
Vangl2-Regulated Polarisation of Second Heart Field-
Derived Cells Is Required for Outflow Tract Lengthening
during Cardiac Development
Simon A. Ramsbottom1., Vipul Sharma1., Hong Jun Rhee1, Lorraine Eley1, Helen M. Phillips1,

Hannah F. Rigby1, Charlotte Dean2,3, Bill Chaudhry1, Deborah J. Henderson1*

1 Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom, 2 Leukocyte Biology, National Heart and Lung Institute,

Imperial College London, London, United Kingdom, 3 Mammalian Genetics Unit, MRC Harwell, Oxfordshire, United Kingdom

Abstract

Planar cell polarity (PCP) is the mechanism by which cells orient themselves in the plane of an epithelium or during directed
cell migration, and is regulated by a highly conserved signalling pathway. Mutations in the PCP gene Vangl2, as well as in
other key components of the pathway, cause a spectrum of cardiac outflow tract defects. However, it is unclear why cells
within the mesodermal heart tissue require PCP signalling. Using a new conditionally floxed allele we show that Vangl2 is
required solely within the second heart field (SHF) to direct normal outflow tract lengthening, a process that is required for
septation and normal alignment of the aorta and pulmonary trunk with the ventricular chambers. Analysis of a range of
markers of polarised epithelial tissues showed that in the normal heart, undifferentiated SHF cells move from the dorsal
pericardial wall into the distal outflow tract where they acquire an epithelial phenotype, before moving proximally where
they differentiate into cardiomyocytes. Thus there is a transition zone in the distal outflow tract where SHF cells become
more polarised, turn off progenitor markers and start to differentiate to cardiomyocytes. Membrane-bound Vangl2 marks
the proximal extent of this transition zone and in the absence of Vangl2, the SHF-derived cells are abnormally polarised and
disorganised. The consequent thickening, rather than lengthening, of the outflow wall leads to a shortened outflow tract.
Premature down regulation of the SHF-progenitor marker Isl1 in the mutants, and accompanied premature differentiation
to cardiomyocytes, suggests that the organisation of the cells within the transition zone is important for maintaining the
undifferentiated phenotype. Thus, Vangl2-regulated polarisation and subsequent acquisition of an epithelial phenotype is
essential to lengthen the tubular outflow vessel, a process that is essential for on-going cardiac morphogenesis.
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Introduction

Malformations affecting the outflow of the heart are a major

cause of morbidity and mortality in childhood. While many of

these malformations occur sporadically, studies of families with

congenital heart defects, alongside animal studies, have revealed

that phenotypically discrete heart malformations can have diverse

causes. These can involve disruption of a number of different

genes, embryonic lineages or developmental processes. Further-

more, dissimilar malformations, including double outlet right

ventricle, common arterial trunk, and tetralogy of Fallot, may

appear in offspring sharing the same genetic defect and can

therefore be considered within a spectrum of malformation with

similar underlying causes [1]. Clarifying the fundamental process-

es that underpin cardiovascular development is essential to

understand this complexity.

The primitive heart tube is derived from the cardiac crescent, or

first heart field, at embryonic day (E) 8.5 of mouse development.

Subsequently, the second heart field (SHF), which lies dorso-

anteriorly to the primary cardiac crescent, adds cells to both the

venous (inflow) and arterial (outflow) poles to lengthen the

primitive heart tube [2], [3], [4]. The outflow tract develops as

a bi-layered tube composed of an outer layer of myocardium, with

an inner endocardial lining, both derived from the SHF [5]. This

is connected proximally to the common ventricle and to the

developing pharyngeal arch arteries at its distal end. Studies in

chicken have shown that there is a focus of proliferative cells in the

dorsal pericardial wall that act as a source of cells for both poles of

the heart [6]. Moreover, these studies support the idea that the

cells move into the outflow as an epithelial sheet, rather than as

individually migrating cells. Although the precise morphogenetic

mechanisms underpinning outflow development are still being

elucidated, the targeted disruption of a number of genes within the

SHF, including Isl1, Fgf8, Tbx1, and Tbx20, give rise to outflow

tract malformations in mice (reviewed in [7]). Furthermore,

mutations in TBX1 [8] and common variants in ISL1 [9] have
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been found in human patients with outflow tract malformations,

indicating a developmentally conserved role for the SHF during

cardiac development. Detailed studies have shown that the

transcriptional network involving Tbx1 and Isl1 is required to

maintain SHF cells in a proliferative, progenitor-like state before

they are added to the outflow tract [10]; in their absence the

outflow tract is shortened. Following outflow tract septation, this

results in mal-alignment of the aorta and pulmonary trunk with

the ventricular chambers [5], [11]. Despite insight into the

transcriptional network that regulates the maintenance of SHF

progenitors before they reach the poles of the heart, there is

limited information about the characteristics and behaviour of the

cells as they add to the outflow tract.

Endocardial cushions form along the length of the developing

outflow tract and by way of complex processes of cell migration,

growth and remodelling, result in the separation of the initially

single vessel into the aortic and pulmonary trunks (reviewed in

[12]). Neural crest cells (NCC), originating in the cranial neural

tube, migrate long distances into the pharyngeal arches and

endocardial cushions and are involved in septation and alignment

of the outflow vessels [13], [14], [15]. The processes regulating

NCC migration have been studied in some detail, and at least in

frogs and zebrafish, contact inhibition of locomotion, regulated at

least in part by the planar cell polarity signalling pathway (see

below) is implicated [16], [17]. Thus, a variety of cell types and

complex morphological processes contribute to the developing

outflow tract.

The planar cell polarity (PCP) pathway is a non-canonical Wnt

pathway, which acts to regulate cell polarity within the plane of an

epithelium. Studies in Drosophila wing, eye and abdomen have

shown that polarity between adjacent cells is co-ordinated by the

asymmetrical localisation of core PCP factors. Vangl2 (Strabis-

mus), Flamingo and Prickle accumulate proximally in polarised

cells, while Dishevelled, Frizzled, Flamingo, and Diversin (Diego)

accumulate distally [18]. PCP signalling has also been implicated

in the regulation of apico-basal polarity, and directional cell

migration [19], [20], [21]. Outflow tract malformations, including

septation defects, are common in mice following the disruption of

PCP genes (reviewed in [22]), although the lineage requirement

for PCP signalling in heart development remains unclear. Loop-
tail (Lp) mice carry a mutation in the Vangl2 gene, encoding a key

component of the PCP pathway. Lp/Lp mice display a number of

malformations associated with disrupted PCP signalling, including

misorientation of stereocilia in the cochlea and utricle [23], [24]

and craniorachischisis [25]. We have previously shown that Lp/Lp
embryos have a spectrum of cardiac defects that affect the outflow

region of the heart [26], including double outlet right ventricle,

common arterial trunk, abnormal patterning of the pharyngeal

arches and ventricular septal defects. The mutant embryos also

have abnormalities in the ventricular wall that include the

coronary arteries [27]. Thus, the spectrum of defects seen in Lp/
Lp mice could result from disruption of several cell types. Here we

investigate the role of Vangl2 during outflow tract development

using a novel tissue-specific knockout of the Vangl2 gene. We

highlight a role for Vangl2 specifically within the SHF and show

that Vangl2 is essential for forming the epithelial distal component

of the elongating outflow vessel.

Results

Spectrum of outflow abnormalities in Lp mice
We have shown previously that Lp/Lp embryos present a

number of cardiac anomalies [26]. To begin to characterise early

heart formation in these mutants and as a prelude to lineage-based

analyses, cardiac-specific markers were analysed by in situ
hybridization, in order to determine whether the chambers

formed properly. The expression patterns of the chamber markers

Mlc2a, Mlc2v and Nppa, and outflow markers including Tbx20,

were examined in embryos from Lp litters at E10.5. Whilst none of

these markers showed reproducible expression differences between

control and Lp/Lp embryos (n = 2–3 for each gene examined),

aberrant heart looping could clearly be seen in the latter; the

outflow tract was shorter and the right ventricle was hypoplastic,

although to a varying extent, in all Lp/Lp when compared with

controls (.50 embryos examined in total; Fig. 1 A,B, S1 Fig.).

Transverse sections of Lp/Lp hearts at E14.5 revealed double

outlet right ventricle (Fig. 1 C,D) as previously described [26]. To

begin to establish the cell type that requires Vangl2 signalling for

outflow tract development, we first crossed the Lp mice with the

Wnt1-Cre line. However, no defects in NCC migration were

observed in Lp/Lp embryos from E10.5, with the distribution of

Wnt1-Cre-positive cells indistinguishable from that of control

littermates (Fig. 1 E–H ).

Disorganised movement of Isl1-positive cells into the
outflow tract in Lp/Lp

Isl1 is expressed by all SHF progenitor cells and thus can be

used for lineage tracing of the SHF [5]. We therefore asked

whether Isl1-Cre-expressing SHF derivatives contribute normally

to the heart in Lp/Lp embryos. Comparison with stage-matched

controls revealed no abnormalities in the overall distribution of

SHF-derivatives in the pharyngeal and cardiac regions of the Lp/
Lp embryos (Fig. 1 I–L). As development progresses, the

continued expression of Isl1 protein is confined to non-differen-

tiated SHF progenitors; it is down-regulated as they differentiate

[5]. At E9.5, Isl1-expressing cells localised to the mesenchyme of

the dorsal wall of the aortic sac and the distal outflow tract

(Fig. 1M). Whilst Isl1 staining was broadly similar between wild

type and Lp/Lp littermates, Isl1-expressing cells appeared disor-

ganised in the distal outflow tract in the mutant embryos (Fig. 1

compare N9 with M9). This subtle anomaly was highly reproduc-

Author Summary

Congenital heart defects are common, affecting almost 1%
of all live births. Many of these affect the outflow region,
where the aorta and pulmonary trunk connect with the
main ventricular chambers. Congenital heart defects arise
from disruption of normal developmental processes and
can be modelled in mice. Thus, studying normal develop-
ment, together with mouse mutants that develop heart
malformations, should shed light on why these common
anomalies arise. We have studied cardiac development in a
mouse mutant for the Vangl2 gene, a key component of
the planar cell polarity (PCP) pathway. This pathway
controls the orientations of cells in epithelia and during
directional cell migration. Here, we show that PCP
signalling is required by cells derived from the second
heart field, which forms the outflow tract walls. We show
that in the absence of Vangl2, the cells within the distal
outflow tract walls are non-polarised and disorganised. As
a consequence the outflow tract is shortened and does not
align properly with the ventricles. Thus, we show why
disruption of a key PCP gene leads to outflow tract
malformations. This is important for understanding heart
development, but also more generally for understanding
how PCP signalling regulates growth of tubular structures.
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ible (n = 10). Together, these data suggested that there could be an

abnormality in SHF-derived cells in the distal outflow tract.

Global loss of Vangl2 using Vangl2flox mice recapitulates
the Lp/Lp phenotype

The gross morphological defects, including craniorachischisis

and axial rotation defects, together with the loss of Vangl2 in all

body cells, limit the use of Lp for studying the causes of the cardiac

malformations. To clarify the role that Vangl2 plays during heart

morphogenesis, we produced a floxed allele of Vangl2, in which

exon 4, encoding the trans-membrane domains, is flanked by loxP
sites (Fig. 2A). A neomycin selection cassette, flanked by FRT sites,

was placed downstream of exon 4. Vangl2neo/neo mice, which

retain the neomycin selection cassette within the construct, were

hypomorphic for Vangl2, with 2/3 displaying craniorachischisis

and 1/3 spina bifida only (S2 A–H Fig.). The neoR cassette was

subsequently removed by crossing the Vangl2neo mice with FLPe

mice, to give Vangl2flox mice. Recombination of the resulting

construct following the expression of Cre is predicted to produce a

premature stop codon that gives rise to a small 8 KDa protein,

which lacks the four trans-membrane domains and C-terminal

PDZ-binding domain required for interaction of Vangl2 with

other proteins [28], [29].

Vangl2flox mice were crossed with Sox2-Cre and PGK-Cre mice

to produce embryos containing the truncated Vangl2 construct in

all cells (Fig. 2 B–K). Inter-crossing Vanglflox/+; Sox2-Cre or

Vangl2flox/+; PGK-Cre mice with Lp/+ mice generated Vangl2flox/

Lp; Sox2-Cre and Vangl2flox/Lp; PGK-Cre embryos that were

indistinguishable from stage-matched Lp/Lp embryos, showing

craniorachischisis and heart malformations (n = 4; S2 I–P Fig.).

Thus, Lp and the Vangl2 deletion allele failed to complement.

We next asked whether global knockout of Vangl2 with Sox2-
Cre recapitulated the Lp/Lp phenotype (Fig. 3 A–H). Indeed,

Vangl2flox/flox; Sox2-Cre embryos had a shortened body axis and

Fig. 1. Lp mice display a spectrum of outflow tract abnormalities. A,B) In situ hybridisation on E10.5 Lp/+ and Lp/Lp embryos reveals normal
expression of Tbx20 in the mutant embryo, but illustrates the abnormal heart loop (the outline of the outflow tract and ventricular chambers is
indicated by the dotted lines). C,D) H&E sections of E14.5 Lp/+ and Lp/Lp embryos show the double outlet right ventricle in the mutant embryo (the
arrows indicate the communication between and the aorta and the ventricle). E–H) b-gal staining (blue) of wholemount stained Lp/+ and Lp/Lp E10.5
embryos shows that NCC migration (labelled by Wnt1-Cre based lineage tracing) appears normal in the mutants. Transverse sections (G,H) show that
although the OFT is reduced in length, there is normal migration of NCC into the outflow vessel (arrow). The bars in G,H indicate the characteristic
shortened outflow tract seen in the mutant. I–L) b-gal staining of wholemount stained Lp/+ and Lp/Lp E9.5 embryos shows that the SHF, labelled by
Isl1-Cre based lineage tracing, appears normal in the mutants, however the cells appear disorganised (arrows). M,N) Isl1 antibody labels SHF cells in
the distal outflow tract (brown staining – arrows). These cells appear disorganised in the Lp/Lp embryo at E9.5 (N9 arrow, compare to M9). Ao – aorta,
LV - left ventricle, OFT - outflow tract, RV - right ventricle.
doi:10.1371/journal.pgen.1004871.g001

Planar Cell Polarity and Outflow Malformations
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Fig. 2. Targeting strategy and confirmation of knockdown. A) Cartoon indicating the targeting strategy. Disruption of the Vangl2 gene was
achieved by modification of the wild type allele to insert LoxP sites flanking exon 4. Expression of Cre recombinase results in the excision of exon 4
and subsequent loss of the transmembrane domains. B) RT-PCR on RNA isolated from whole E10.5 Vangl2flox/flox; Sox2-Cre embryos showed that there
was no Vangl2 transcript produced in the mutants, although this was abundant in controls. Actin was used as a loading control. C) Western blotting
using protein isolated from whole E15.5 Vangl2flox/flox; Sox2-Cre embryos showed that there was a major reduction in Vangl2 protein in the mutant
embryos, although the presence of a faint band suggested that the Cre was not 100% efficient at later stages. Gapdh was used as a loading control.
D–K) Immunohistochemistry for Sox2-Cre (using eYFP as a reporter for Cre expression) showed that recombination was variable across the embryo in
the mutants (E,I). However, immuno-staining for Vangl2 showed that the protein was lost from the outflow tract (J, compare to F; in F strong staining
is apparent within the OFT and neural tube - arrows). Also see S2 Fig. OFT - outflow tract, Vangl2f – Vangl2flox. Scale bar = 200 mm.
doi:10.1371/journal.pgen.1004871.g002

Fig. 3. Global loss of Vangl2 recapitulates the Lp/Lp phenotype. A–D) At E14.5, Lp/Lp embryos exhibit gross abnormalities in body patterning
including the severe neural tube defect craniorachischisis (arrows in C). Sectioning of these embryos revealed double outlet right ventricle (the
arrows show the communication between the ventricle and the aorta). E–H) The phenotype of the Vangl2flox/flox; Sox2-Cre embryos (G,H) was
indistinguishable from Lp/Lp (C,D). The Vangl2f/+; Sox2-Cre however did not have a looped tail, whereas this can be seen in Lp/+ embryos (compare E
with A white arrow). I) Breakdown of the cardiac defects seen in the Vangl2flox/flox; Sox2-Cre embryos at E14.5. Also see S3 Fig. Ao – aorta, LV - left
ventricle, RV - right ventricle, Vangl2f – Vangl2flox. Scale bar = 2 mm (white), 500 mm (black).
doi:10.1371/journal.pgen.1004871.g003
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craniorachischisis (Fig. 3 compare G with C). Sectioning at E14.5

confirmed that the Vangl2flox/flox; Sox2-Cre embryos had heart

malformations, including double outlet right ventricle, ventricular

septal defects and pharyngeal arch remodelling defects, as are seen

in Lp/Lp embryos (Fig. 3H and S3 A,B Fig. compare with Fig. 3D

and [26]). Similar results were obtained using the PGK-Cre line in

place of Sox2-Cre (S3 E–H Fig.). Thus, our novel Vangl2flox allele,

when knocked out globally, recapitulated the phenotypes observed

in Lp/Lp mutants and consequently was a potentially useful tool

for genetically dissecting the Lp/Lp phenotype.

Specific deletion of Vangl2 within the SHF recapitulates
the Lp/Lp outflow phenotype

In order to determine the tissue-specific requirement for Vangl2
during heart development, we used a number of lineage-specific

Cre driver lines to delete Vangl2 in a targeted manner. Although

our studies in Lp/Lp had suggested that NCC deficiency was

unlikely to be the cause of the outflow defects, we could not rule

out more subtle defects in their function. Therefore, to exclude the

possibility that Vangl2 is required in NCC for outflow tract

development, we inter-crossed Vangl2flox mice with the Wnt1-Cre
line. Vangl2flox/flox; Wnt1-Cre embryos were indistinguishable

from control littermates with both a normal external appearance

and normal hearts at E14.5 (n = 6; Fig. 4 A,B,E,F). Moreover,

Vangl2flox/flox; Wnt1-Cre animals (n = 3) were viable and indistin-

guishable from their control littermates at 28 days after birth.

Indeed, close analysis of the expression pattern of Wnt1-Cre
compared with that of Vangl2 suggested that Vangl2 is not

expressed by NCC, and that there was no change in the expression

pattern of Vangl2 in the Vangl2flox/flox; Wnt1-Cre embryos at least

at the stages when NCC are migrating into the heart (S4 Fig.).

Thus, Vangl2 does not appear to be required by NCC for normal

development of the outflow tract of the heart.

In order to test directly our hypothesis that Vangl2 is required in

the SHF, we inter-crossed the Vangl2flox mice with Isl1-Cre and

confirmed loss of Vangl2 in the outflow tract by immunofluores-

cence at E9.5 (S5 A–I Fig.). In contrast, Vangl2 expression was

maintained outside the Isl1-Cre expression domain (S5I Fig.).

While externally, the E14.5 Vangl2flox/flox; Isl1-Cre embryos were

indistinguishable from their control littermates (Fig. 4 C,G),

histological sectioning revealed double outlet right ventricle in

14/15 of the mutant embryos. Moreover, they all had a sub-aortic

ventricular septal defect (Fig. 4 D,H and S5 N–S Fig.). An

abnormality in the myocardialisation of the outflow cushions was

also observed in Vangl2flox/flox; Isl1-Cre embryos (S6 Fig.), as was

seen in Lp/Lp [30]. However, there were no abnormalities in

pharyngeal arch patterning or the ventricular wall (S5 Fig.).

Subsequent analysis at earlier stages (E9.5–E10.5) showed that the

embryos had a markedly shortened outflow tract (S5 J–M Fig.).

These data exclude the possibility that the outflow tract anomalies

are secondary to the gross abnormalities in body patterning seen in

Lp/Lp. They do, however, support the idea that Vangl2 plays a

specific role in the SHF.

We asked whether the role of Vangl2 is restricted to the SHF or

might play a more general role in cardiac progenitor populations.

To test this idea, we crossed the Vangl2flox mice with Nkx2.5-Cre
mice; Nkx2.5-Cre is expressed throughout the primitive heart tube

but also in the cells derived from the SHF [31,32]. Surprisingly,

analysis of Vangl2flox/flox; Nkx2.5-Cre embryos at E15.5 revealed

no obvious structural cardiovascular abnormalities (n = 4; Fig. 4

I,J,M,N). Our analysis of the Nkx2.5-Cre expression pattern

largely confirmed previous reports, although we observed patchy

expression in the outflow tract, compared with much broader and

higher level expression in the left ventricle and atria (S7 Fig.).

Moreover, Vangl2 was maintained in the distal outflow of

Vangl2flox/flox; Nkx2.5-Cre embryos at E9.0 (S7 Fig.). This

suggests that Nkx2.5-Cre, at least in our hands, may not be

driving high enough levels of Cre to fully delete Vangl2 in the

outflow tract.

Finally, as we had previously shown abnormalities in the

outflow tract myocardium in Lp mutants [30], and because Isl1-
Cre also drives expression in endocardial cells in the outflow tract

(Fig. 5B), we wanted to establish whether Vangl2 is required in

differentiated cardiomyocytes or the endocardium. To investigate

this, we inter-crossed the Vangl2flox mice with Mlc2v-Cre mice, to

drive Cre in the outflow and ventricular myocardium. At E9.5–

E10.5, Mlc2v-Cre was not expressed in the outflow tract

myocardium although it was found in this tissue by E12.5 (S6

C,D Fig.). Deletion of Vangl2 in the Mlc2v-Cre expression

domain resulted in embryos with a normal outflow (n = 6;

Fig. 4 K,L,O,P). Thus, although Vangl2 expression is maintained

in the outflow myocardium at E12.5 (S6 E,F Fig.), this is not

required for outflow tract lengthening and alignment of the the

great arteries with the ventricles. Intercrossing of Vangl2flox mice

with Tie2-Cre mice, to selectively knock out Vangl2 in the

endocardium, also resulted in mice with normal outflow tract

development (S8 Fig.). Thus, these data support the idea that

Vangl2 is required in undifferentiated SHF cells, rather than

playing later roles in outflow tract remodelling.

Vangl2 demarks a transition zone in the distal outflow
tract

Having established that Vangl2 is required in undifferentiated

outflow tract precursors (expressing Isl1), derived from the SHF,

we next investigated its role in this population. Normally,

undifferentiated SHF cells move from the mesothelial dorsal

pericardial wall into the distal outflow tract where they begin to

differentiate into cardiomyocytes. Thus, we defined a transition

zone in the distal outflow tract where SHF-derived cells lose their

progenitor phenotype and differentiate (Fig. 5A). We hypothesised

that Vangl2 may be playing a key role in this region, regulating

this transition from the progenitor to differentiated phenotype. We

focussed our studies at E9.0–E9.5, as this is the period just before

(E9.0; approximately 17 somite pairs) and as the first abnormalities

in the outflow tract wall become apparent (at E9.5; approximately

23 somite pairs).

Vangl2 protein, shown by immunofluorescence, was present in

all the cells of the dorsal pericardial and distal outflow tract walls,

into the differentiated myocardium, and also in the endocardium

(Fig. 5 B–F). However, the spatial distribution of Vangl2 was not

uniform throughout this region at E9.0–E9.5. Within the dorsal

pericardial and the most distal outflow tract walls, Vangl2 was

enriched in the basal cell membrane, as shown by its colocalisation

with b-catenin (Fig. 5 B,C,E). Further proximally however,

Vangl2 was seen diffusely throughout the cytoplasm (Fig. 5

B,D,F). As mutations that lead to loss of membrane localisation

disrupt Vangl2 function and result in the Lp/Lp phenotype [33],

this suggests that Vangl2 is likely to be playing its major roles in

the dorsal pericardial wall or distal outflow tract.

To determine at which stage SHF cells change their expression

profile from that of a progenitor to a differentiated cardiomyocyte,

relative to the distribution of Vangl2, we analysed the expression

of cardiac troponin I, which is expressed in differentiated

cardiomyocytes (Fig. 5 G–J). At E9.0, cardiac troponin I

immuno-reactivity was found at low levels in the most distal

outflow tract wall, but became increasingly abundant proximally

as the cells differentiated into cardiomyocytes (Fig. 5I). At the

same stage, all cells in the dorsal pericardial wall and in the

Planar Cell Polarity and Outflow Malformations
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transition zone expressed Isl1 protein, localised within the nucleus.

However, nuclear-localised Isl1 was abruptly lost in more

proximal cells, where Vangl2 became cytoplasmic (Fig. 5 K–N).

Thus, whereas all three markers overlapped in the most distal

outflow tract, loss of membrane-associated Vangl2 corresponded

to the loss of nuclear Isl1, defining the proximal boundary of the

Fig. 4. SHF-specific loss of Vangl2 results in outflow tract defects. A,B,E,F) Targeted deletion of Vangl2 by Wnt1-Cre, in NCC, does not result
in neural tube (A,E) or outflow tract defects (B,F). C,D,G,H) In contrast, although there are no neural tube defects when Vangl2 is deleted in the Isl1-
Cre expressing SHF (G), the resultant embryos do have double outlet right ventricle (H – compare with D). I–P) No defects were seen when Vangl2
was deleted in either Nkx2.5-Cre expressing cardiac progenitors or Mlc2v-Cre expressing differentiated cardiomyocytes. In each case the arrows show
the communication between the ventricle and the aorta. All embryos are E14.5. Also see S4 Fig. Ao – aorta, LV - left ventricle, RV - right ventricle,
Vangl2f – Vangl2flox. Scale bar = 2 mm (white), 500 mm (black).
doi:10.1371/journal.pgen.1004871.g004

Planar Cell Polarity and Outflow Malformations
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Fig. 5. Vangl2 is expressed in the distal outflow region. A) Cartoon showing the region encompassing the dorsal pericardial wall and the distal
outflow tract, including the region we describe as the transition zone. B–F) Vangl2 protein (red), labelled by immunofluorescence, is expressed in the
distal outflow region (B), localising to the basal part of the membrane of the cells (as shown by co-localisation with b-catenin, a baso-lateral marker;
green) in the dorsal pericardial wall and transition zone (B,C,E), but is found diffusely in the cytoplasm more proximally (B,D,F). G–H) Cardiac troponin
I staining (red; labelling cardiomyocytes) is initially weak within the distal outflow but is upregulated more proximally (I). Vangl2 (green) and cardiac
troponin I are co-expressed in the transition zone (J - TZ and arrows) of the outflow tract with the membrane-localisation of Vangl2 gradually lost (H)
as cardiac troponin I staining becomes stronger. K–N) Vangl2 and Isl1 are also co-expressed in the cells of the transition zone (N - TZ and arrows),
with the loss of Vangl2 from the membrane proximally coinciding with the loss of nuclear Isl1 localisation (N - lower white arrowhead). All images
shown are of Vangl2f/+ embryos. A = Apical, B = Basal, D = distal, endo = endocardium, myo = myocardium, P = proximal, TZ = transition zone.
Scale bar = 25 mm.
doi:10.1371/journal.pgen.1004871.g005
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transition zone where the cells had become differentiated

cardiomyocytes.

Loss of Vangl2 disrupts cellular organisation and polarity
in the distal outflow tract

We next wanted to clarify how Vangl2, as a PCP protein that

would normally act within the plane of an epithelium, is

functioning in the distal outflow tract. We first investigated the

distribution of the adherens junction protein b-catenin, which

marks the baso-lateral compartment of epithelial cells, together

with the extracellular matrix protein laminin, which is found

associated with the basal lamina of epithelial cell layers. At E9.0,

the distal outflow wall appeared less organised in Vangl2flox/flox;
Isl1-Cre embryos than their control littermates, with reduced

staining of b-catenin and laminin (Fig. 6 A–H). This was before

outflow shortening was apparent in the mutant embryos. By E9.5,

whereas the transition zone had the phenotype of an organised

pseudo-stratified epithelium in the controls, the region was

markedly disorganised and was becoming thickened in the mutant

embryos (Fig. 6 P,R, compare with L,Q, and S5 K,M Fig). b-

catenin was lost from the lateral walls of cells of the transition zone

in the mutants (Fig. 6N, compare with J), and laminin was absent

in some areas of the mutant transition zone and was no longer

basally restricted in others (n = 3; Fig. 6P, compare with L). A

similar abnormality in the distribution of fibronectin was also

observed in the Vangl2flox/flox; Isl1-Cre embryos (S9 Fig.).

Interestingly, laminin was always basally distributed more

proximally in the Vangl2flox/flox; Isl1-Cre outflow tract, where

the wall is composed of differentiated cardiomyocytes (S9 Fig.).

These findings were highly reproducible. Thus, whereas the cells

Fig. 6. Disruption of epithelial organisation in the distal outflow tract of Vangl2flox/flox; Isl1-Cre embryos. A–H) At E9.0 in control embryos,
b-catenin (green; B,D) is localised to the basolateral domain of the cells in the transition zone of the distal outflow wall and laminin (red; C,D) is
becoming localised to the basement membrane underlying this. In Vangl2flox/flox; Isl1-Cre littermates, b-catenin (F,H) and laminin (G,H) are less
abundant and the tissue appears disorganised (n = 3). I–P) By E9.5, immunofluorescent staining for b-catenin is localised to the basolateral region of
cells in the control embryo and shows the pseudo-stratified epithelium of the transition zone (J,L). In contrast, although b-catenin expression is still
abundant in the transition zone of Vangl2flox/flox; Isl1-Cre embryos, the cells appear disorganised and it is difficult to determine its subcellular
distribution (N - arrows). Laminin is found basally to the cells of the transition zone in control embryos (K - arrows), but is lost in some places and
surrounds other cells within the transition zone of Vangl2flox/flox; Isl1-Cre embryos (O – arrows, n = 3). Note that whereas the distal outflow wall is 2-3
cell layers thick in the control embryo (L), in some places it is 4-5 cell layers thick in the mutant (P). Q–T) c-tubulin staining of MTOCs at E9.5 shows
that these are localised to the apical side of the cells in the distal outflow wall in control embryos (Q and rose plot S). In contrast, the position of the
MTOC is much more variable in Vangl2flox/flox; Isl1-Cre embryos (R and rose plot T), frequently localising to the basolateral side of the cell layer (n = 5)
Chi-square, p,0.001. Ap = Apical, Ba = Basal, Dis = distal, Prox = proximal, Vangl2f = Vangl2flox. Quantification of c-tubulin performed on 10
embryos (5 control, 5 mutant), with a total of 178 and 193 cells from control and mutant embryos respectively. Scale bar = 20 mm.
doi:10.1371/journal.pgen.1004871.g006
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of the transition zone in the control distal outflow tract had the

appearance of a pseudo-stratified epithelium and had polarised

expression of epithelial markers, the epithelium was disorganised

and thickened in the Vangl2flox/flox; Isl1-Cre embryos. Moreover,

polarised expression of markers was disrupted. In contrast,

comparable analyses of Vangl2flox/flox; Nkx2.5-Cre outflow tract

showed only a mild phenotype in the mutant embryos (S9 Fig.),

supporting the lack of structural outflow tract abnormalities in this

cross.

As asymmetrical cell division is regulated by Vangl2 in some

tissues [34] we asked whether disruption of this process might

account for the disorganised and thickened epithelium of the

transition zone in the mutant embryos. However, we found little or

no cell division in the distal outflow tract at E9.0–E9.5, as

suggested previously [6], indicating that this is unlikely to be the

mechanism underlying the disorganisation observed (S10 Fig.). In

order to investigate the possibility of disrupted polarity in more

detail, we immuno-stained the microtubule organising centre

(MTOC; recognised by c-tubulin) which is polarised in epithelial

cells and localised to the apical side of the cell in the transition

zone of control embryos (Fig. 6 Q,S). In contrast, this was much

more variable in the transition zone cells of Vangl2flox/flox; Isl1-Cre
embryos (Fig. 6 R,T), with MTOCs commonly found on the basal

side of the cell layer. Statistical analysis (Chi Square) showed this

difference was highly significant (p,0.001). This suggests that PCP

and/or apical-basal polarity is disrupted in the distal outflow wall

in the absence of Vangl2.

We studied the phenotype of the SHF-derived cells more closely

as they moved from the mesothelial dorsal pericardial wall into the

outflow tract, by looking at other markers associated with polarised

epithelia that are expressed in an apical-basal polsarised manner.

E-cadherin, an adherens junction-associated protein of epithelial

cells was expressed only at low levels in the dorsal pericardial wall,

while a related junctional protein, N-cadherin, was not detected in

this tissue (Fig. 7 A–D), supporting the idea that this is not a typical

epithelium. Within the pseudo-stratified epithelium of the distal

outflow tract however, both of these proteins were expressed in a

polarised manner, being enriched at the apical-basal boundary

(Fig. 7 E,G,L,M). This suggests that as cells move into the distal

outflow tract they take on a more overt epithelial phenotype. As in

control embryos, E-cadherin expression was up-regulated in the

distal outflow of Vangl2flox/flox; Isl1-Cre mutants at E9.0–E9.5, in

comparison to the dorsal pericardial wall. However, it was

mislocalised with staining found throughout the baso-lateral

compartment of the cells (Fig. 7 E,G,H,J and S11 Fig.). The

subcellular localisation of N-cadherin expression was also

perturbed in the distal outflow tract of Vangl2flox/flox; Isl1-Cre
embryos, with loss of enrichment at the apical-basal boundary

(Fig. 7 L,M,O,P).

We analysed other proteins known to be compartmentally

restricted in epithelial cells. Analysis of PKCf in the distal outflow

tract revealed that whilst the protein was markedly enriched in the

apical compartment of cells in the transition zone of control

embryos, this apical enrichment was lost in Vangl2flox/flox; Isl1-Cre
embryos (Fig. 7 F,G,I,J and S11 Fig.). Scrib has been implicated in

regulating epithelial cell adhesion and has been shown to

physically interact with Vangl2 in epithelial cells [35], although

it does not do so in the early myocardium [36]. Scrib was localised

to the baso-lateral compartment of cells within the distal outflow

tract wall in control embryos, but was enriched at the apical-basal

boundary. In Vangl2flox/flox; Isl1-Cre embryos, Scrib was no-

longer enriched at the apical-basal boundary (arrows in

Fig. 7 K,M,N,P). This abnormality was restricted to the distal

outflow tract, with normal Scrib expression seen in the dorsal

pericardial wall and pharyngeal endoderm although both of these

tissues also express Isl1-Cre (S11 Fig.), and in epidermis, which

does not express Isl1-Cre. Thus, deletion of Vangl2 from SHF cells

results in the disruption of both PCP and apical-basal polarisation

and loss of epithelial phenotype in the distal outflow tract wall.

Vangl2 retains SHF cells as undifferentiated progenitors
We lastly wanted to establish how the disruption of polarity and

loss of epithelial phenotype impacted on the fate of the cells as they

move through the distal outflow walls. We investigated whether

the expression of either cardiomyocyte differentiation markers or

Isl1 was altered in the distal outflow wall of Vangl2flox/flox; Isl1-Cre
mutants at E9.0–E10.5. At E9.0 we observed that cardiac troponin

I was expressed initially at very low levels within the distal outflow

wall of control embryos, becoming progressively more strongly

expressed proximally (as shown in Fig. 5). In contrast, high-level

expression appeared more distally in Vangl2flox/flox; Isl1-Cre
littermates (Fig. 8 A,D). Desmin, which is expressed at elevated

levels by cardiomyocytes, but is also found at lower levels in

smooth muscle cells at this stage, was also expressed at higher

levels more distally in the mutant embryos (Fig. 8 B,E). As

expected, we observed a similar disorganisation of Isl1-expressing

cells in the distal outflow of Vangl2flox/flox; Isl1-Cre as was

observed in Lp/Lp embryos (Fig. 8 C,F). However, it was striking

that nuclear Isl1 localisation was lost more distally in the distal

outflow wall of Vangl2flox/flox; Isl1-Cre than in control embryos.

Notably there was a significant amount of non-nuclear Isl1

observed in cells in control and mutant outflow walls (Fig. 8 C,F).

To confirm the findings of premature differentiation in the distal

outflow tract of Vangl2flox/flox; Isl1-Cre, we examined the

expression of other differentiation markers at E10.5. Similar

results to those observed for cardiac troponin I were found using

an antibody to myosin heavy chain (MF20; Fig. 8 H,J). Moreover,

when we examined the expression of aSMA, which at these stages

labels both smooth muscle cells and differentiating cardiomyo-

cytes, it was also expressed at high levels more distally in the

mutant embryos than in control littermates (Fig. 8 G,I). Thus,

Vangl2flox/flox; Isl1-Cre cells lose their progenitor phenotype and

differentiate earlier than those of control embryos. Together, our

data suggest that Vangl2 is required to establish the epithelial

phenotype of cells in the distal outflow tract wall and that this

epithelialisation is required to maintain SHF-derived cells in an

organised, polarised state which maximises outflow tract length-

ening. This allows normal alignment of the great arteries with the

ventricular chambers

Discussion

The spontaneously occurring Lp mutant has been used to study

the role of Vangl2 in cardiac development [26], [27], [30].

However, the gross morphological defects that are characteristic of

Lp/Lp, including craniorachischisis and incomplete axial rotation,

limit its use in dissecting out the role of Vangl2 during heart

morphogenesis. We originally suggested that the cardiac looping

defects observed in the Lp/Lp may be secondary to the severe

neural tube closure and axial turning defects [26]. Indeed, the

aortic arch abnormalities that are highly penetrant in Lp/Lp and in

the Vangl2flox/flox; Sox2-Cre and Vangl2flox/flox; PGK-Cre mutants

described here, may be secondary to these gross abnormalities in

body form, as they are only observed in the presence of

craniorachischisis. In contrast, we show that the outflow tract

anomalies are primary defects. The complexity added by the

presence of other embryonic defects, together with the contribu-

tions of a number of different cell populations to the developing
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outflow tract, makes analysis of a global loss of Vangl2 inadequate

for the purpose of establishing its precise role in heart develop-

ment. Here we have described the generation of a conditionally

targeted deletion of Vangl2, which when expressed globally

recapitulates the outflow anomalies observed in Lp/Lp. Using this

model, we have shown that the expression of Vangl2 in the Isl1-
Cre expressing SHF is essential for the normal development of the

outflow tract.

Our data suggests that it is the expression of Vangl2 in the

undifferentiated SHF (Isl1-Cre expressing) population of the distal

outflow tract that is critical for outflow tract development, as its

deletion in the Mlc2v-Cre-expressing outflow myocardium and

Tie2-Cre-expressing endothelium led to normal outflow tract

development. However, as well as finding outflow tract shortening

as early as E9.5, abnormalities in movement of muscle cells from

the outflow tract wall into the cushions (the process of

myocardialisation) was also found in the Vangl2flox/flox; Isl1-Cre
embryos at E13.5, as in Lp/Lp embryos [30], showing that the

outflow myocardium does not recover from its early abnormalities.

In the distal outflow tract wall, cells transition from an

undifferentiated form (expressing nuclear Isl1 protein) to differen-

tiated myocardium (with a consequent loss of nuclear Isl1 and

upregulation of striated muscle markers including myosin heavy

chain and cardiac troponin I). Intriguingly, Vangl2 is lost from the

cell membrane and is localised to the cytosol at the proximal

boundary of the transition zone, where the cells differentiate to

myocardium. Thus, this switch from membrane to cytoplasmic

Vangl2, together with the loss of nuclear Isl1, defines the proximal

boundary of the transition zone. There is good evidence to suggest

that Vangl2 is active when it is membrane-associated, as mutations

that block membrane-association block function [33]. Thus, we

suggest that it is the membrane-localisation of Vangl2 in the

transition zone that imparts planar polarity on the cells,

maintaining their epithelial phenotype. When this membrane-

association is lost, the cells lose their typical epithelial appearance

and differentiate. Although Vangl1, a close homologue of Vangl2
is expressed in the early embryo, its expression domain is more

restricted than that of Vangl2 [37],[38]. Vangl1 mutants do not

have an outflow tract phenotype [37]. Thus, it seems likely that

Vangl2 is the principal Vangl gene acting in the early heart. We

did not see an outflow tract phenotype when we inter-crossed the

Vangl2flox mice with Nkx2.5-Cre line. However, analysis of the

Nkx2.5-Cre expression domain showed that although it was

expressed early enough to delete Vangl2 in cardiomyocyte

progenitors [31], its expression was patchy in the distal outflow

in our hands, and Vangl2 expression was maintained in these cells.

Fig. 7. Loss of Vangl2 results in disrupted polarity in the distal outflow tract in Vangl2flox/flox; Isl1-Cre embryos. A) Cartoon
representation of a sagittal view of the heart at E9.5, showing both the outflow and inflow regions and the dorsal pericardial wall in between. B)
Vangl2 is found at the membrane of the distal outflow tract and dorsal pericardial wall, but is cytoplasmic in the myocardium of the heart tube
(arrows). C,D) E-cadherin and N-cadherin are both found in the distal outflow tract although only N-cadherin is found in the inflow region (C- lower
arrow). Neither are expressed at a high level in the dorsal pericardial wall although E-cadherin is expressed strongly in the columnar epithelium of the
pharyngeal endoderm (D - arrowheads). E–J) Within the transition zone of the distal outflow tract, E-cadherin is enriched apically (E,G – see arrows in
E); this enrichment is lost in the mutant embryos (H,J, n = 3). PKCf is apically restricted in control embryos (F,G – see arrows in G). This apical
restriction is lost in the Vangl2flox/flox; Isl1-Cre embryos (I,J, n = 3). K–P) Similar to E-cadherin, Scrib and N-cadherin are apically enriched in control
embryos (K-M - arrows). This enrichment is generally lost in the cells from the mutant embryos (N-P - arrowheads), although some can still be
observed (P – arrow, n = 3) Vangl2f = Vangl2flox. Scale bar = 100 mm (B-D), 50 mm (E–P).
doi:10.1371/journal.pgen.1004871.g007
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Thus, these data are consistent with the idea that Vangl2 is

required in undifferentiated cells, rather than differentiated

derivatives of the SHF.

During outflow tract elongation in chickens, cells move from a

proliferative pool within the dorsal pericardial wall into the distal

outflow not as individual cells, but as a cohesive sheet [6]. This is

similar to the movements of epithelial sheets in other organ

systems [39], [40]. Although this mechanism of addition of cells to

the outflow has not been confirmed in mammals, it seems likely

that an analogous process takes place. Once they reach the region

of the distal outflow, our data suggests the SHF-derived cells then

acquire a more epithelial phenotype (i.e. robust polarised

expression of E-cadherin) than they exhibited while they were in

the mesothelium of the dorsal pericardial wall. Within this newly

epithelialized tissue, Vangl2 signalling regulates the apical-basal

polarised expression of a range of markers of stratified epithelial

tissues, including Scrib and PKCf [41], [42]. We see markedly

abnormal distribution of these markers in the distal outflow tract

wall of Vangl2flox/flox; Isl1-Cre embryos, with a reduced apical

domain and expanded basolateral domain. Moreover, analysis of

the position of MTOCs in the cells of the distal outflow tract

suggests that planar polarisation of cells is also disturbed within

this tissue. Thus, both apical-basal and planar cell polarity appear

to be regulated by Vangl2 within the early outflow tract

(Fig. 8 K,L).

We propose that the polarisation of the cells within the distal

outflow tract and the consequent acquisition of epithelial

phenotype is linked to the elongation of the outflow vessel.

Specifically, we propose that the organisation of the cells into a

pseudo-stratified epithelium ensures that the outflow tract wall

lengthens rather than thickens. Epithelia are characterised by cells

with strong lateral attachments (including E-cadherin-containing

adherens junctions) that keep the cells in a sheet. Our data suggests

that Vangl2 plays a key role in regulating planar polarity in the

distal outflow wall, such that the cells are similarly oriented within

the plane of the epithelium. When Vangl2 is lost from these cells in

the distal outflow wall, cells are rotated relative to their

neighbours, resulting in mis-positioning of the junctional com-

plexes and disruption of the characteristic epithelial phenotype of

the tissue (see Fig. 8 K-M for simplified cartoon). Our observation

that Vangl2 also appears to be regulating the apical-basal

positioning of markers, may add to this phenotype by further

disrupting the positioning of cell junctions. Thus, Vangl2 appears

to be essential for forming/maintaining the sheet-like structure of

the cells that is necessary for epithelial tube formation. The

thickened, shortened outflow tract seen in the absence of Vangl2

in some ways resembles the consequences of disrupted PCP

signalling at gastrulation in vertebrate embryos, when convergence

and extension movements narrow and lengthen the developing

embryo (reviewed in [18]). Both processes likely involve junctional

remodelling [40], however, the similarities in final-phenotype may

be misleading as the SHF cells are added to the distal end of the

lengthening outflow tract, whereas convergence and extension

gastrulation movements occur intrinsically within a fixed pool of

cells. Indeed, the process we describe does not seen to be directly

analogous to any other mammalian organ system so far described.

However, there are similarities with the described roles for PCP

Fig. 8. Loss of Vangl2 results in loss of SHF progenitor
phenotype and premature differentiation in the distal outflow
tract of Vangl2flox/flox; Isl1-Cre embryos. A–F) At E9.0, cardiac
troponin I expression is low distally and increases proximally through
the outflow tract of control embryos (A). In contrast, high-level
expression is found more distally in Vangl2flox/flox; Isl1-Cre embryos (D,
n = 2). Desmin, which is expressed at high level in cardiomyocytes and
at lower level by smooth muscle cells (B) is also increased within the
distal outflow tract of Vangl2flox/flox; Isl1-Cre embryos (E, n = 3). Whereas
Isl1 is localised to the nucleus of control embryos throughout an
extended region of the distal outflow tract, defining the transition zone
(C - arrows), it is significantly reduced in the nuclei of cells in the distal
outflow of Vangl2flox/flox; Isl1-Cre embryos (F – arrows point to the
proximal extent of the staining, n = 3). G–J) Similar to E9.0, at E10.5,
both aSMA (G,I, n = 3) and MF20 (H,J; staining myosin heavy chain,
n = 3) are expressed more distally in the outflow tract of Vangl2flox/flox;
Isl1-Cre embryos than in stage-matched littermates. K,L) Cartoon
showing distribution of Vangl2 (bright green) at the boundary of the
transition zone in the distal outflow tract of control embryos, where it is
localised to the membrane through the transition zone, but is
cytoplasmic (green stars) more proximally. Basolateral markers are
represented in red and the MTOC, localising to the apical side of the
cell, in dark green (K). In the absence of Vangl2, basolateral marker

domains are expanded and the MTOC, although still apically positioned,
is rotated in many cells. The wall is also thickened (L). M) Model showing
how loss of epithelial phenotype of the cells within the distal outflow
tract wall at E9.5 could result in a shortened outflow tract and double
outlet right ventricle by E14.5. A = Apical, B = Basal, D = distal, P =
proximal, Vangl2f = Vangl2flox. Scale bar = 100 mm.
doi:10.1371/journal.pgen.1004871.g008
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genes in tracheal tube lengthening in Drosophila [43] and Vang1
(the only worm vang/strabismus gene) specifically in C.elegans
intestinal tube formation [44]. In both these cases, disruption of

PCP signalling results in disorganisation of polarised markers and

cell-cell relationships, and a shortened epithelial tube. During the

early development of the outflow tract, undifferentiated SHF cells,

expressing Isl1, move from the mesothelium of the dorsal

pericardial wall into the outflow tract before differentiating to

cardiomyocytes. This process happens prematurely in the

Vangl2flox/flox; Is1-Cre mutants. Thus, the acquisition of the

organised epithelial phenotype may be important both physically

to create length within the tubular structure of the distal outflow,

but also to prevent premature differentiation of the cells. Whether

the latter contributes directly to the phenotype remains unclear.

Interestingly, Wnt5a, an activator of PCP signalling, has been

shown to be regulated by Tbx1 [45], one of the key transcription

factors involved in maintaining SHF cells in a proliferative,

undifferentiated state [10]. Thus, Vangl2 may be acting with these

other factors in a network that regulates the addition of SHF cells

to the lengthening outflow tract.

The link between a shortened outflow tract and double outlet

right ventricle is well recognised [46], [47]. The on-going,

regulated addition of cells from the SHF is crucial for the

elongation of the vessel, a process that is required to position the

proximal regions of the vessels so that they can align appropriately

with the ventricular chambers. In the absence of Vangl2, the

outflow tract thickens rather than lengthens. This shortened,

thicker outflow tract is unable to align correctly with the

ventricular chambers, resulting in double outlet right ventricle

and ventricular septal defects (Fig. 8M). Whether this mechanism

could explain cardiac alignment defects such as double outlet right

ventricle in humans is the subject of on-going studies.

Disruption of Vangl2, either throughout the body or just in the

SHF lineage, results in double outlet right ventricle and ventricular

septal defects. Notably, we saw no abnormalities when Vangl2 was

deleted in NCC, despite PCP signalling having been shown to play

crucial roles in NCC migration in frogs and zebrafish [17]. Indeed,

a recent study has shown that Vangl signalling is dispensable for

NCC migration in mice [38], suggesting that NCC migration is

regulated differently in mammals than in frogs, fish and birds.

Similar outflow malformations to those we observe when Vangl2 is

deleted specifically in the SHF lineage are observed in mice

carrying mutations in other PCP genes including Dvl 1-3, Wnt5a,

Wnt11 and Fz1/Fz2 [48], [49], [50], [51], [52]. Whilst there are

likely to be multiple causes of double outlet right ventricle, the

strong relationship between this abnormality and mutations in

PCP pathway genes suggests that PCP signalling may be

fundamental to the normal septation and alignment of the great

arteries with the ventricular chambers. As well as ultimately

developing double outlet right ventricle, Wnt11-/- mutants display

abnormalities at earlier stages of heart development. These include

a reduction in outflow tract length and perturbation in the

cytoarchitecture of outflow tract cardiomyocytes [51]. TGFb2

signalling was shown to be acting downstream of Wnt11 in the

outflow myocardium, and Wnt11 null and Tgfb2 null embryos

showed abnormalities in apical-basal markers in the outflow wall

at E11.5 [51]. Although earlier stages were not analysed, and thus

a direct comparison with our study cannot be made, it is possible

that TGFb2, acting downstream of Wnt11 and Vangl2, might be

involved in maintaining organisation of the distal outflow tract

wall and thus regulate outflow tract lengthening. More recently,

Sinha et al, [53] studied the abnormalities in outflow tract

morphogenesis in Dvl2 mutants. They concluded that the defects

resulted from abnormalities in the incorporation of SHF

progenitors from the splanchnic mesoderm into the dorsal

pericardial wall, prior to movement into the outflow vessel.

Vangl2 is expressed in the dorsal pericardial wall, however despite

close examination, we saw no abnormalities in this area. Sinha et

al (2012; [53]) did not describe the phenotype of the cells within

the distal outflow tract in the Dvl2 mutants, or examine markers of

polarised cells in their embryos. Thus it is unclear whether the

mechanism we describe could also be a component of the Dvl2
mutant phenotype. However, Wnt11 is expression is restricted to

the outflow tract myocardium [51] suggesting that this might be a

key factor in activating PCP and thereby Vangl2 signalling in the

distal outflow tract. Thus, it seems likely that PCP signalling, via

Vangl2 and Wnt11 (and/or Wnt5a), is playing an essential role in

elongating the distal outflow tract, facilitating on-going cardiac

morphogenesis.

Methods

Ethics statement
All animals were maintained and killed according to the

requirements of the Animals (Scientific Procedures) Act 1986 of

the UK Government. This work was approved by the Newcastle

University Ethical Review Committee and conformed to Directive

2010/63/EU of the European Parliament.

Mouse strains and embryos
Loop-tail mice from the LPT/Le inbred strain were ori-

ginally obtained from Professor Andrew Copp (UCL, London).

Vangl2floxneo mice were created in partnership with Ozgene

(Australia). The mice were subsequently crossed with FlpE [54]

mice to generate Vangl2flox mice and then inter-crossed with

ROSA-Stop-eYFP [55] mice to allow Cre-based lineage tracing.

Cre driver lines, including Sox2-Cre [56], PGK-Cre [57], Isl1-Cre
[58], Wnt1-Cre [59], Mlc2v-Cre [60], and Nkx2.5-Cre [30] were

all intercrossed with the Vangl2flox line and ROSA-Stop-eYFP
mice. All mice were maintained on the C57Bl/6 background

(Charles River) and were backcrossed for a minimum of three

generations. For all experiments, transgenic mice were compared

with their wild type and heterozygote littermates. Mice were bred

and embryos collected according to standard protocols [32].

Genotyping of Vangl2flox mice
Vangl2flox mice were genotyped using genomic DNA isolated

from ear clips or limb buds using primers: forward: CC-

GCTGGCTTTCCTGCTGCTG; reverse: TCCTCGCCATCC-

CACCCTCG.

In situ hybridization
Embryos were dissected and fixed in 4% paraformaldehyde

(PFA) in DEPC-PBS (phosphate buffered saline) overnight. The

following day, the embryos were washed in PBS, dehydrated

sequentially in 25%, 50% and 75% methanol in PBT (0.1%

Tween 20 in PBS) on ice, and then stored at 220uC in 100%

methanol until use. When required, embryos were rehydrated

through the reverse methanol series as above and then equilibrat-

ed in PBT. The embryos were bleached in 6% hydrogen peroxide

in PBT for 1 hour to inactivate endogenous peroxidase in the

embryos, and washed three times in PBT. To improve the

penetration of the probe into the embryo, they were treated with

proteinase K (PK, 5 mg/ml) at RT for 7 minutes (in case of E10.5

embryos). Glycine (2 mg/ml) was added to stop the PK activity

and the embryos were gently rocked for 5 minutes. After two

washes in PBT, the embryos were refixed in 0.2% glutaralde-

hyde in 4% PFA, and then rocked for 20 minutes. 1 ml of
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prehybridization solution was added to the embryos in a 2 ml tube

and they were incubated at 70uC for 2 hours. After discarding the

prehybridization solution, 500 ml of hybridisation solution includ-

ing the DIG-labeled RNA probe (1 mg/ml) was replaced and then

incubated at 70uC overnight. The next day, the embryos were

washed twice in salt solution I and II (Solution I, 50% formamide,

5x SSC, pH 4.5, 1% SDS; Solution II, 50% formamide, 2x SSC,

pH 4.5) at 70uC for 30 minutes, respectively. Embryos were

washed three times for 5 minutes at RT temperature in freshly

made MABT and non-specific antigens blocked by incubating in a

10% blocking solution (Roche) in MABT for 1 hour. Anti-DIG

antibody (Roche) was added to 1% blocking solution/MABT at a

concentration of 1:5000 and was left to pre-absorb at 4uC for

1 hour. 500 ml of the antibody solution was added to each embryo

and they were left at 4uC for two nights with gentle rocking to

allow complete penetration of the antibody. After this incubation,

embryos were washed three times for 5 minutes in TBST then 5

times of 1 hour washes in TBST at RT. Embryos were then given

3 times of 10 minutes washes in NTMT to prepare them for

development. Embryos were transferred to glass bottles and 3ml of

NBT/BCIP (1, 4-nitro blue tetrazolium chloride/5-bromo-4-

chloro-3-indoyl-phosphate) added to each at a concentration of

18 ml/ml of NTMT. Embryos were left to develop in the dark

until the desired level of staining was achieved. Once the reaction

was completed, the embryos were washed in PBT twice for

5 minutes, and stored in the dark in PBT containing 0.48 mg/ml

of thymerisol to prevent fungal growth.

RT-PCR
Total RNA extraction from embryonic tissue was carried out

using 1 ml Trizol-Reagent (Ambion) per sample, according to the

manufacturer’s instructions. Samples were quantified via spectro-

photometry, and cDNA generated, using 1 mg of total RNA as a

template, with superscript III reverse transcriptase (Life technol-

ogies). PCR was carried out using the following primers:

TGAGGGCCTCTTCATCTCC, ACCAATAACTCCACGGG.

Wax embedding and haematoxylin and eosin staining
Following dissection at the appropriate stage of development,

embryos were washed in PBS, and then fixed by immersion in 4%

paraformaldehyde in PBS at 4uC for 1 to 3 nights dependent on

their age. Embryos were subsequently dehydrated in ethanol and

processed for wax sectioning. Sections were cut at 8 mm using a

rotary microtome (Leica). For haemotoxylin and eosin staining,

slides were de-waxed with two 10 minute washes of Histoclear and

were hydrated to water through an ethanol/H20 gradient (100%,

90% 70% and 50%). Slides were placed in Ehrlich haematoxylin

(RA Lamb) for 10 minutes then were transferred into a trough of

running tap water. The slides were left until the sections changed

colour from purple to blue. The sections were differentiated by

dipping in acid alcohol (1% HCl in 70% ethanol) for 10–30

seconds, and then were placed back into tap water until the blue

colour was restored. When an acceptable intensity of haemotox-

ylin stain was achieved, the slides were transferred into 1%

aqueous eosin for 5 minutes, rinsed in tap water, then dehydrated

through the same ethanol gradient, before washing twice in

Histoclear and mounting in Histomount (National Diagnostics).

Production of the Vangl2 antibody
The Vangl2 antibody, produced by C. Dean, was raised in rabbit

against the following Vangl2 specific peptide: CLAKKVSGFK-

VYSLGEENST by 21st Century Biochemicals, MA, USA and

validated by western blot on lysate from HEK293 cells transfected

with a Vangl2-GFP construct. A band representing the GFP-tagged

construct was detected just above the 75KDa marker using

either the Vangl2 antibody or an anti-GFP antibody.

Immunohistochemistry
Slides were de-waxed with Histoclear and rehydrated through a

series of ethanol washes. Following washes in PBS, antigen

retrieval was performed by boiling slides in citrate buffer

(0.01 mol/L) for 10 minutes. Samples were blocked in 10% FCS

and then incubated either overnight at 4uC, or at room

temperature for 2 hours with the following antibodies: E-cadherin,

b-catenin, N-Cadherin (BD Transduction Laboratories), fibronec-

tin, Scrib, PKCf (Santa Cruz), Isl1, MF20 (Developmental studies

Hybridoma Bank, University of Iowa), GFP, alpha smooth muscle

actin (Abcam), gamma tubulin, laminin (Sigma), cardiac troponin

I (HyTest), desmin (Millipore). For immunofluorescence, samples

were incubated at room temperature for two hours, with

secondary antibodies conjugated to either Alexa 488 or Alexa

594 (Life Technologies). Fluorescent slides were washed then

mounted with Vectashield Mounting medium with DAPI (Vector

Labs). For non fluorescent staining, samples were incubated with

biotinylated secondary antibodies for 1 hour, then with AB

complex (Vector labs) for a further hour. Slides stained with DAB

were washed then counter-stained with 5% methyl green. After

dehydration in 100% butanol and Histoclear, slides were mounted

using Histomount.

Quantification of cell polarity
Cells were stained with the c–tubulin antibody to identify the

microtubule organising centre (MTOC). The orientation of the

cell was defined by the angle between the most apical extent of the

cell, the centre of the cell and the MTOC, and was measured

using the angle tool in ImageJ. MTOCs lying proximally relative

to the apex were considered to have an obtuse angle, and were

transformed as such. Angles were converted to radians and plotted

using the rose plot function in MATLAB. To analyse the

distribution of MTOCs in control and mutant outflow tracts,

eight sectors of possible MTOC cell position were defined (0–44u,
45–89u… 315–359u) and the distribution of MTOCs within these

sectors compared by Chi-Square (IBM, SPSS statistics, version

21).

b-gal staining
Cells with an active lacZ gene in embryos carrying both the

Wnt1-Cre and ROSA26R constructs stain blue when treated with

X-Gal. Embryos were washed twice in PBS and fixed in a solution

containing 0.1 M phosphate buffer, 2% PFA, 5 mM EGTA

(pH 8.0), 0.2% glutaraldehyde and 2 mM MgCl2. They were

washed twice in wash buffer (0.1 M phosphate buffer, 0.01% Na-

deoxycholate, 0.02% Nonidet-P40, 2 mM MgCl2) and X-Gal

stained at 37uC wrapped in aluminium foil overnight. X-Gal

solution contains 10 mM K-ferrocyanide, 10 mM K-ferricyanide

and 1 mg/ml X-Gal in wash buffer. Stock X-Gal powder is

dissolved in dimethylformamide before adding to the staining

solution. The next day, after rinsing in PBS, the embryos were

fixed in 4% PFA and embedded in wax as described above.

Western blotting
Tissue samples from embryos were lysed with 500 ml 1X

laemmli buffer (2% SDS, 5% betamercaptoethanol), 10% glycerol,

0.05% w/v bromophenol blue, 0.0625M Tris-HCl pH 6.8) and

run on pre-cast 10% poly-acrylamide gels (Biorad). Samples were

transferred to PVDF (ImmobilonP Millipore) in ice cold transfer

buffer (48 Mm Tris-HCl pH 8, 39 mM glycine, 0.04% SDS, 20%
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methanol) for 1 hour at 4uC. Membranes were washed in TBST

(2.4% w/v Trizma hydrochloride, 8% w/v sodium chloride at

pH 7.6; 0.1% Tween-20) then blocked in 5% milk/TBST at room

temperature for 1 hour. The membrane was incubated with

primary antibody (Vangl2 1:2500/GAPDH 1:25000 in 5% milk/

TBST) overnight at 4uC, washed then incubated with secondary

antibody (1:2500, Dako) for 1 hour at room temperature.

Membranes were washed then developed with ECL substrate

(SuperSignal West Dura, Thermo Scientific) on Amersham

Hyperfilm ECL (GE healthcare).

Graphics
Images were manipulated in Photoshop CS3 (Adobe). Diagrams

were created using CorelDRAW X5 (Corel).

Supporting Information

S1 Fig Expression of chamber markers in Lp/Lp embryos at

E10.5. A,B) Nppa, C,D) Mlc2a and E,F) Mlc2v expression in Lp/
+ and Lp/Lp embryos showing normal expression patterns but

abnormal heart loop in Lp/Lp. In each case the right ventricle is

hypoplastic and/or the outflow tract is shortened in the Lp/Lp
embryos compared to controls.

(TIF)

S2 Fig External and cardiac defects in Vangl2floxneo, Vangl2flox;
Lp; Sox2-Cre and Vangl2flox; Lp; PGK-Cre at E14.5. Prior to

crossing with FlpE mice, the Vangl2flox targeting vector retained

the neomycin selection cassette. To establish its affect on Vangl2

expression, Vangl2floxneo/+ mice were inter-crossed to generate

Vangl2floxneo/floxneo mice. In each case, the arrows point to the

neural tube defects. A) Vangl2floxneo/+ embryos exhibit a normal

external phenotype. B) Transverse sectioning revealed no

abnormalities in either the heart or the pharyngeal arch arteries.

C,E,G) Vangl2floxneo mutants show variability in their external

phenotype. Of the three Vangl2floxneo/floxneo embryos examined,

two exhibited craniorachischisis and had the looped tail observed

in Lp/Lp mice (C,E), while one displayed spina bifida only (G).

D,F,H) Transverse sections revealed that all Vangl2floxneo/floxneo

mice exhibited heart defects including retro-oesophageal right

subclavian artery (RORSA), where the aorta forms a ring around

oesophagus (D), DORV (F) and VSD (H). I-P) Vangl2flox; Lp;
Sox2-Cre (K,L) and Vangl2flox; Lp; PGK-Cre (O,P) mice exhibit

the same external phenotype as Lp/Lp and Vangl2flox/flox; Sox2Cre
mice, exhibiting craniorachischisis and a looped tail, as observed

in Lp/Lp mice. Transverse sections reveal heart malformations as

observed in Lp/Lp mice including RORSA, double outlet right

ventricle and ventricular septal defect. DORV - double outlet right

ventricle, RSA - right subclavian artery, VSD - ventricular septal

defect, Scale bar = 2 mm (white), 500 mm (black).

(TIF)

S3 Fig External and cardiac defects in Vangl2flox/flox; Sox2-Cre
embryos and Vangl2flox/flox; PGK-Cre at E14.5. Vangl2flox/flox;
Sox2-Cre and Vangl2flox/flox; PGK-Cre embryos display an

abnormal external phenotype and cardiac defects. A–B) Addi-

tional cardiovascular defects observed in Vangl2flox/flox; Sox2-Cre
mice, including ventricular septal defect and double outlet right

ventricle. C) Vangl2flox/+; PGK-Cre embryos display a normal

external phenotype. D) A transverse section through the heart

reveals no cardiac defects, with the normal outlet of the aorta from

the left ventricle. E) Vangl2flox/flox; PGK-Cre embryos exhibited

craniorachischisis and a looped tail as observed in Lp/Lp mice. G–
H) Transverse sections of the hearts of Vangl2flox/flox; PGK-Cre
embryos reveal a number of defects including double outlet right

ventricle (F,G; in G both the aorta and pulmonary trunk can be

seen exiting the right ventricle) and ventricular septal defect (H).

DORV - double outlet right ventricle, VSD - ventricular septal

defect. Scale bar = 2 mm (white), 500 mm (black).

(TIF)

S4 Fig Vangl2 is not expressed by NCC and its expression

remains unaltered in Vangl2flox/flox; Wnt1-Cre embryos at E10.5.

A–D) NCC (green) are abundant in the pharyngeal region and

distal outflow tract of control embryos. However, close examina-

tion (B9,C9) shows that Vangl2 (red) does not localise to the NCC.

E–H) Comparable areas of Vangl2flox/flox; Wnt1-Cre embryos

shows that the expression pattern of both Vangl2 and the

distribution of NCC is comparable to control embryos. High

power images (F9,G9 show lack of localisation of Vangl2 to NCC).

(TIF)

S5 Fig Vangl2flox/flox; Isl1-Cre embryos have a shortened

outflow tract at E9.5 and display various cardiac defects by

E14.5. A–I) Vangl2 can be efficiently deleted from the SHF

lineage using Isl1-Cre. While Vangl2 protein (red in merged

images) is abundant in the outflow tract of Vangl2flox/+; Isl1-Cre
embryos (C), the protein is not detectable in Vangl2flox/flox; Isl1-
Cre embryos within the Isl1-Cre expression domain (green in

merged images D,H,I; labelled by eYFP) of the developing outflow

tract (H). Vangl2 protein is retained outside of the Isl1-Cre
expression domain, for example in the neural tube and otic vesicles

(arrows in I). J–M) At E9.5 Isl1-positive cells can be seen moving

into the distal outflow, which results in lengthening of the outflow

tract. Vangl2flox/flox; Isl1-Cre embryos display a significantly

shorter outflow tract than stage-matched controls (compare arrows

in J and L) even at this early stage of development. Isl1-positive

cells within the distal outflow of Vangl2flox/flox; Isl1-Cre embryos

appear disorganised and the tissue of the distal outflow tract is

malformed. N–S) At E14.5 a number of cardiac defects can be

seen within Vangl2flox/flox; Isl1-Cre embryos including VSD (N,Q)

and DORV (O,R). No arch artery defects can be seen in

Vangl2flox/flox; Isl1-Cre however (P,S). Scale bar = 500 mm.

(TIF)

S6 Fig A,B Myocardialisation is abnormal in Vangl2flox/flox; Isl1-
Cre embryos at E13.5. Cardiac troponin I staining shows that

cardiomyocytes extend into the outflow cushions in control

embryos at E13.5 (A). This is much reduced in Vangl2flox/flox;
Isl1-Cre embryos. C,D) Mlc2v-Cre expression at E10.5-E12.5.

Mlc2v-Cre (blue) is not found in the outflow myocardium at E10.5

although it is apparent in the proximal outflow tract myocardium

by E12.5 (arrows), before myocardialisation begins. E,F) Vangl2 is

localised to the cytoplasm of cardiomyocytes in the outflow tract at

E12.5. Vangl2 is maintained in the outflow tract myocardium at

E12.5, with localisation throughout the cytoplasm. Arrows point to

cells in the outflow wall.

(TIF)

S7 Fig Nkx2.5-Cre lineage tracing as shown by Cre-activated

GFP at E10.5. A–C) Nkx2.5-Cre expression as indicated by Cre-
based lineage labelling can be seen within the dorsal pericardial wall

and the distal outflow tract (A). The expression of GFP within this

tissue is patchy however (A,B) suggesting that Nkx2.5-Cre levels are

low within this region, resulting in the Cre being unable to efficiently

drive GFP expression. Vangl2 expression in retained in the distal

outflow tract of Vangl2flox/flox; Nkx2.5-Cre embryos at E9.5 (C).

(TIF)

S8 Fig No outflow phenotype in Vangl2flox/flox; Tie2-Cre
embryos. The outflow tract is septated (A) and the aorta exits
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from the left ventricle (B) in Vangl2flox/flox; Tie2-Cre embryos at

E15.5.

(TIF)

S9 Fig Loss of Vangl2 affects tissue organisation in the distal

outflow tract. A–H b-catenin and laminin are only subtly

disrupted in the distal outflow tract of Vangl2flox/flox; Nkx2.5-
Cre embryos at E9.5, supporting the evidence that some Vangl2 is

retained in the distal outflow wall of these embryos. I–N)

Fibronectin is normally laid down as a constituent part of the

basal lamina and so is basally restricted in the distal outflow tract

walls of control embryos (D-F). In Vangl2flox/flox; Isl1-Cre mutants,

however, fibronectin can be seen surrounding cells throughout the

outflow walls (L-N). O–T) Unlike the distal outflow tract where

laminin distribution is abnormal in the Vangl2flox/flox; Isl1-Cre
mutants, laminin is basally restricted in the proximal outflow tract

in both controls (O-Q) and mutants (R-T). U) Diagrammatic

representation of the outflow tract E9.5. Sections shown in panels

A-N were taken from the distal outflow (upper box) whereas

sections in panels O-T were from the proximal outflow (lower

box). Scale bar = 20 mm

(TIF)

S10 Fig Absence of proliferation in cells in the distal outflow

tract wall at E9.5. A,B) There is little or no proliferation in cells in

the distal outflow tract wall (arrows in B) at E9.5. A,C) However,

extensive proliferation is seen in the nearby pharyngeal arch

(arrows in C).

(TIF)

S11 Fig Disruption of epithelial organisation in the distal outflow

tract of Vangl2flox/flox; Isl1-Cre embryos at E9.0. A–H) Similarly to

at E9.5, E-cadherin and aPKCf are mislocalised in the distal

outflow tract of mutant embryos (E–H), compared with stage-

matched littermates (A–D). Notably, aPKCf is found basally

(arrow in H) rather than apically in some cells in the mutant

embryo. I–T) Scrib staining was normal in Vangl2flox/flox; Isl1-Cre
mutants in the epidermis which does not express Isl1-Cre (O-Q,

compare to I-K) and in the dorsal pericardial wall which is Isl1-
Cre-positive (compare R–T with L–N).

(TIF)
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