959 (GAPDH).

Segmentation and identification of genes and repeats located in GC-
poor tracts
We used the IsoFinder GC segmentation program (http://bioinfo2.ugr.es/oliver/isofinder;
[93]) to segment all ER-3 and SLH14081 scaffolds into long homogeneous genomic regions
(LHGRs). The option p2 (parametric/student t-test with different variances), a window size of
5 kb and a p value cutoff of 0.01 (P parameter 0.99) were chosen after evaluating P cutoffs
between 0.95 and 0.99, and window sizes ranging between 3 and 5 kb. The final settings were
chosen as they accommodated gene synteny between ER-3 and SLH14081 in the GC-poor seg-
ments, obviating the need to manually remove narrow GC peaks caused by short genic regions.

To identify the coordinates of the longer GC-poor and GC-rich tracts on the assemblies of
Blastomyces strains ER-3 and SLH14081, we set the boundary between GC-poor and GC-rich
at 38% GC, a value that is in the deep valley between the two components of these genomes’
bimodal GC distribution. The deep valley is robust and persists over a wide range of window/
segment sizes ranging up to> 60 kb (S4 Fig). We then grouped adjacent segments located
between successive transitions (regime switches) across the 38% GC border. Islands of N’s in
the interior of the GC-poor tracts were retained, but those at the tract fringes (i.e., next to a
jump across the 38% GC threshold) were not. This procedure yields a large-scale segmentation
of all scaffolds into strictly alternating “GC-poor” and “GC-rich” tracts. The GC-poor tracts
and genes in those regions are listed in S3 and S4 Tables, respectively; GC-rich tracts form the
remainder of the assemblies. We performed MySQL joins to identify the genes and repeats
(GFF files produced by RepeatMasker of elements from RepeatModeler) located entirely or
partly in the GC-poor tracts.

Synteny analyses
DAGchainer [94] was used to identify syntenic blocks with a minimum of 6 genes, which were
required to be in the same order and orientations in the compared genomes. Synteny plots
were generated using a custom perl script, using the GDgraph library; code is available at
https://github.com/gustavo11/syntenia. Geneious Pro was used to visualize smaller-scale synte-
nies within and among genome assemblies.

Recognition and characterization of repeats
De novo repetitive sequence in each assembly was identified using RepeatModeler version
open-1.0.7 (www.repeatmasker.org/RepeatModeler.html). Copies of de novo repeats and fungal
sequences from RepBase [95] were mapped in each assembly using RepeatMasker version
open-3.2.8 (www.repeatmasker.org/). For phylogenetic analysis of gypsy elements, reverse
transcriptase domains were identified from each element; matches to the PFAM RVT_1
domain were identified with HMMER (version 3.1b1) [96] for 6-frame translations of each ele-
ment generated by EMBOSS transeq (version 6.5.7 with parameters-frame 6-clean Y) [97]. The
best domain match for each element was selected, requiring 50% alignment coverage and c-
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Evalue< 1e-5. The domains identified in Blastomyces SLH14081 (991 total) and ER-3 (1,296
total), E. parva (40 total), and similar Repbase gypsy elements (4 total) were aligned with
MAFFT (version 6.717) [98], and a phylogeny estimated using FastTreeDP (version 2.1.8)
[99]. Four large subgroups were identified and visualized using iTOL [100].

Identification and analysis of orthologs and phylogenetic analysis
A total of 16 genomes from the Onygenales order and three Aspergillus genomes were chosen
for comparative analyses (S15 Table). These include the four Blastomyces (SLH14081,
ATCC26199, ATCC18188, ER-3) and two Emmonsia species (UAMH139, UAMH3008) as
well as the following: Histoplasma capsulatumWU24 (AAJI01000000),H. capsulatum
G186AR (ABBS01000000), Paracoccidioides lutzii Pb01 (ABKH02000000), P. brasiliensis Pb03
(ABHV02000000), and P. brasiliensis Pb18 (ABKI02000000), Coccidioides immitis RS
(AAEC00000000), C. posadasii C735 delta SOWgp (ACFW00000000), Uncinocarpus reesii
1704 (AAIW00000000),Microsporum gypseum CBS118893 (ABQE00000000), Trichophyton
rubrum CBS118892 (ACPH01000000), Aspergillus nidulans FGSC A4 (AACD00000000), A.
flavus NRRL3357 (AAIH00000000), A. fumigatus Af293 (AAHF01000000). OrthoMCL was
used to cluster the protein-coding genes of the 19 chosen genomes by similarity.

To estimate the species phylogeny, a total of 2,062 orthologs present in a single copy in all of
the 19 genomes were identified. Protein sequences of the 2,062 genes were aligned using MUS-
CLE, and a phylogeny was estimated from the concatenated alignments using RAxML v7.7.8
with model PROTCATWAG. To more closely examine the relationship of the Blastomyces iso-
lates, single copy orthologs were identified in all four strains of Blastomyces and E. parva; the
protein sequences of a total of 6,605 single copy orthologs were aligned using MUSCLE, and
the resulting sequences replaced with the corresponding codons. A phylogeny was estimated
from this nucleotide alignment using RAxML v7.3.3 with model GTRCAT. A total of 1,000
bootstrap replicates were used for each analysis. The level of support for the best RAxML tree
was also evaluated using individual gene trees, by calculating the gene support frequency (GSF,
[26]). A phylogeny was estimated and bootstrapped using the same parameters as for the
concatenated sequence matrix, and gene trees with high bootstrap support at all nodes were
then selected. A total of 162 gene trees were supported by at least 70% of bootstrap replicates at
all nodes; the percent of gene trees supporting the RAxML best tree was calculated using
RAxML and is shown in Fig 1. We also evaluated larger subsets of trees including those with
60% bootstrap support at all nodes, 50% bootstrap support, or all trees regardless of support,
and found lower support respectively in each subset for our best tree.

To examine selective pressure on genes in GC-poor regions, we identified 7228 genes that
were single copy in the four Blastomyces genomes from the OrthoMCL run. dN/dS values for
each gene were computed on codon-based nucleotide alignments with the codeml module of
PAML [101], using the one-ratio (M0) model.

Gene family and protein domain analysis
Genes were functionally annotated by assigning PFAM domains, GO terms, and KEGG classi-
fication. HMMER3 [96] was used to identify PFAM domains using release 27. GO terms were
assigned using Blast2GO [91], with a minimum e-value of 1x10-10. Protein kinases were identi-
fied using Kinannote [102] and divergent FunK1 kinases were further identified using
HMMER3. Secondary metabolite gene clusters were predicted with antiSMASH version 2.0.2
[103]. Genes were clustered using OrthoMCL [104] with a Markov inflation index of 1.5 and a
maximum e-value of 1x10-5.
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To identify functional enrichments in Blastomyces and other subsets of the 19 compared
genomes, we used four gene classifications: OrthoMCL similarity clusters (see above), PFAM
domains, KEGG pathways, and Gene Ontology (GO), including different hierarchy levels. A
gene was considered to be a member of a given gene class when, respectively, the gene (a)
belonged to the given OrthoMCL cluster, (b) contained at least one instance of the given
PFAM domain in the encoded protein, (c) belonged to the given KEGG pathway, or (d) was
tagged by the given GO label. Using a matrix of gene class counts for each classification type,
we identified enrichment comparing two subsets of queried genomes using Fisher’s exact test.
Fisher’s exact test was used to detect enrichment of PFAM, KEGG, or GO terms between
groups of interest, and p-values were corrected for multiple comparisons [105]. Significant
(corrected p-value< 0.05) PFAM and GO terms expansion or depletion was examined for
three comparisons: Ajellomycetaceae compared to other Onygenales (S6 Table), pathogenic
compared to non-pathogenic from Ajellomycetaceae (S9 Table), and Blastomyces compared to
other Ajellomycetaceae; the only terms found to be expanded only in Blastomyces included
nucleosome and zinc ion binding. No significant enrichment in KEGG terms was detected for
these comparisons.

Supporting Information
S1 Fig. Optical map of Blastomyces gilchristii strain SLH14081.
(PNG)

S2 Fig. Conservation of core eukaryotic gene (CEG) set across Blastomyces, Emmonsia, and
other compared genomes. The percent coverage of genes with significant Blast similarity is
shown for alignments above and below the recommended 70% coverage threshold; matches
with less than 70% coverage suggest these are partial gene structures.
(PDF)

S3 Fig. Phylogeny of Blastomyces and Emmonsia parva. Maximum likelihood tree of the
four Blastomyces strains (ATCC26199, ATCC18188, ER-3, SLH14081) and E. parva
(UAMH139) was inferred using RAxML based on the concatenated nucleotide sequence
alignment 6,605 genes.
(PDF)

S4 Fig. GC frequency distributions (histograms) of overlapping fragments (windows, sub-
sequences) of the genome assembly of Blastomyces gilchristii (SLH14081) B. dermatitidis
(ER-3) and Leptosphaeria maculans (v23.1.3).Window sizes included 2, 8, 32, 64, 128 and
256 kb. Step size was 1/128 of the window size. The bin size of the histograms is approximately
0.1% GC. Horizontal axes show GC percent and vertical axes show relative frequencies.
(PDF)

S5 Fig. GC frequency distributions (histograms) of small overlapping fragments (windows,
of 128 bp) of the genome assembly of Blastomyces dermatitidis (ER-3), B. gilchristii
(SLH14081), Emmonsia parva (UAMH139), E. crescens (UAMH3008),Histoplasma capsu-
latum (WU24), Paracoccidioides lutzii (Pb01), Coccidioides immitis (RS3) and Lepto-
sphaeria maculans (v23.1.3).
(PDF)

S6 Fig. Comparison of GC-poor insertions in an otherwise syntenic region of Emmonsia
parva (UAHM139) and the four sequenced strains of Blastomyces. The example illustrates
the intraspecific variability in presence/absence of GC-poor segments or ‘inserts’ and, even
where their presence and location are conserved, the variability in their lengths. In (A) the
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dotplot of one complete scaffold of E. parva aligned to B. gilchristii strain SLH14081 (top) and
B. dermatitidis strain ER-3 (bottom). In (B) the corresponding location of the inserts and the
length; only insertion sites that were>15 kb for at least one strain are shown. This 265 kb
region of the E. parva genome, lacks intermediate-sized (>15 kb) or long inserts, allowing its
use as a simple reference for marking positions.
(PDF)

S7 Fig. Comparison of the expression of GC-poor genes vs. GC-rich genes. (A) Box plot of
the gene expression (log2(FPKM+1)) of the genes located in GC-rich regions (blue) and genes
located in GC-poor regions (green) in all five conditions of the RNA-Seq experiment of B. der-
matitidis strain ATCC26199. Histograms in (B) show in the x-axis the distribution of the gene
expression (log2(FPKM+1)) of those genes according their location during mouse infection.
Similar distribution was observed in the other four conditions.
(PDF)

S8 Fig. Distribution of known repeats families in GC-poor regions as compared with
known repeats families in GC-rich regions in Blastomyces (ER-3). The list in the left
box represent the first 20 LTR/Gypsy representing approximately 90% of the LTR/Gypsy fam-
ily in the GC-poor regions.
(PDF)

S9 Fig. Phylogenetic characterization of Gypsy elements in Blastomyces. Four divergent
clades of gypsy elements (A, B, Fig 2B and 2C) were identified from a phylogeny inferred using
FastTreeDP from alignments of reverse transcriptase domains identified in gypsy elements of
B. dermatitidis (ER-3), B. gilchristii (SLH14081) and E. parva (UAMH139). Each of the four
clades is shown separately; A. Subgroup of 220 sequences includes non-ACa Repbase elements.
B. Subgroup of 554 sequences specific to Blastomyces. The outer circle indicates strain specific
duplications of four or more sequences.
(PDF)

S10 Fig. Eukaryotic protein kinase superfamily members (kinomes). The kinomes of Blasto-
myces gilchristii (Bg; SLH14081) and B. dermatitidis (Bd; ER-3, ATCC26199 and ATCC18188)
were compared with Emmonsia parva (Ep; UAMH139), E. crescens (Ec; UAMH3008), Paracoc-
cidioides brasiliensis (Pb; Pb18) and Coccidioides immitis (Ci; RS3). Kinases are classified into
major groups shown as colored blocks. Abbreviations: AGC, protein kinases A; CAMK, cal-
cium/calmodulin-dependent kinases; CK1, casein kinase 1; CMGC, cyclin-dependent kinases
(CDK), mitogen-activated, glycogen-synthase, and CDK-like kinases; STE, sterile phenotype
kinases; FunK1, fungal-specific kinase 1; PKL, protein kinase subdomain-containing proteins;
STK, serine/threonine protein kinase; STE, sterile phenotype kinases; TKL, tyrosine kinases.
(PDF)

S11 Fig. Correlation coefficients of FPKM values between samples. Two biological replicates
for each condition of the RNA-Seq of Blastomyces dermatitidis (ATCC26199).
(PDF)

S12 Fig. Quantitative real-time PCR (qRT-PCR) analysis. (A) qRT-PCR analysis of endo-1,3
(4)-β-glucanase (BDFG_03060) and catalase P (CATP; BDFG_02965) from B. dermatitidis
ATCC26199 yeast cells co-cultured with macrophages (Macrophage) and yeast cells grown in
the absence of macrophages (No Macrophage) at 37°C in RPMI. (B) qRT-PCR analysis of
genes encoding a zinc-scavenging protein (PRA1; BDFG_05357), zinc transporter (ZRT1;
BDFG_09159), and cysteine synthase A (CSA; BDFG_02039) from B. dermatitidis
ATCC26199 yeast cells isolated during murine pulmonary infection (in vivo) and yeast cells
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co-cultured with macrophages (Macrophage) in RPMI at 37°C. qRT-PCR data are from 2
experiments. Relative expression (RE) for the target gene was compared to GAPDH: RE = 2-ΔCt

= 2-(gene of interest)–(GAPDH).
(EPS)

S1 Table. Phenotypic differences observed among B. dermatitidis, E. parva and E. crescens.
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S2 Table. Optical map information for B. gilchristii strain SLH14081.
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S3 Table. Coordinates of GC-poor tracts in B. dermatitidis ER-3 and B. gilchristii
SLH14081.
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