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Abstract
Upon starvation for glucose or any other core nutrient, yeast cells exit from the mitotic cell

cycle and acquire a set of G0-specific characteristics to ensure long-term survival. It is not

well understood whether or how cell cycle progression is coordinated with the acquisition of

different G0-related features during the transition to stationary phase (SP). Here, we identify

the yeast GSK-3 homologue Mck1 as a key regulator of G0 entry and reveal that Mck1 acts

in parallel to Rim15 to activate starvation-induced gene expression, the acquisition of stress

resistance, the accumulation of storage carbohydrates, the ability of early SP cells to exit

from quiescence, and their chronological lifespan. FACS and microscopy imaging analyses

indicate that Mck1 promotes mother-daughter cell separation and together with Rim15,

modulates cell size. This indicates that the two kinases coordinate the transition-phase cell

cycle, cell size and the acquisition of different G0-specific features. Epistasis experiments

placeMCK1, like RIM15, downstream of RAS2 in antagonising cell growth and activating

stress resistance and glycogen accumulation. Remarkably, in the ras2Δ cells, deletion of

MCK1 and RIM15 together, compared to removal of either of them alone, compromises

respiratory growth and enhances heat tolerance and glycogen accumulation. Our data indi-

cate that the nutrient sensor Ras2 may prevent the acquisition of G0-specific features via at

least two pathways. One involves the negative regulation of the effectors of G0 entry such

as Mck1 and Rim15, while the other likely to involve its functions in promoting respiratory

growth, a phenotype also contributed by Mck1 and Rim15.

Author Summary

The vast majority of eukaryotic cells exist in a non-proliferating state known as G0. How-
ever, how cells transit into, and survive during, the G0 state is poorly understood. Dysregu-
lation of the G0 state leads to age-related diseases such as Alzheimer’s or cancers. We have
revealed that the yeast Mck1 and Rim15 kinases, which function downstream of the PKA
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and/or TOR signaling pathways, coordinate cell cycle progression, cell size homeostasis, and
the acquisition of a variety of G0-specific characteristics during the transition into stationary
phase. Failure of this coordination compromises the ability of early stationary-phase cells to
exit from quiescence and severely shortens their chronological lifespan. Further genetic anal-
yses suggest that the nutrient sensor Ras2 may antagonize G0 entry via at least two pathways,
one through the negative regulation of the G0-specific effectors (Mck1 and Rim15) and the
other possibly involving its functions in promoting respiratory growth, a phenotype also
intricately modulated by Mck1 and Rim15. As Ras2 and Rim15 have homolog in both
insects and/or mammals, the identification of the GSK-3 homologue Mck1 and the charac-
terisation of its relationship with Rim15 and Ras2 in G0 entry could provide important clues
to the regulation of these processes in more complex organisms.

Introduction
Research into the biology of aging in different model organisms has identified several signaling
pathways affecting lifespan. Among them, the partially conserved insulin/IGF-1 signaling path-
way and the conserved TOR pathway regulate lifespan in organisms from insects to mammals
[1–2]. Multiple TORC1-regulated processes, including autophagy, stress resistance, and mito-
chondrial function, contribute to lifespan extension by TORC1 inhibition [2–3]. In budding
yeast, transition into quiescence and extension of chronological lifespan (CLS, defined as the
period of time that non-dividing cells remain viable in the stationary phase, SP), is regulated by
the TOR and PKA signaling pathway [4–5]. Compromising TOR [6–7] or deletion of the Sch9
kinase [8], a downstream effector of TORC1 [9], leads to CLS extension. Similarly, inactivation
of Ras2, which promotes Cyr1 and PKA function, extends yeast life span [10]. CLS extension
by reduced TOR/Sch9 signaling or decreased PKA activity is dependent on the activation of
the stress response, which is mediated by the PAS kinase Rim15 and its downstream effectors,
Msn2/Msn4 (Msn2/4) and Gis1 [11]. Recently, Shadel and colleagues have revealed that
enhanced mitochondrial respiration above a certain threshold is required to promote cell sur-
vival during SP [12]. Increased respiration in tor1Δ cells contributes to CLS extension through
reactive oxygen species, which act as an hormetic signal to activate the stress response depen-
dent on Msn2/4 and Gis1, and promote sub-telomeric chromatin silencing via the DNA dam-
age response pathway [13–14]. These studies support the view that, besides other factors, the
stress response induced via the inhibition of the nutrient signaling pathways is a major process
involved in the prolongation of CLS [15].

The stress response mediated by Msn2/4 and Gis1, activated in cells starved for glucose or
treated with rapamycin, is dependent on Rim15 [16]. The Rim15 kinase, via the paralogous
Igo1 and Igo2 proteins, protects newly expressed mRNAs from decapping and degradation
[17–18] and also preserves Gis1 in a phosphorylated (active) state by inhibiting PP2ACdc55

phosphatase activity [19]. Our recent studies indicated that regulation of the starvation-
induced stress response involves a more complex signaling network than previously thought.
Firstly, Msn2/4- and Gis1-activated gene expression is negatively modulated by both the pro-
teasome and the TOR signaling pathways [20–21]. Like Msn2 [22], Gis1 is subjected to partial
cleavage mediated by the proteasome [20,23]. Secondly, when the function of the proteasome
is inhibited, Msn2/4- and Gis1-dependent gene expression induced by TORC1 inhibition is no
longer strictly dependent on Rim15 [24]. Yak1 (the yeast homolog of mammalian DYRKs) was
identified as the kinase, acting in pathways parallel or compensatory to that of Rim15, that acti-
vates gene expression dependent on Msn2/4 and Gis1 [21]. Moreover, deletion of both RIM15
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and YAK1 did not abolish such expression, suggesting that other genes may act to promote the
stress response in TORC1-inhibited or starved yeast cells. Our examination of this hypothesis
has led to the finding that the yeast GSK-3 homologue Mck1 acts in parallel to Rim15 to control
the acquisition of a variety of quiescence-related characteristics; these include starvation-induced
gene expression, stress resistance, accumulation of storage carbohydrates and chronological life
span. Mck1 promotes cell separation and, together with Rim15, controls the cell size after the dia-
uxic shift. Further genetic analyses suggest the nutrient sensor Ras2 may prevent G0 entry via at
least two pathways, one through the negative regulation of G0-related effectors, such as Mck1
and Rim15, and the other likely involving its functions in promoting respiratory growth, a phe-
notype also modulated by Mck1 and Rim15. To our knowledge, this is the first demonstration
that transition-phase cell cycle, cell size, and the acquisition of different G0-specific features are
co-ordinately regulated in order to ensure long-term survival. Our findings provide novel insight
into how G0 entry is controlled by the nutrient sensors and their downstream effectors.

Results

Mck1 is necessary to promote starvation-induced gene expression
To facilitate the identification of other regulators of starvation-induced gene expression, two cas-
settes were constructed in which the expression of RFP (Red Fluorescent Protein) is regulated by
the promoter of SSA3 (harbouring the PDS motif targeted by Gis1; [25]) and that of the fusion
protein HSP12-VFP (Venus Fluorescent Protein) controlled by the promoter ofHSP12 (bearing
the STRE element targeted by Msn2/4, [26]). To verify the utility of the two reporters, their
expression levels were first monitored in wild-type (WT),msn2/4Δ, gis1Δ, and gis1Δmsn2/4Δ
cells using a plate reader. pHSP12-HSP12-VFP expression was evident in the late exponential
phase and reached a maximum before early stationary phase (S1 Fig). In contrast, the expression
of pSSA3-RFP was activated at the late exponential phase and gradually increased during the
transition into stationary phase (S1 Fig). Maximum Expression of pHSP12-HSP12-VFP (at
~20h) was significantly reduced in themsn2/4Δ cells and only moderately decreased in the gis1Δ
deletant (Fig 1A). In comparison, pSSA3-RFP expression (at ~48h) was substantially reduced in
gis1Δ cells and, to a lesser degree, in themsn2/4Δmutants (Fig 1A). In the gis1Δmsn2/4Δ triple
mutant, the expression of pHSP12-HSP12-VFP and that of pSSA3-RFP was nearly abolished
(Fig 1A). These data indicated that the two expression cassettes are suitable for monitoring star-
vation-induced gene expression mediated by Msn2/4 and Gis1.

Expression from the pSSA3-RFP and pHSP12-HSP12-VFP reporters was assayed following
transformation into a mini-library of 272 mutants each carrying the deletion of a non-essential
gene encoding a signaling molecule in S. cerevisiae (S1 Table). Mck1 was identified as being
required to activate the expression of both reporters using a plate reader (Fig 1B).MCK1
encodes a dual-specificity protein kinase, related to mammalian glycogen synthase kinases in
the GSK-3 family, which has previously been shown to activate gene expression mediated by
Msn2 in S. cerevisiae [27]. Among the four GSK-3 family kinases encoded by the yeast genome,
only deletion ofMCK1 significantly reduced the expression of both the VFP and RFP reporters,
whereas deletion of YGK3, RIM11 orMRK1 had little effect (Fig 1B).

Mck1 and Rim15 activate starvation-induced gene expression, stress
resistance, and accumulation of storage carbohydrates via parallel
pathways
The Rim15 kinase was previously shown to orchestrate G0 entry [16]. To reveal the functions
of Mck1 and its relationship with Rim15 in the regulation of G0 entry, single and double
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Fig 1. Relative expression levels of pHSP12-HSP12-VFP and pSSA3-RFP inWT,msn2/4Δ, gis1Δ andmsn2/4Δgis1Δ cells (A) and in mutants of
GSK-3 family (B).

doi:10.1371/journal.pgen.1005282.g001
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deletions of RIM15 andMCK1 were constructed in the pdr5Δ deletion background. PDR5 was
deleted in each of the wild-type and mutant strains in order to sensitise cells to the proteasome
inhibitor MG132 [28]. The levels of pHSP12-HSP12-VFP and pSSA3-RFP were monitored in
cells treated with either the drug vehicle (MG132-) or MG132 (MG132+). In comparison to
that seen in the single kinase mutants, the level of pHSP12-HSP12-VFP was decreased dramat-
ically (Fig 2A) and that of pSSA3-RFP was completely abolished in the rim15Δmck1Δ double
mutants (Fig 2B). Compromising the function of the proteasome with MG132 enhanced the
expression of both reporters in the WT cells (red bars in Fig 2A and 2B). Deletion ofMSN2/4
and GIS1 abolished the expression of pHSP12-HSP12-VFP but not that of pSSA3-RFP, indicat-
ing that other factors sensitive to proteasome function may be involved in regulating SSA3

Fig 2. Starvation-induced gene expression, stress resistance, and storage carbohydrates detected in transition-phase cells. Relative levels of
pHSP12-HSP12-VFP (A) and pSSA3-RFP (B) in WT,msn2/4Δgis1Δ, rim15Δ,mck1Δ and rim15Δmck1Δ cells treated with drug vehicle (blue, MG132-) or
12.5μM of MG132 (red, MG132+). C: Heat and oxidative stress resistance in transition-phase cells grown in YPD for 1 day (top) or 3 days (bottom).D and E:
The amount of trehalose (D) and glycogen (E) accumulated in WT and mutant cells grown in YPD for 1 day (blue) or 3 days (red).

doi:10.1371/journal.pgen.1005282.g002
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expression. As compared to the single kinase deletants, MG132-induced expression of the two
reporters was significantly reduced in the rim15Δmck1Δmutants (red bars, Fig 2A and 2B).
These data suggest that Mck1 acts in parallel to Rim15 to activate Msn2/4- and Gis1-dpenen-
dent gene expression.

To further examine the physiological implications of the above findings, the stress resistance
conferred by cells at the transition phases (grown in YPD for 1 and 3 days) was monitored. The
gis1Δmsn2/4Δ triple mutant cells were highly sensitive to heat shock (both day 1 and day 3 cul-
tures, Fig 2C) and only moderately sensitive to oxidative stress during early transition phase
(day 1 culture, Fig 2C). Themck1Δmutants displayed more severe defects than the rim15Δ
cells in both heat tolerance and oxidative stress resistance (Fig 2C). The rim15Δmck1Δ double
mutant recapitulates the heat shock sensitivity of the gis1Δmsn2/4Δ triple mutant and exhibited
greater sensitivity to oxidative stress than the latter (Fig 2C). These data further suggest that
the two kinases may control the acquisition of stress resistance in parallel pathways during
transition into stationary phase.

Storage carbohydrates are accumulated in yeast cells during the transition to stationary phase
[29]. We determined the level of trehalose and glycogen in cells grown in YPD for 1 and 3 days.
Deletion of bothMSN2/4 and GIS1 led to a substantial decrease of trehalose and glycogen levels
in transition-phase cells (Fig 2D and 2E), indicating that the accumulation of storage carbohy-
drates is in part the subject of transcriptional control. In the rim15Δmck1Δmutants, the amount
of trehalose or glycogen was lower than that in the single kinase mutants (Fig 2D and 2E), sug-
gesting that Mck1 and Rim15 act in parallel to control the levels of both storage carbohydrates.
The levels of trehalose and glycogen in the rim15Δmck1Δmutants were significantly lower than
those seen in themsn2/4Δgis1Δ triple mutants at 3 days of growth. The above data suggest that
Mck1 and Rim15 have additional roles in determining the accumulation of storage carbohydrates
other than by controlling the transcription mediated by Msn2/4 and Gis1.

MCK1 and RIM15 under the control of their endogenous promoters were also over-expressed
inWT, rim15Δ,mck1Δ and rim15Δmck1Δ cells using a multi-copy plasmid. Overexpression of
MCK1marginally increased the expression levels of the two reporters inWT cells, as compared
to those seen in the same cells harbouring the empty vector (Fig 3A). In contrast, RIM15 overex-
pression seemed to significantly increase the levels of both reporters inWT cells (Fig 3A). Over-
expression ofMCK1 restored the expression levels of the two reporters in themck1Δmutants to
that seen inWT cells but failed to rescue the reporter expression defects in the rim15Δ cells or in
the rim15Δmck1Δ double mutants (Fig 3A). Similarly, RIM15 in a multi-copy plasmid largely
suppressed the gene expression defects observed in the rim15Δmutants but not those seen the
mck1Δ deletants. RIM15 overexpression in the rim15Δmutants orMCK1 overexpression in the
mck1Δ cells did not fully restore the level of pSSA3-RFP to that seen in theWT cells, possibly due
to the decreased plasmid stability in post-diauxic shift cells. These observations confirmed that
Mck1 and Rim15 operated in parallel pathways to activate gene expression dependent on Msn2/
4 and Gis1.

Trehalose and glycogen levels were also determined in WT and mutant cells harbouring the
multi-copy plasmids. Cells were grown in buffered SC medium [30] for 2 days. As shown in
Fig 3B,MCK1 and RIM15 overexpression restored trehalose and glycogen in themck1Δ and
rim15Δmutants respectively close to their WT levels. Overexpression of RIM15 did not signifi-
cantly increase the levels of trehalose and glycogen in themck1Δmutants (Fig 3B).MCK1 over-
expression, however, partially suppressed the defects of storage carbohydrate accumulation
seen in the rim15Δ cells (Fig 3B). The above cell cultures were grown on YPD medium contain-
ing H2O2 or subjected to heat shock before growing on YPD. RIM15 overexpression completely
rescued the defects of heat or oxidative stress resistance seen in the rim15Δ cells but not those
observed in themck1Δmutants (Fig 3C).MCK1 overexpression completely restored the stress
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resistance capabilities of themck1Δ deletion cells and seemed to weakly suppress the stress
resistance defects of the rim15Δ cells (Fig 3C). The above observations further supported that

Fig 3. Relative expression levels of pHSP12-HSP12-VFP and pSSA3-RFP (A), relative levels of storage carbohydrates (B) and stress resistance (C)
displayed byWT, rim15Δ,mck1Δ and rim15Δmck1Δ cells overexpressingMCK1 or RIM15.

doi:10.1371/journal.pgen.1005282.g003
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RIM15 andMCK1 act largely in parallel to promote the transition from exponential growth to
stationary phase. However, it cannot be excluded that the two kinases may interact to regulate
the accumulation of storage carbohydrates under certain conditions (see later results).

Mck1 and Rim15 regulate cell cycle progression and cell size during
transition into SP
Exit from the mitotic cell cycle is one of the characteristics associated with entry into quies-
cence [4]. We wished to find out whether the Mck1 and Rim15 kinases also play a role in con-
trolling cell cycle progression during the transition to stationary phase (defined as>7 days in
YPD after diauxic shift). Hence the above WT, single- and double-mutant cells grown over the
period of 9 days were fixed, sonicated and subjected to FACS and budding index analyses. Glu-
cose was totally consumed by WT and mutant cells after 12 hours of growth in YPD. At 12
hours, the WT culture consisted of two distinct populations, labelled as 1C and 2C in Fig 4A.
During the post-diauxic shift phase, three distinct populations, labelled Gd, G1 and S/G2/M in
Fig 4A, were accumulated in wild-type cell cultures. The Gd cells display less staining by Sytox
green than 1C cells at diauxic shift. G1 cells exhibit slightly stronger staining signals than 1C
cells, whereas S/G2/M cells have similar DNA fluorescence to that of 2C cells (Fig 4A). Gd cells
are significantly smaller than G1 or S/G2/M cells, as revealed by the forward scatter (FSC) of
the cytometer (Fig 5A and 5B). In contrast, G1 and S/G2/M cells have a similar average size and
similar size distributions (Fig 5A and 5B).

Imaging the cells (day 1 sample) also revealed three distinct cell types: small cells without
buds, large cells without buds, and large cells with a very small bud or with nuclear DNA-con-
taining buds (Fig 5C), representing Gd, G1 and S/G2/M populations respectively (Fig 5A and
5B). Average Sytox staining signals produced by Gd cells marginally increased during the tran-
sition to SP (Fig 4A). In contrast, staining signals generated by G1 cells increased dramatically
until day 3 and then decreased slightly at the late stages of the transition (compare 12h, day 1,
day 3 and day 6 samples in Fig 4A). A similar increase and decrease was seen for S/G2/M cells
after day 1 (Fig 4A). The average size of Gd, G1 and S/G2/M cells was similarly increased during
early transition (compare day 1 and day 3 samples in Fig 5D) and remained unchanged during
late transition (compare day 3 and day 6 samples in Fig 5D). The budding index was decreased
from ~40% at the diauxic shift (12h) to ~10% at day 6 (Fig 6A). Similar FACS analyses of post-
diauxic shift cell cultures from a different genetic background [31] also revealed three cell
types, with the small cells displaying less DNA fluorescence than 1C, and their size increasing
during the transition into SP. Although it is not clear what caused the difference of DNA fluo-
rescence between small Gd and large G1 cells or among the G1 and S/G2/M cells during the
transition (see Discussion), the above findings do confirm that cultures in transition phase
exhibit an heterogeneous and dynamic structure and arrest predominantly in the G1 phase of
the cell cycle [31]. The Gd and G1 cells were also sorted and subjected to calcofluor white stain-
ing. None of the small Gd cells (~200) has a bud scar (Fig 5E). In contrast, around 30% of the
G1 cells (~200) were found to have one or more bud scars (Fig 5E). Less than 2% of the G1 cells
are budded. These data indicated that the Gd population is composed of small daughter cells,
whereas the G1 population represents predominantly daughter cells which have grown in size
and old mother cells.

FACS analysis of exponential phase culture revealed similar distributions of 1C and 2C cells
in the WT, rim15Δ,mck1Δ and rim15Δmck1Δ cultures (S2 Fig). At the diauxic shift, the ratio
of 2C to 1C populations in the rim15Δ,mck1Δ or rim15Δmck1Δ cultures was significantly
higher than that seen in WT culture (12h samples in Fig 4A, 4B, 4C and 4D). During the post-
diauxic phase, the ratio of G1 to Gd cells was dramatically decreased in the rim15Δ culture as
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Fig 4. Histograms of Sytox green staining signals in WT (A), rim15Δ (B),mck1Δ (C), and rim15Δmck1Δ (D) cells at the diauxic shift (12h), day 1, day
3, day 6 and day 9. Aminimum 10, 000 cells were analysed for each sample.

doi:10.1371/journal.pgen.1005282.g004
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compared to that of the WT (compare day 1, day 3 and day 6 samples between Fig 4B and 4A).
Enhanced Sytox staining of G1 or S/G2/M cells seen in wild-type culture was also significantly
reduced in the rim15Δ culture. The fraction of S/G2/M population in the rim15Δ culture, how-
ever, was only slightly higher at day 1 and dropped to the level similar to that in the WT culture
thereafter (compare all samples between Fig 4B and 4A). These data indicate that deletion of
RIM15 produces G1 cells which are less distinguishable from the Gd population by FACS than
those in the WT culture. At the diauxic shift (12h), the rim15Δmutant cells displayed similar
average sizes and size distributions to those WT cells (Fig 6E). During the post-diauxic phase,
the average size of Gd or G1 and S/G2/M cells in the rim15Δ culture was smaller than those in
the WT culture (Fig 6F). These data suggest that Rim15 is necessary to promote cell growth to
transit from Gd (small) to G1 (large) during the post-diauxic shift phase.

Strikingly, the proportion of both Gd and G1 cells in themck1Δ culture was severely
decreased during the early transition phase (12h to day 1 in Fig 4C). In contrast, a significant
portion of themck1Δ cells (labeled>2C) contained three times as much DNA as the Gd cells
(day 1 sample in Fig 4C). The percentage of cells in this population decreased initially but

Fig 5. Analysis of cell size of different populations in WT cell culture. 5A: Scatter plot showing Sytox green staining intensity and the size (FSC-A) of WT
cells grown in YPD for 1 day. 5B: Histogram showing the size distribution of Gd, G1 and S/G2/M populations in WT cell culture grown for 1 day. 5C: Nomarski
and Sytox green staining micrographs of WT cells grown for 1 day. Bar: 20μm. 5D:Histograms showing the size distribution of WT cells grown for 12 hours
(12h), 1 day, 3 days and 6 days. 5E: Sorted Gd and G1 cells stained by calcofluor white. Bar: 20μm.

doi:10.1371/journal.pgen.1005282.g005
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remained at about 15% of the culture during the late transition (day 3 to day 9 in Fig 4C). Cor-
respondingly, the budding index ofmck1Δ cells increased from ~40% at the diauxic shift to
~70% at day 1, decreasing to, and remaining at, ~40% during later transition (Fig 6A). About
one third of themck1Δ budding cells have two buds, one or both of which have acquired
nuclear DNA (Fig 6B). Multi-budded cells are hallmarks of cytokinesis or cell separation
defects. To distinguish between the two possibilities, we treated themck1Δ cells (grown in YPD
for 1 day) with zymolyase. Similarly treated were the aim44Δ and the ace2Δmutant cells,
which have been shown to have cytokinesis and cell separation defects respectively [32–33].
Zymolyase treatment led to a significant decrease of multi-budded cells in themck1Δ popula-
tion, similar to that observed for the ace2Δ culture (Fig 6C). The percentage of multi-budded
aim44Δ cells remained unchanged (Fig 6C). This suggested that themck1Δmutants have

Fig 6. Cell size and cell separation defects displayed by themck1Δmutants. 6A: Budding index during the transition into stationary phase. 6B:
Nomarski and Sytox green staining micrographs ofmck1Δ cells grown in YPD for 1 day. 6C: Percentage of multibuddedmck1Δ cells before and after
zymolyase treatment. **means 0.001<p<0.005, and *** indicates p<0.001. 6D:Multibuddedmck1Δ cells showing glucan staining at one bud neck (left) or
both bud necks (right). 6E: Histograms showing the size distribution of WT, rim15Δ,mck1Δ and rim15Δmck1Δ cells grown in YPD for 12 hours. 6F:
Histograms showing the size distribution of WT, rim15Δ,mck1Δ and rim15Δmck1Δ cells grown in YPD for 3 days.

doi:10.1371/journal.pgen.1005282.g006
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defects in cell separation during the transition to SP. Around 90% of the multi-budded cells
(~130) displayed glucan staining at one or both bud necks (Fig 6D). Towards the end of cytoki-
nesis, two secondary septa are formed at both sides of the primary septum and are made of 1,3-
β-D-glucans and mannoproteins [34]. Glucan staining at the bud neck further indicated that
the multi-buddedmck1Δ cells were caused by defects in cell separation.

At the diauxic shift (12h), themck1Δ and the rim15Δmck1Δ double mutants, like the
rim15Δmutants, also displayed similar average sizes and size distributions to WT cells (Fig
6E). During the post-diauxic phase, the average size of Gd or G1 and S/G2/M cells in themck1Δ
culture was similar to those in the rim15Δ culture but smaller than the same cells in the WT
culture (Fig 6F). Further, deletion of RIM15 in themck1Δmutant led to the complete disap-
pearance of G1 cells from the FACS profiles (compare day 1 with later samples in Fig 4D) and
indistinguishable Gd and S/G2/M cells in terms of size (Fig 6F), indicating that Mck1 regulates
the size of transition-phase cells together with Rim15. Interestingly, deletion of RIM15 in the
mck1Δmutant led to a significant reduction of both S/G2/M and the>2C populations (from
12h to day 1, compare Fig 4D with 4C) and a dramatic reduction of budding index (Fig 6A). It
is likely that the extremely small Gd and G1 cells in the rim15Δmck1Δ culture (Figs 4D and 6F)
would take much longer to grow in size and to enter into the S phase, thus reducing the S/G2/
M and the>2C populations, and the budding index as well.

Mck1 and Rim15 synergistically control chronological lifespan
After 3 days growth in YPD (day 0), chronological life span (CLS) was monitored by normalis-
ing the number of colony-forming units (CFUs) produced by a stationary phase culture to that
produced by the preceding transition-phase culture at day 0. Due to evaporation, the culture
volume tended to decrease by around 20% during the course of the study. Under the conditions
of our assay, the CLS of the wild-type cells remained the same after an initial increase (Fig 7A).
The initial increase may have been due to continued cell growth in YPD during the latter part
of the transition phase. The rim15Δ andmck1Δ cells (Fig 7A) displayed a slightly lower CLS
than that of themsn2/4Δgis1Δmutants. Deletion of both RIM15 andMCK1 decreased the CLS
to a greater extent than removal of either kinase. The pH values of the spent media from both
WT and mutant cultures fell to between 4.5 and 5, indicating that medium acidification is not a
cause of the difference observed between these mutants. At day 6 (after 9 days of incubation),
the majority of the stationary-phase cells can form colonies (Fig 7A). However, the size of the
colonies formed by the rim15Δ andmck1Δ culture is smaller than that of the WT cells (Fig 7B
and 7C). Deletion of both RIM15 andMCK1 further decreased the average size of colonies (Fig
7B and 7C). These data indicate that Mck1 and Rim15 control the ability of early SP cells to
exit from quiescence. To decide whether the shortened CLS was due to defects in G0 exit or to
cell death, cells from a culture at day 12 were washed in PBS buffer, stained with Sytox green,
and cell viability determined by FACS. Deletion of RIM15 orMCK1 decreased the cell survival
rate to ~80% (Fig 7D), while rim15Δmck1Δ double deletants had a dramatically reduced cell
viability of ~20% (Fig 7D). These data indicate that Mck1 and Rim15 act together to regulate
the proper exit from early stationary phase, and the two kinases synergistically control cell sur-
vival during prolonged starvation. Cell survival rates among the WT and the kinase mutants
are highly correlated with the amount of storage carbohydrates accumulated during the transi-
tion phase (correlation coefficient: 0.69, S3 Fig) but very poorly correlated with the percentage
of unbudded cells in the stationary phase culture (correlation coefficient: 0.08, S3 Fig), suggest-
ing that signaling to accumulate sufficient storage carbohydrates rather than exit from cell
cycle may be the primary determinant of the ability of SP cells to exit from G0 and their long-
term survival.
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Mck1 may be a downstream target of the Ras/cAMP pathway
The Ras proteins sense the nutritional status of the cell and regulate the cAMP-PKA pathway
by activating the adenylate cyclase Cyr1 [35]. Inactivation of RAS2 was shown to decrease the
intracellular cAMP level by four-fold [36]. We attempted to address whetherMCK1 is a down-
stream target of the Ras/cAMP pathway. The ras2Δmutant cells were shown to have growth
defects at high temperatures [37–38] or on non-fermentable carbon sources [36,39]. Removal
ofMCK1 largely suppressed the temperature sensitivity of the ras2Δ cells (Fig 8A, left) and
their growth defects on non-fermentable carbon sources (Fig 8A, right). Similarly, removal of
RIM15 or YAK1 abrogated the two growth defects displayed by the ras2Δmutants (Fig 8A, left
and right). The Rim15 kinase is negatively controlled by PKA and removal of RIM15 has been

Fig 7. The impact ofMCK1 and/orRIM15 deletion on quiescence exit and cell survival. 7A: Relative CFUs of WT and mutant cells taken from YPD
culture every 3 days. 7B:Cells grown from 9 day-old WT, rim15Δ,mck1Δ and rim15Δmck1Δ culture for 2 days on YPD. 7C:Quantification of colony size of
cells from 6b. Lower and upper bars stand for the 1st and the 3rd quartiles respectively. A minimum of 200 colonies were analysed for each strain. 7D:
Relative CFUs and cell viability of stationary-phase culture at day 12.

doi:10.1371/journal.pgen.1005282.g007
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shown to suppress the growth defect of a cyr1ts allele [40]. Loss of Ras activity is suppressed by
the disruption of YAK1, which is also negatively regulated by PKA [41–42]. These data suggest
thatMCK1, could also be a growth antagonist functioning downstream of the PKA pathway
(see discussion). Expression ofMCK1 under the control of the GAL1 promoter is not toxic to
cell growth of the WT or the ras2Δmutants (S4 Fig), indicating that the endogenous level of
Mck1 is sufficient to execute its function. In this respect, we have already shown thatMCK1
overexpression on a multi-copy plasmid did not significantly increase starvation-induced gene
expression in WT cells (Fig 3A). Removal of bothMCK1 and RIM15 in the ras2Δ cells did not
further enhance cell growth at high temperature (Fig 8A, left) but rather decreased the cell
growth on non-fermentable carbon sources as compared to the ras2Δ cells in which either
MCK1 or RIM15 is deleted (Fig 8A, right), suggesting thatMCK1 and RIM15 are required for
respiratory growth. We have previously revealed that deletion of RIM15 rendered cells unable
to compete with their WT counterparts in chemostat cultures limited for glucose or containing
ethanol as the sole carbon source [20].

The ras2Δmutants have been shown to have increased resistance to oxidative and heat
stresses [11,43]. The increased resistance to heat shock displayed by the ras2Δmutants (grown

Fig 8. Assessing the genetic relationship betweenMCK1 and RAS2. 8A: Suppression of the temperature sensitivity (left) and the respiratory growth
defects (right) of the ras2Δmutants by the deletion of RIM15,MCK1 or both. 8B:Heat tolerance displayed by the ras2Δ, ras2Δrim15Δ, ras2Δmck1Δ and
ras2Δrim15Δmck1Δ cells. 8C:Oxidative stress resistance displayed by the above cells. 8D:Growth of the above cells in YPD liquid medium containing 0.5
mM tert-butyl hydroperoxide. 8E: Trehalose and Glycogen accumulated in the above cells.

doi:10.1371/journal.pgen.1005282.g008
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in YPD for 3 days) was strongly dependent onMCK1 or RIM15 (Fig 8B). Removal of both
MCK1 and RIM15, compared to deletion of either of them in the ras2Δ cells, however, elicited
increased heat stress resistance to the level similar to that of the WT cells (Fig 8B). This obser-
vation is contrary to what was seen for the rim15Δmck1Δ cells which displayed more severe
defects to heat stress than the rim15Δ ormck1Δ single mutants (Figs 2C and 3C). The increased
heat stress resistance shown by the ras2Δ and ras2Δrim15Δmck1Δ cells seemed to be correlated
with their compromised respiratory growth (Fig 8A, right). Reduced respiration could lead to
the generation of less reactive oxygen species in yeast cells, thus increasing their capacity for
stress resistance. Alternatively, other stress response pathways could be activated in the ras2Δ
cells in a way dependent on their respiratory capacity (see later results). At the median level of
H2O2 (5mM), oxidative stress resistance shown by the ras2Δ cells was strongly dependent on
Rim15 but not on Mck1 (Fig 8C). The strong dependence on Rim15 was abolished when
MCK1 was further removed (Fig 8C). The ras2Δ deletants demonstrated enhanced resistance
to oxidative stress than their WT counterparts only at very high concentration of H2O2

(7.5mM, Fig 8C) or when cells were grown in liquid medium containing a more stable oxida-
tive reagent, tert-butyl hydroperoxide (Fig 8D). This enhanced resistance is abolished when
MCK1 and/or RIM15 is removed (Fig 8C and 8D), indicating thatMCK1, like RIM15, acts
downstream of RAS2 to activate the oxidative stress response.

As compared to WT cells, the ras2Δmutants accumulated slightly less trehalose but signifi-
cantly more glycogen (Fig 8E). The accumulation of both storage carbohydrates in the ras2Δ
mutants is strongly dependent onMCK1 and, to a greater extent, on RIM15 (Fig 8E). Further
removal of RIM15 from the ras2Δmck1Δ cells marginally increased the amount of trehalose but
significantly enhanced the accumulation of glycogen, to the level similar to that in the WT cells
(Fig 8E). As revealed in Fig 2D, the glycogen level in the rim15Δmck1Δ cells was only around
15% of that in the WT cells. These data further confirmed that in the ras2Δmutants, other cel-
lular pathways are activated/deactivated to enhance the accumulation of glycogen and the
acquisition of stress resistance. Glycogen synthesis in batch cultures begins before glucose is
exhausted and reaches its peak before diauxic shift [29]. Glycogen stores are dropped slightly
during the early adaptation to respiratory growth and then refilled thereafter to serve as energy
depot during extended starvation [44]. The defective respiratory growth elicited by RAS2 dele-
tion may allow the build-up of glycogen stores to continue during the early transition phase.
This respiratory growth defect is strongly suppressed by removal of RIM15 orMCK1 and the
suppression is remarkably reversed by deletion of RIM15 andMCK1 together (Fig 8A). These
data suggest that the defective respiratory growth may be one of the contributing factors to
account for the excessive accumulation of glycogen in the ras2Δmutants and the substantial
increase of glycogen levels in the ras2Δrim15Δmck1Δ triple mutants. Taken together, our data
suggest that the nutrient sensor Ras2 may prevent G0 entry via at least two pathways. One
involves the negative regulation of the G0-specific effectors including Mck1 and Rim15, while
the other may involve its functions in promoting respiratory growth, a phenotype also intri-
cately regulated by Mck1 and Rim15. It will be interesting to clarify how RAS2 promotes respi-
ration and to understand how Mck1 and Rim15 contribute to this metabolic reprogramming.

Discussion
There has been some debate over whether exit from the cell cycle is a prerequisite for entry into
quiescence. Using density gradients, a subset of SP cells, termed Q cells, have been purified and
this population is uniformly arrested at G1 and displays high thermotolerance and longevity
[45–46], suggesting that exit from mitosis is required for the establishment of the quiescent
state. Laporte et al. [47] have reported that yeast cells can enter quiescence from all cell cycle
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phases and quiescence entry and exit primarily depend on the cells’metabolic status, indicating
that quiescence establishment can be uncoupled from the cell cycle. The key to this debate is
whether the quiescence ‘programme’ operates independently of the cell cycle. Here, we have
revealed that a network composed of Mck1, Rim15 and their downstream transcription factors,
is activated to drive both cell cycle progression and the acquisition of a variety of G0-features
during the transition into quiescence (Fig 9). Our data indicate that quiescence entry, including
cell size homeostasis and cell cycle exit, is coordinately regulated in response to nutrient starva-
tion (Fig 9). The ability to exit from quiescence (Fig 7B and 7C) or to survive during the sta-
tionary phase (Fig 7A and 7D), however, seem to be highly correlated with the amount of
storage carbohydrates rather than the cell cycle status (S3 Fig), supporting the contention that
signaling to reprogram metabolic status is the primary determinant of quiescence establish-
ment and exit [38].

Previous studies have revealed that the function of Rim15 is negatively regulated by PKA
and its nuclear localisation antagonised by TORC1 [16,40,48]. Our epistasis experiments place
Mck1 downstream of Ras2 to coordinate the transition into SP (Fig 8). Mck1 has been shown
to phosphorylate Bcy1 to inhibit PKA activity under heat stress [49]. Mck1 was also postulated

Fig 9. A model showing that transition-phase cell cycle, cell size and the acquisition of quiescence-
related characteristics are coordinated by Mck1 and Rim15. Arrows indicate activation and bars denote
inhibition. Dashed line means suggested interaction. Blue squares indicate chromosomal DNA.

doi:10.1371/journal.pgen.1005282.g009
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to inhibit the activity of Tpk1 but without phosphorylating it [50]. These observations suggest
that Mck1 may act at the level of PKA. Overexpression of RIM15 did not suppress the defects
displayed by themck1Δmutants (Fig 3) and Mck1 was shown to act largely in parallel to
Rim15 to activate the expression of a variety of G0-related features (Fig 2). Therefore, it is
unlikely that RIM15 functions in a linear pathway downstream ofMCK1. It is more likely that
Mck1 also acts downstream of the Ras/cAMP pathway to regulate the transition into SP (Fig
9). Whether there is a feedback loop fromMck1 to inhibit PKA and howMck1 is negatively
regulated by PKA remains to be clarified. More recently, Mck1 was shown to inhibit ribosome
and tRNA synthesis in glucose-starved or TORC1-inhibited cells [51]. Mck1-mediated phos-
phorylation of Elo2, a fatty acid elongase involved in sphingolipid biosynthesis, is also inhibited
by TORC1 to regulate very long chain fatty acid synthesis [52]. Mammalian GSK-3 is a sub-
strate of several kinases, including S6K1, a downstream target of TORC1 which phosphorylates
GSK-3 to inhibit its kinase activity [53]. It is therefore possible that Mck1 is also regulated by
the TOR pathway (Fig 9). Whether the Sch9 kinase, the yeast homologue of S6K1, phosphory-
lates Mck1 directly to inhibit its activity remains to be decided.

Deletion of RAS2 leads to hyperaccumulation of glycogen [39,54]. A biochemical study
attributed the hyperaccumulation of glycogen in the ras2Δmutants to the glycogen synthase
activation state which rises continuously and reaches its peak before the diauxic shift, even
though the glycogen phosphorylase activity is up to 40 times higher in the mutant than in the
WT strain [55]. Whether the activation state of glycogen synthase in the ras2Δmutants is
enhanced due to defective respiration remains to be decided. Respiratory defects shown by the
ras2Δmutants are distinct from those displayed by mitochondrial respiratory mutants. In the
latter mutant cells, both glycogen stores and the glycogen synthase activity are reduced [56–
57]. Further kinetic and biochemical studies should provide clues as to how Ras2 interacts with
Rim15 and Mck1 to regulate carbon metabolic switch and stress resistance.

We have revealed that Mck1 functions to promote cell separation during the post-diauxic
shift phase (Fig 6C and 6D). The role of Mck1 in cell cycle control has been reported previously
[58–59]. During the transition between G2/M phases, the Cdk1/Cdc28-Clb activity is abruptly
raised to initiate mitosis. Decrease of this high Cdk1 activity is necessary to exit from the cell
cycle at the end of mitosis. Mck1 is proposed to inhibit Cdk1-Clb activity after nuclear division
to promote exit from mitosis via its interaction with, and phosphorylation of, Clb2 and Mih1
[58]. A delay in mitotic exit has been observed in exponentially growingmck1Δ cells [58]. At
the diauxic shift (compare Fig 4C and 4A, 12h), 2C cells were accumulated to a substantial
level in themck1Δ culture as compared to those in the WT population. However, after the dia-
uxic shift, the percentage of S/G2/M cells in themck1Δ culture was actually similar to or less
than that of the same cells in the WT culture (Fig 4C and 4A). In contrast, the>2C cells with
two nuclear DNA-containing buds were only accumulated after glucose exhaustion. These
observations indicate that the kinases may play distinct roles in cell cycle control under differ-
ent nutrient conditions. Recently, Rim15 was shown to promote timely entry into mitosis
under temperature stress [60]. Homologs of Rim15, named Greatwall kinases, were demon-
strated to regulate entry into mitosis in Xenopus egg extracts [61–62] and in Drosophila [63–
64]. However, it remains to be decided whether the significant accumulation of 2C cells at the
diauxic shift in the rim15Δ andmck1Δ culture (Fig 4B and 4C) is due to defects respectively in
mitosis entry and exit.

Cell size homeostasis in budding yeast is controlled at the G1/S boundary called START, pri-
marily by preventing cell division until a critical cell size is attained [65–66]. Under poor
growth conditions [67–69] or in the post-diauxic shift phase [31], cell divisions are highly
asymmetric, producing very small daughter cells (Fig 5E). We have shown that Mck1 and
Rim15 modulate the size of all the cell types, especially the G1 and S/G2/M populations (Fig
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6F), suggesting that the two kinases are essential for mitotic cells to grow to the required size
before commitment to the next cell cycle (Fig 9). The small-size phenotype ascribed to the
mck1Δmutants has previously been revealed by a genome-wide screen in stationary-phase cul-
tures [70]. In glucose-limited chemostat cultures of prototrophic strains, the cell cycle is spon-
taneously synchronised with periodic bursts of glycolysis and respiration [71–72]. Metabolic
and transcriptomic studies on these periodic cycles have revealed that storage carbohydrates
are accumulated during early G1, which are then liquidated at late G1 to drive metabolism and
gene expression important for growth and respiration [71–72]. Based on the link between
metabolism, cell growth, and the cell cycle, Futcher [73] hypothesised that the accumulation of
storage carbohydrates is an important determinant of START and cell size under nutrient-lim-
ited conditions. Furthermore, storage carbohydrates provide a ready source of energy when
division resumes and are crucial to long-term survival [74]. Our findings that cell size (Fig 6F),
resumption of growth from SP (Fig 7B) and chronological lifespan (Fig 7A and 7D) are closely
correlated with the amount of storage carbohydrates accumulated in the WT and rim15Δ/
mck1Δmutants (Fig 2D and 2E) seem to support Futcher’s hypothesis.

Among the three distinct cell types, Gd cells displayed less DNA fluorescence and smaller
cell size than 1C cells at the diauxic shift (Figs 4A, 6E and 6F). Small-size cells with less than 1C
DNA signals have previously been reported in the post-diauxic shift cell culture [31] or in the
diauxic shift culture overexpressing CLN3 [75]. Moreover, G1 and S/G2/M cells in themck1Δ
or rim15Δmutant population are smaller (Fig 6F) and they display lower DNA staining signals
than those in the wild-type population (day 3 samples in Fig 4). G1 cells in themck1Δrim15Δ
double mutant population have the same size distribution as Gd cells (Fig 6F) and these two
populations cannot be differentiated by FACS (Fig 4D). These data appear to support the con-
tention that cell size is an important factor influencing DNA staining or fluorescence detection
(although for unknown reasons). However, in WT cell culture, the cell sizes of Gd, G1 and S/
G2/M cells are similarly increased from day 1 to day 3 (Fig 5D), DNA staining signals produced
by Gd cells increased only marginally but those generated by G1 and S/G2/M cells were
enhanced significantly (Fig 4A), suggesting that other mechanisms may contribute to the sub-
stantial increase of DNA fluorescence signals in large mother or mother-to-be cells. qPCR
experiments confirmed that the ratio between mitochondrial and genomic DNA remained
constant at ~35 from 12h to day 3 in the wild-type cell culture (S5 Fig), thus ruling out the pos-
sibility that mitochondrial biogenesis leads to increase of DNA signals in large cells. Previous
studies have demonstrated that yeast cells duplicate their chromosomes (or segments of chro-
mosomes) to overcome proteotoxic stress [76], adverse environmental conditions [77], DNA
damage [78], and nutrient-limitation [79]. Similarly, E. coli cultures at stationary phase contain
cells with several chromosomes and those exclusively composed of cells with a single chromo-
some are never observed, regardless of the growth medium [80]. Whether genomic duplica-
tions occur in starved cells and how cell size affects DNA staining or fluorescence signal
detection needs to be further clarified. Future work should also aim to elucidate how Mck1 reg-
ulates cell size, cell separation and other characteristics associated with quiescent cells and how
the activity of Mck1 is regulated by the PKA and TOR pathways. This knowledge, when com-
bined with similar known interactions for Rim15 [19], should provide a mechanistic insight
into both quiescence entry and the maintenance of longevity.

Materials and Methods

Strains and plasmids
Strains carrying single-gene deletions were obtained directly from the BY4742 mutant library
(Open Biosystems). Strains carrying deletions in multiple genes were generated by combining
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mutations via either mating and dissection, or by PCR-mediated gene replacement using drug
resistance or nutritional markers [81–82]. Deletion mutants of genes coding for non-essential
signaling molecules used in this study are selected based on data in Lee et al. [51], and include
protein, lipid and metabolite kinases, phosphatases and their regulators. Expression reporter
cassettes were constructed in pRS426 in which the transcription of cds coding for red fluores-
cent protein (RFP, [83]) is controlled by the SSA3 promoter. Similarly, the cds encoding Venus
fluorescent protein (VFP, [84]) was fused with that ofHSP12 and expressed from theHSP12
promoter. RIM15 andMCK1 under the control of their endogenous promoters were cloned
into pRS425 for overexpression studies. The coding sequence ofMCK1 was also inserted into
pYES2 vector downstream of the GAL1 promoter.

Fluorescence detection and quantification
For quantitative assays of pSSA3-RFP and pHSP12-HSP12-VFP levels in liquid cultures,
freshly-grown overnight cultures were inoculated (5% v/v) into SMMmedium containing 0.6%
glucose which had been dispensed into 96-well microtiter plate. Cell density (OD595nm) and
fluorescence intensities were simultaneously monitored in triplicate using a plate reader (BMG
Biotech). RFP is excited at 580/±10nm and emits at 610/±10nm, while VFP is excited at 500/
±10nm and emits at 540/±10nm. MG132 (a proteasome inhibitor) was added into the growing
cell cultures at the early-to-mid exponential phase. The working concentration was 12.5μM for
MG132 (50mM stock solution in DMSO or absolute ethanol). Medium-only blanks and WT
cells bearing the same constructs were included for each run as negative and positive controls,
respectively. After background subtraction, RFP and VFP fluorescence intensities were normal-
ised to cell density. The mean and standard deviation were calculated at each time point; for sim-
plicity, standard errors at regular intervals only are plotted with the means in all Figures.

Determination of storage carbohydrates
The concentrations of glycogen and trehalose (μg glucose per mg of wet cells) was determined
following the procedures described by Parrou and Francois [85]. Briefly, cells (~30mg wet
weight from 1ml of culture grown in YPD) were treated with 250μl of 0.25M Na2CO3 at 95°C
for 4 hours, neutralised with 0.15ml of 1M acetic acid and 0.6ml of 0.2M Na-Acetate buffer
(pH = 5.2). Half of the culture was treated with trehalase (0.025u, Sigma) and incubated at
37°C overnight with shaking. The other half was treated with amyloglucosidase (0.6u, Roche)
and incubated at 57°C overnight with shaking. The amount of glucose liberated into the super-
natant was determined using a glucose assay kit (Sigma).

Phenotypic assays
Stress resistance conferred by cells grown to the transition phases (1 and 3 days) was determined
according toWei et al. [11]. Yeast cells were subjected to treatment at 55°C for 5 or 10 minutes,
serially diluted and spotted onto YPD agar to determine their resistance to heat shock. Similarly,
cells were directly spotted onto YPD agar containing 2.5, 5 or 7.5mMH2O2 to assay their resistance
to oxidative stress. Chronological life span (CLS) of WT andmutant cells was measured for 21 days
by counting colony-forming units (CFUs) on YPD agar plates after serial dilutions. CLS was deter-
mined every three days by normalising CFUs of stationary-phase cells to that produced by a day 0
culture (after 3 days of growth in YPD). Cell viability at day 12 (day 15 in SP) was also measured by
FACS analysis, essentially following the protocol described by Ocampo and Barrientos [86]. Instead
of using propidium iodide, 2μMof Sytox Green was used to stain the cells. Excitation was per-
formed using a laser at 488nm and emission detected with a standard 530/30 band pass filter.
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Analysis of cell size, cell cycle, budding index and presence of nuclear
DNA in buds
SP cells were serially diluted and spread on YPD plates. Cell colonies grown at 30°C for 36–48
hours were imaged and colony size analysed with Cell Profiler (http://www.cellprofiler.org/)
using the modified pipeline described by Vokes and Carpenter [87]. Cell cycle status was deter-
mined according to Haase and Reed [88] using Sytox Green to stain DNA in fixed cells. Samples
were sonicated at low power (2 min) and analysed using a cytometer (LSRFortessa, Becton Dick-
inson). Data were processed using FlowJo software (www.flowjo.com). Images of cells were taken
with a microscope (Olympus BX51) and the objective lenses (Plan N 10×/0.25), captured using
QICAM (Q 24720) and Qcapture Pro 6 as the acquisition software. The percentage of budded
cells was determined by counting from photographs of these images using ImageJ softwaere
(http://imagej.nih.gov/ij/). To decide whether nuclear DNA was present in buds, fluorescent
images of cells stained with Sytox green were captured using UPlanSApo (60×/1.35) as the object
lenses. These images were exported and processed in Adobe Photoshop CS4.

Miscellaneous
The G1 and Gd cells were sorted from theWT culture (treated and stained with Sytox Green)
using a Biorad S3 sorter. Sorted cells were collected and resuspended in 50mMTris buffer (pH
7.5) and stained with 0.1mg/ml of calcofluor white for 20min at 30°C. Stained cell were washed
twice with buffer before imaging. Cells subjected to glucan staining were fixed with 70% ethanol
for one hour, washed with PBS buffer twice, and stained with 5mg/ml of Aniline Blue for 20min.
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