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Abstract

As Arabidopsis thaliana has colonized a wide range of habitats across the world it is an attractive model for studying the
genetic mechanisms underlying environmental adaptation. Here, we used public data from two collections of A. thaliana
accessions to associate genetic variability at individual loci with differences in climates at the sampling sites. We use a novel
method to screen the genome for plastic alleles that tolerate a broader climate range than the major allele. This approach
reduces confounding with population structure and increases power compared to standard genome-wide association
methods. Sixteen novel loci were found, including an association between Chromomethylase 2 (CMT2) and temperature
seasonality where the genome-wide CHH methylation was different for the group of accessions carrying the plastic allele.
Cmt2 mutants were shown to be more tolerant to heat-stress, suggesting genetic regulation of epigenetic modifications as
a likely mechanism underlying natural adaptation to variable temperatures, potentially through differential allelic plasticity
to temperature-stress.
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Introduction

Arabidopsis thaliana has colonized a wide range of habitats across

the world and it is therefore an attractive model for studying the

genetic mechanisms underlying environmental adaptation [1].

Several large collections of A. thaliana accessions have either been

whole-genome re-sequenced or high-density SNP genotyped [1–7].

The included accessions have adapted to a wide range of different

climatic conditions and therefore loci involved in climate adaptation

will display genotype by climate-at-sampling-site correlations in

these populations. Genome-wide association or selective-sweep

analyses can therefore potentially identify signals of natural selection

involved in environmental adaptation, if those can be disentangled

from the effects of other population genetic forces acting to change

the allele frequencies. Selective-sweep studies are inherently

sensitive to population-structure and, if present, the false-positive

rates will be high as the available statistical methods are unable to

handle this situation properly. Further experimental validation of

inferred sweeps (e.g. [1,8]) is hence necessary to suggest them as

adaptive. In GWAS, kinship correction is now a standard approach

to account for population structure that properly controls the false

discovery rate. Unfortunately, correcting for genomic kinship often

decreases the power to detect individual adaptive loci, which is likely

the reason that no genome-wide significant associations to climate

conditions were found in earlier GWAS analyses [1,8]. Neverthe-

less, a number of candidate adaptive loci could despite this be

identified using extensive experimental validation [1,2,8], showing

how valuable these populations are as a resource for finding the

genomic footprint of climate adaptation.

Genome-wide association (GWA) datasets based on natural

collections of A. thaliana accessions, such as the RegMap

collection, are often genetically stratified. This is primarily due

to the close relationships between accessions sampled at nearby

locations. Furthermore, as the climate measurements used as

phenotypes for the accessions are values representative for the

sampling locations of the individual accessions, these measure-

ments will be confounded with the general genetic relationship [9].

Unless properly controlled for, this confounding might lead to

excessive false-positive signals in the association analysis; this as the

differences in allele-frequencies between loci in locations that differ

in climate, and at the same time are geographically distant, will

create an association between the genotype and the trait.

However, this association could also be due to other forces than

selection. In traditional GWA analyses, mixed-model based

approaches are commonly used to control for population-

stratification. The downside of this approach is that it, in practice,

will remove many true genetic signals coming from local

adaptation due to the inherent confounding between local

genotype and adaptive phenotype. Instead, the primary signals

from such analyses will be due to effects of alleles that exist in, and
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have similar effects across, the entire studied population. In

general, studies into the contributions of genetic variance-

heterogeneity to the phenotypic variability in complex traits is a

novel and useful approach with great potential [10]. Here, we

have developed and used a new approach that combines a linear

mixed model and a variance-heterogeneity test, which addresses

these initial concerns and shown that it is possible to infer

statistically robust results of genetically regulated phenotypic

variability in GWA data from natural populations.

This study describes the results from a re-analysis of data from

the RegMap collection to find loci contributing to climate

adaptation through an alternative mechanism: genetic control of

plasticity. Such loci are unlikely to be detected with standard

GWAS or selective-sweep analyses as they have a different

genomic signature of selection and distribution across climate

envelopes. The reason for this difference is that plastic alleles are

less likely to be driven to fixation by directional selection, but

rather that multiple alleles remain in the population under

extended periods of time by balancing selection [11]. To facilitate

the detection of such loci, we extend and utilize an approach

[12,13] that instead of mapping loci by differences in allele-

frequencies between local environments, which is highly con-

founded by population structure, infer adaptive loci using a

heterogeneity-of-variance test. This identifies loci where the minor

allele is associated with a broader range of climate conditions than

the major allele [12]. As such widely distributed alleles will be

present across the entire population, they are less confounded with

population structure and detectable in our GWAS analysis that

utilizes kinship correction to account for population stratification.

Results

Genome-wide association analysis to detect loci with
plastic response to climate

A genome-wide association analysis was performed for thirteen

climate variables across ,215,000 SNPs in 948 A. thaliana

accessions from the RegMap collection, representing the native

range of the species [1,9]. In total, sixteen genome-wide significant

loci were associated with eight climate variables (Table 1), none of

which could be found using standard methods for GWAS analyses

[1,8,14–16]. The effects were in general quite large, from 0.3 to

0.5 residual standard deviations (Table 1), meaning that the minor

allele is associated with a climate that is between 21–35% more

variable than that of the major allele. The detailed results from the

association analysis for each of these climate variables are reported

in S1 Figure–S13 Figure. As expected, there was low confounding

between the alleles associated with a broader range of climate

conditions and population structure. This is illustrated by the plots

showing the distributions of these alleles across the population

strata in relation to their geographic origin and the climate

envelopes in S14 Figure–S35 Figure.

Identification of candidate mutations using re-sequencing
data from the 1001-genomes project

Utilizing the publicly available whole-genome re-sequencing

data from the 1001-genomes project [2–7] (http://1001genomes.

org), we screened the loci with significant associations to the

climate variables for candidate functional polymorphisms. Mis-

sense, nonsense or frameshift mutations in high linkage disequi-

librium (LD; r2.0.8) with the leading SNPs were identified in five

functional candidate genes associated with eight climate variables

(for details on these see Table 1) and 11 less characterized genes

(S1 Table). S2 Table provides 76 additional linked loci or genes

without candidate mutations in their coding regions.

Several loci are associated with multiple climate variables
Interestingly, three out of the eight loci with missense mutations

affected more than one climate variable, even though these were

only marginally correlated. One such potentially pleiotropic

adaptive effect for day length and relative humidity in the spring

was associated with a locus containing the genes VEL1 and

XTH19 (Table 1). The major allele at this locus was predominant

in short-day regions, whereas the alternative allele was more

plastic in relation to day-length. XTH19 has been implied as a

regulator of shade avoidance [17], but information about its

potential involvement in regulation of photoperiodic length is

lacking. VEL1, is a Plant Homeo Domain (PHD) finger protein.

PHD finger proteins are known to affect vernalization and

flowering of A. thaliana, e.g. by silencing the key flowering locus

FLC during vernalization, and is involved in photoperiod-

mediated epigenetic regulation of MAF5 [18–20]. The finding

that VEL1 is associated with day length and relative humidity is

thus consistent with the role of previous reports on PHD finger

proteins. It also makes this protein an interesting target for future

studies into the genetics underlying simultaneous adaptation to

day-length and humidity.

Another potentially pleiotropic adaptive effect was identified for

two more highly correlated traits, minimum temperature and

number of consecutive cold days (Pearson’s r2 = 0.76). In total, 17

missense mutations were found at this locus. The top candidate gene

containing a missense mutation is galactinol synthase 1 (GolS1).

This gene has been reported to be involved in extreme temperature-

induced synthesis [21,22], making it an interesting target for further

studies regarding the genetics of temperature adaptation.

Chromomethylase 2 (CMT2) is associated with
temperature seasonality in the RegMap collection

A strong association to temperature seasonality, i.e. the ratio

between the standard deviation and the mean of temperature

Author Summary

A central problem when studying adaptation to a new
environment is the interplay between genetic variation
and phenotypic plasticity. Arabidopsis thaliana has colo-
nized a wide range of habitats across the world and it is
therefore an attractive model for studying the genetic
mechanisms underlying environmental adaptation. Here,
we study two collections of A. thaliana accessions from
across Eurasia to identify loci associated with differences in
climates at the sampling sites. A new genome-wide
association analysis method was developed to detect
adaptive loci where the alleles tolerate different climate
ranges. Sixteen novel such loci were found including a
strong association between Chromomethylase 2 (CMT2)
and temperature seasonality. The reference allele domi-
nated in areas with less seasonal variability in temperature,
and the alternative allele existed in both stable and
variable regions. Our results thus link natural variation in
CMT2 and epigenetic changes to temperature adaptation.
We showed experimentally that plants with a defective
CMT2 gene tolerate heat-stress better than plants with a
functional gene. Together this strongly suggests a role for
genetic regulation of epigenetic modifications in natural
adaptation to temperature and illustrates the importance
of re-analyses of existing data using new analytical
methods to obtain deeper insights into the underlying
biology from available data.

Genome-Wide Methylation Changes in Temperature Adaptation
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records over a year, was identified near Chromomethylase 2

(CMT2; Table 1; Fig. 1). Stable areas are generally found near

large bodies of water (e.g. London near the Atlantic 1165uC;

mean 6 SD) and variable areas inland (e.g. Novosibirsk in Siberia

1614uC). A premature CMT2 stop codon located on chromo-

some 4 at 10,414,556 bp (the 31st base pair of the first exon)

segregated in the RegMap collection, with minor allele frequency

of 0.05. This CMT2STOP allele had a genome-wide significant

association with temperature seasonality (P = 1.161027) and was

in strong LD (r2 = 0.82) with the leading SNP (Fig. 1B). The

Fig. 1. An LD block associated with temperature seasonality contains CMT2. A genome-wide significant variance-heterogeneity association
signal was identified for temperature seasonality in the RegMap collection of natural Arabidopsis thaliana accessions [1]. The peak on chromosome 4
around 10 Mb (A) mapped to a haplotype block (B) containing a nonsense mutation (CMT2STOP) early in the first exon of the Chromomethylase 2
(CMT2) gene. Color coding based on |r| (the absolute value of the correlation coefficient) as a measure of LD between each SNP in the region and the
leading SNP in the association analysis.
doi:10.1371/journal.pgen.1004842.g001
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geographic distributions of the wild-type (CMT2WT) and the

alternative (CMT2STOP) alleles in the RegMap collection shows

that the CMT2WT allele dominates in all major sub-populations

sampled from areas with low or intermediate temperature

seasonality. The plastic CMT2STOP allele is present, albeit at

lower frequency, across all sub-populations in low- and interme-

diate temperature seasonality areas, and is more common in areas

with high temperature seasonality (Fig. 2A; Fig. 3; S36 Figure).

Such global distribution across the major population strata

indicates that the allele has been around in the Eurasian

population sufficiently long to spread across most of the native

range and that the allele is not deleterious but rather maintained

through balancing selection [11], perhaps by mediating an

improved tolerance to variable temperatures.

Broader geographic distribution of the CMT2STOP allele in
the 1001-genomes collection

To confirm that the CMT2STOP association was not due to

sampling bias in the RegMap collection, we also scored the CMT2
genotype and collected the geographical origins from 665 accessions

that were part of the 1001-genomes project (http://1001genomes.

org) [2,3,5-7]. In this more geographically diverse set (Fig. 2A),

CMT2STOP was more common (MAF = 0.10) and had a similar

allele distribution across Eurasia as in RegMap (Figure S36–S37).

Two additional mutations were identified on unique haplo-

types (r2 = 0.00) - one nonsense CMT2STOP2 at 10,416,213 bp

(MAF = 0.02) and a frameshift mutation at 10,414,640 bp (two

accessions). Both CMT2STOP and CMT2STOP2 had genotype-

phenotype maps implying a plastic response to variable temperature

(Fig. 2B) and the existence of multiple mutations disrupting CMT2
further suggest lack of CMT2 function as a potentially evolutionary

beneficial event [23].

Accessions with the CMT2STOP allele has an altered
genome-wide CHH-methylation pattern

CMT2 is a plant DNA methyltransferase that methylates mainly

cytosines in CHH (H = any base but G) contexts, predominantly at

transposable elements (TEs) [24,25]. We tested the effect of

CMT2STOP on genome-wide DNA methylation using 135

CMT2WT and 16 CMT2STOP accessions, for which high-quality

MethylC-sequencing data was publicly available [7]. In earlier

studies [24,25], it has been shown that CMT2-mediated CHH

Fig. 2. Geographic distribution of, and heterogenous variance for, three CMT2 alleles in two collections of A. thaliana accessions. The
geographic distributions (A) of the wild-type (CMT2WT; gray open circles) and two nonsense alleles (CMT2STOP/CMT2STOP2; filled/open triangles) in the
CMT2 gene that illustrates a clustering of CMT2WT alleles in less variable regions and a greater dispersion of the nonsense alleles across different
climates both in the RegMap [1] (blue) and the 1001-genomes [2](red) A. thaliana collections. The resulting variance-heterogeneity in temperature
seasonality between genotypes is highly significant, as illustrated by the quantile plots in (B) where the median is indicated by a diamond and a bar
representing the 25% to 75% quantile range. The color scale indicate the level of temperature seasonality across the map. The colorkey in (A)
represent the temperature seasonality values, given as the standard-deviation in % of the mean temperature (K).
doi:10.1371/journal.pgen.1004842.g002
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methylation primarily affects TE-body methylation. In cmt2
knockouts in a Col-0 genetic background, this results in a near

lack of CHH methylation at such sites. Here, we compared the

levels of CHH-methylation across TEs between CMT2STOP and

CMT2WT accessions. Our analyses revealed that the accessions

carrying the CMT2STOP allele on average had a small (1%)

average decrease in CHH-methylation across the TE-body

compared to the CMT2WT accessions. A more detailed analysis

showed that this difference was primarily due to two of 16

CMT2STOP accessions, Kz-9 and Neo-6, showing a TE-body

CHH methylation pattern resembling that of the cmt2 knockouts

in the data of [24]. Interestingly, none of the 135 CMT2WT

accessions displayed such a decrease in TE-body CHH methyl-

ation, and hence there is a significant increase in the frequency of

the cmt2 knockout TE-body CHH methylation pattern among the

natural CMT2STOP accessions (P = 0.01; Fisher’s exact test). Our

analyses show that the methylation-pattern is more heterogeneous

among the natural accessions than within the Col-0 accession,

both for the CMT2STOP and CMT2WT accessions (both P = 0.01;

Brown-Forsythe heterogeneity of variance test; Fig. 4). There is

thus a significant association between the CMT2STOP polymor-

phism and decreased genome-wide TE-body CHH-methylation

levels, and we show that this is apparently due to an increased

frequency of the cmt2-mutant methylation phenotype. Further, the

results also show a variable contribution of CMT2-independent

CHH methylation pathways in the natural accessions. The reason

why not all CMT2STOP accessions behave like null alleles is

unclear, but the variability amongst in the level of CHH-

methylation across the natural accessions suggest that it is possible

that CMT2-independent pathways, such as the RNA-dependent

DNA-methylation pathway, compensate for the lack of CMT2 due

to segregating polymorphisms also at these loci. Alternatively,

CMT2STOP alleles may not be null, maybe due to stop codon read-

through, which is more common than previously thought [26].

Although our analyses of genome-wide methylation data have

established that CMT2STOP allele has a quantitative effect on

CHH methylation, further studies are needed to fully explore the

link between the CMT2STOP allele, other pathways affecting

genome-wide DNA-methylation and their joint contributions to

the inferred association to temperature seasonality.

Cmt2 mutant plants have an improved heat-stress
tolerance

To functionally explore whether CMT2 is a likely contributor to

the temperature-stress response, we have subjected cmt2 mutants

to two types of heat-stress. First, we tested the reaction of Col-0

and the cmt2-5 null mutant (S45 Figure) to severe heat-stress (24 h

at 37uC). This treatment was used because it can release

transcriptional silencing of some TEs [27] and could thus be a

good starting point to evaluate potential stress effects on cmt2.

Under these conditions, the cmt2 mutant had significantly higher

survival-rate (1.6-fold; P = 9.161023; Fig. 5A) than Col-0. To

evaluate whether a similar response could also be observed under

less severe, non-lethal stress, we subjected the same genotypes to

heat-stress of shorter duration (6 h at 37uC) and measured root

growth after stress as a measure of the ability of plants to recover.

Also under these conditions, the cmt2 mutant was found to be

more tolerant to heat-stress, as its growth was less affected after

being stressed (Fig. 5B; 1.9-fold higher in cmt2; P = 0.026, one-

sided t-test). This striking improvement in tolerance to heat-stress

of cmt2 plants suggests CMT2-dependent CHH methylation as an

important alleviator of stress responses in A. thaliana and a

candidate mechanism for temperature adaptation.

The CMT2STOP allele is associated with increased leaf
serration and higher disease presence after bacterial
inoculation

To also explore the potential effects of the CMT2STOP allele on

other phenotypes measured in collections of natural accessions, we

tested for associations between this CMT2 polymorphism and the

107 phenotypes measured as part of a previous study [28]. Three

phenotypes were found to be significantly associated with the

genotype at this locus (S39 Figure).

Fig. 3. Principle components of the genomic kinship in the RegMap collection for the accessions carrying the alternative alleles at
the Chromomethylase 2 locus (CMT2STOP and CMT2WT as filled and empty circles, respectively). Coloring is based on (A) geographical
regions (defined as in Figure S37) and (B) temperature seasonality, ranging from dark blue (least variable) to red (most variable).
doi:10.1371/journal.pgen.1004842.g003
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Associations were found to two phenotypes related to disease

presence following inoculation with Pseudomonas viridiflava
(strains PNA3.3a and ME3.1b; P = 4.861023 and P = 1.361024,

respectively). Scoring of disease was done by eye four days after

inoculation in 6 replicates per strain6accession using a scale from

0 (no visible symptom) to 10 (leaves collapse and turn yellow) with

an increment of 1 [28]. The connection between an increased

susceptibility (0.6 and 0.7 units for PNA3.3a and ME3.1b,

respectively) to disease and an increased tolerance to temperature

seasonality is not obvious. However, recent work by [29] has

shown that widespread dynamic CHH-methylation is important

for the response to Pseudomonas syringae infection. In light of this

finding, it is therefore not unlikely that these phenotypes are

functionally related via an altered CMT2-mediated CHH-

methylation in response to abiotic and biotic stress.

An association was also found for the level of leaf serration

(increase by 0.23 units for the CMT2STOP allele; P = 3.361023),

determined after growth for 8 weeks at 10uC (level from 0: entire

lamina, to 1.5: sharp/jagged serration), across 4 plants per

accession [28]. Measures of leaf serration were also available at

16 and 22uC, and interestingly there was a significant CMT2

genotype 6 temperature interaction (P = 0.048). The CMT2STOP

accessions have the same level of serration across the three

measured temperatures, whereas the level of serration decreases

with temperature for the CMT2WT accessions (S38 Figure).

Although we are not aware of any earlier results connecting leaf

Fig. 4. Comparison of CHH methylation patterns inside TE-bodies, (A) between CMT2WT and CMT2STOP accessions using the data from
[7], and (B) between four replicate Col-0 wild-type and cmt2 knock-outs from [24]. For each accession, the curve is to illustrate the moving
average methylation level in a sliding 100 bp window. On the x-axis, the two different strands of DNA are aligned in the middle, truncated at 5 kb
from the edge of the TEs.
doi:10.1371/journal.pgen.1004842.g004

Fig. 5. cmt2 mutant plants display an increased tolerance to heat-stress. A. The survival rate is significantly higher for cmt2-5 mutant than for
Col-0 plants under severe heat-stress (24 h at 37.5uC). P-values in A were obtained using a log-linear regression. B. The cmt2-5 mutant was also more
tolerant to less severe heat-stress heat-stress (6 h at 37.5uC) than Col-0, here illustrated by its significantly faster growth of the root (P = 0.026; one-
sided t-test) during the first 48 h following heat stress.
doi:10.1371/journal.pgen.1004842.g005
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serration to the CMT2 locus or the level of CHH-methylation in

the plant, this result further indicates that the effects of the

CMT2STOP and the CMT2WT alleles depend on temperature.

Discussion

A major challenge in attempts to identify individual loci

involved in climate adaptation is the strong confounding between

geographic location, climate and population structure in the

natural A. thaliana population. Earlier genome-wide association

analyses in large collections of natural accessions experienced a

lack of statistical power when correcting for population-structure

[1,8]. We used an alternative GWAS approach [12] to test for a

variance-heterogeneity, instead of a mean difference, between

genotypes. This analysis identifies loci where the minor allele is

more plastic (i.e. exist across a broader climatic range) than the

major allele. As it has low power to detect cases where the minor

allele is associated with a lower variance (here with local

environments), it will not map private alleles in local environments

in a genome-wide analysis [12,30]. In contrast, a standard GWAS

map loci where the allele-frequencies follow the climatic cline.

Although plastic alleles might be less frequent in the genome, they

are easier to detect in this data due to their lower confounding with

population-structure. This overall increase in power is also

apparent when comparing the signals that reach a lower, sub-

GWAS significance level (S40 Figure–S44 Figure).

Several novel genome-wide significant associations were found

to the tested climate variables, and a locus containing VEL1 was

associated to both day length and relative humidity in the spring.

A thaliana is a facultative photoperiodic flowering plant and hence

non-inductive photoperiods will delay, but not abolish, flowering.

A genetic control of this phenotypic plasticity is thus potentially an

adaptive mechanism. VEL1 regulates the epigenetic silencing of

genes in the FLC-pathway in response to vernalization [19] and

photoperiod length [20] resulting in an acceleration of flowering

under non-inductive photoperiods. Our results suggest that

genetically plastic regulation of flowering, via the high-variance

VEL1 allele, might be beneficial under short-day conditions where

both accelerated and delayed flowering is allowed. In long-daytime

areas, accelerated flowering is potentially detrimental hence the

wild-type allele has the highest adaptive value. It can be speculated

whether this is connected to the fact that day-length follows a

latitudinal cline, where early flowering might be detrimental in

northern areas where accelerated flowering, when the day-length

is short, could lead to excessive exposure to cold temperatures in

the early spring and hence a lower fitness.

A particularly interesting finding in our vGWAS was the strong

association between the CMT2-locus and temperature seasonality.

Here the allele associated with higher temperature seasonality (i.e

the plastic allele) had an altered genome-wide CHH methylation

pattern where some accessions displayed a TE-body CHH

methylation pattern similar to that of cmt2 mutant plants.

Interestingly, a recent study by Dubin et al. [31] in a collection

of Swedish A. thaliana accessions report that CHH methylation is

temperature sensitive, and that the CMT2-locus is a major trans-
acting controller of the observed variation in genome-wide CHH-

methylation between the accessions. These findings, together with

our experimental work showing that cmt2 mutants were more

tolerant to both mild and severe heat-stress, strongly implicate

CMT2 as an adaptive locus and clearly illustrate the potential of

our method as a useful approach to identify novel associations of

functional importance.

It is not clear via which mechanism CMT2-dependent CHH

methylation might affect plant heat tolerance. Although our results

show that the CMT2STOP allele is present across regions with both

low and high temperature seasonality, it remains to be shown

whether this is due to this allele being generally more adaptable

across all environments, or whether the CMT2WT allele is

beneficial in environments with stable temperature and the

CMT2STOP in high temperature seasonality areas. Regardless,

we consider it most likely that the effect will be mediated by TEs in

the immediate neighborhood of protein-coding genes. Hetero-

chromatic states at TEs can affect activity of nearby genes and thus

potentially plant fitness [32]. Consistent with a repressive role of

CMT2 on heat stress responses, CMT2 expression is reduced by

several abiotic stresses including heat [33]. Because global

depletion of methylation has been shown to enhance resistance

to biotic stress [29], it is possible that DNA-methylation has a

broader function in shaping stress responses than currently

thought.

Our results show that CMT2STOP accessions have more

heterogeneous CHH methylation patterns than CMT2WT acces-

sions. The CMT2STOP polymorphism is predicted to lead to a

non-functional CMT2 protein, and hence a genome-wide CHH-

methylation profile resembling that of a complete cmt2 mutant

[24]. Although some of the accessions carrying the CMT2STOP

allele displayed this pattern with a lower CHH-methylation inside

TE-bodies, most of these accessions did not have any major loss of

genome-wide CHH methylation. Such heterogeneity might

indicate the presence of compensatory mechanisms and hence

that the effects of altered CMT2 function could be dependent on

the genetic-background. This is an interesting finding that deserves

further investigation, although such work is beyond the scope of

the current study. Our interpretation of the available results is that

our findings reflect the genetic heterogeneity among the natural

accessions studied. In light of the recent report by [25], who

showed a role also of CMT3 in TE-body CHH methylation, it is

not unlikely that the regulation of CHH methylation may result

from the action and interaction of several genes.

We identified several alleles associated with a broader range of

climates across the native range of A. thaliana, suggesting that a

genetically mediated plastic response might of important for

climate adaptation. Using publicly available data from several

earlier studies, we were able to show that an allele at the CMT2
locus displays an altered genome-wide CHH-methylation pattern

was strongly associated with temperature seasonality. Using

additional experiments, we also found that cmt2 mutant plants

tolerated heat-stress better than wild-type plants. Together, these

findings suggest this genetically determined epigenetic variability

as a likely mechanism contributing to a plastic response to the

environment that has been of adaptive advantage in natural

environments.

Materials and Methods

Climate data and genotyped Arabidopsis thaliana
accessions

Climate phenotypes and genotype data for a subset of the A.
thaliana RegMap collection were previously analyzed by [1]. We

downloaded data on 13 climate variables and genotypes of

214,553 single nucleotide polymorphisms (SNPs) for 948 acces-

sions from: http://bergelson.uchicago.edu/regmap-data/climate-

genome-scan. The climate variables used in the analyses were:

aridity, number of consecutive cold days (below 4 degrees Celsius),

number of consecutive frost-free days, day-length in the spring,

growing-season length, maximum temperature in the warmest

month, minimum temperature in the coldest month, temperature-

seasonality, photosynthetically active radiation, precipitation in the
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wettest month, precipitation in the driest month, precipitation-

seasonality, and relative humidity in the spring. More information

on these variables is provided by [1]. No squared pairwise

Pearson’s correlation coefficients between the phenotypes were

greater than 0.8 (S7 Figure of [1]).

We calculated the temperature seasonality for at sampling

locations of a selection of 1001-genomes (http://1001genomes.

org) accessions. Raw climate data was downloaded from http://

www.worldclim.org/, re-formatted and thereafter processed by the

raster package in R. The R code for generating this data is

provided in S1 Text. The genotype for the CMT2STOP

polymorphism was obtained by extracting the corresponding

SNP data for the 1001-genomes accessions.

Statistical modeling in genome-wide scans for
adaptability

The climate data at the geographical origins of the A. thaliana
accessions were treated as phenotypic responses. Each climate

phenotype vector y for all the accessions was normalized via an

inverse-Gaussian transformation. The squared normalized mea-

surement zi~y2
i of accession i is modeled by the following linear

mixed model to test for an association with climate adaptability

(i.e. a greater plasticity to the range of the environmental

condition):

zi~mzbxizgizei

where m is an intercept, xi the SNP genotype for accession i, b the

genetic SNP effect, g*MVN(0,G�s2
g) the polygenic effects and

e*MVN(0,Is2
e) the residuals. xi is coded 0 and 2 for the two

homozygotes (inbred lines). The genomic kinship matrix G� is

constructed via the whole-genome generalized ridge regression

method HEM (heteroscedastic effects model) [13] as G�~ZWZ0,
where Z is a number of individuals by number of SNPs matrix of

genotypes standardized by the allele frequencies. W is a diagonal

matrix with element wjj~b̂bj=(1{hjj) for the j-th SNP, where b̂bj is

the SNP-BLUP (SNP Best Linear Unbiased Prediction) effect

estimate for the j-th SNP from a whole-genome ridge regression,

and hjj is the hat-value for the j-th SNP. Quantities in W can be

directly calculated using the bigRR package [13] in R. An

example R source code for performing the analysis is provided in

S1 Text.

The advantage of using the HEM genomic kinship matrix G�,
rather than an ordinary genomic kinship matrix G~ZZ0, is that

HEM is a significant improvement of the ridge regression (SNP-

BLUP) in terms of the estimation of genetic effects [13,34]. Due to

this, the updated genomic kinship matrix G� better represents the

relatedness between accessions and also accounts for the genetic

effects of the SNPs on the phenotype.

Testing and quality control for association with climate
adaptability

The test statistic for the SNP effect b is constructed as the score

statistic [35]:

T2~
(~xx0G�{1~zz)2

~xx0G�{1~xx

implemented in the GenABEL package [36], where ~xx~x{E½x�
are the centered genotypic values and ~zz~z{E½z� the centered

phenotypic measurements. The T2 statistic has an asymptotic x2

distribution with 1 degree of freedom. Subsequent genomic

control (GC) [37] of the genome-wide association results was

performed under the null hypothesis that no SNP has an effect on

the climate phenotype. SNPs with minor allele frequency (MAF)

less than 0.05 were excluded from the analysis. A 5% Bonferroni-

corrected significance threshold was applied. As suggested by [30],

the significant SNPs were also analyzed using a Gamma

generalized linear model to exclude positive findings that might

be due to low allele frequencies of the high-variance SNP.

Statistical testing for associations between the CMT2STOP

polymorphism and phenotypes measured in a collection
of natural accessions

The CMT2STOP genotype was extracted from the publicly

available genome-wide genotype data with 107 phenotype

measured from [28]. The association between the CMT2STOP

genotype and each phenotype was tested by fitting a normal linear

mixed model to account for population stratification, where the

genomic kinship matrix was calculated by the ibs(, weight = ’freq’)

procedure in the GenABEL package [36], and the linear mixed

model was fitted using the hglm package [38].

Functional analysis of polymorphisms in loci with
significant genome-wide associations to climate

All the loci that showed genome-wide significance in the

association study was further characterized using the genome

sequences of 728 accessions sequenced as part of the 1001-

genomes project (http://1001genomes.org). Mutations within a

6100Kb interval of each leading SNP and that are in LD with the

leading SNP (r2.0.8) were reported (S1 Table). The consequences

of the identified polymorphisms were predicted using the Ensembl

variant effect predictor [39] and their putative effects on the

resulting protein estimated using the PASE (Prediction of Amino

acid Substitution Effects) tool [40].

Evaluation of TE-body methylation of CMT2STOP and
CMT2WT natural accessions

In a previous study, the methylation levels were scored at

43,182,344 sites across the genome using MethylC-sequencing in

152 natural A. thaliana accessions (data available at http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43857) [7]. 135 of

these accessions carried the CMT2WT and 17 the CMT2STOP

alleles. Upon further inspection, the accession Rd-0 was excluded

as it did not have sufficient sequence coverage to be used in the

analyses. For each accession, across all TEs, moving averages of

the CHH methylation level were calculated using a 100 bp sliding

window from the borders of the TEs. The same analysis was also

performed for four wild-type and four cmt2 knockout accessions

(data available at http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE41302) [24]. The results showing the TE-body CHH

methylation patterns are visualized in Fig. 4.

Heat-stress treatments on cmt2 knockouts and natural
CMT2STOP accessions.

A CMT2 T-DNA insertion line (SAIL_906_G03, cmt2-5

[24,41]) was ordered from NASC. Seeds of Col-0 wild-type and

cmt2-5 was then used for heat stress experiments based on a

previously described protocol [27]. This treatment was used

because it was shown to interfere with epigenetic gene silencing as

evident from transcription of some TE [27]. Seeds were plated on

K MS medium (0.8% agar, 1% sucrose), stratified for two days at

4uC in the dark and transferred to a growth chamber with 16 h

light (110 mmol m22 s21, 22uC) and 8 h dark (20uC) periods. Ten-

day-old seedlings were transferred to 4uC for one hour and
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subsequently placed for 6 h or 24 h at 37.5uC in the dark. Plant

survival was scored two days after 24 h of heat stress with complete

bleaching of shoot apices as lethality criterion (S46 Figure).

Experiments were repeated six times, each with ,30 plants per

genotype. Root length was measured immediately before the 6 h

heat stress and two days after heat stress.

A log-linear regression was conducted to test for the difference

in survival rate between Col-0 and cmt2-5 knockout, i.e.

log E
si

ti

� �� �
~b0zEizai

where si is the number of surviving plants of accession i, ti the

corresponding total number of plants, Ei the experiment effect, ai

the accession effect, and b0 an intercept. The model fitting

procedure was implemented using the glm() procedure in R, with

option family = gaussian(link = log), si as response, ti as offset,

and b0, Ei, ai as fixed effects.

Supporting Information

S1 Figure Summary of results for temperature seasonality. A:

Phenotypic and p-value distributions. Top-left: phenotypic

distribution; Top-right: -log10p-values after genomic control

(GC) against minor allele frequencies (MAF); Bottom panels:

Quantile-quantile plots of p-values and -log10p-values before

(blue) and after (green) GC. B: Genome-wide association mapping

for climate adaptability. The plotted -log10p-values are genomic

controlled. Markers with minor allele frequencies less than 5% are

removed. Chromosomes are distinguished by colors. The

Bonferroni-corrected significance threshold is marked by the

horizontal line.

(TIF)

S2 Figure Summary of results for maximum temperature in the

warmest month. A: Phenotypic and p-value distributions. Top-left:

phenotypic distribution; Top-right: -log10p-values after genomic

control (GC) against minor allele frequencies (MAF); Bottom

panels: Quantile-quantile plots of p-values and -log10p-values

before (blue) and after (green) GC. B: Genome-wide association

mapping for climate adaptability. The plotted -log10p-values are

genomic controlled. Markers with minor allele frequencies less

than 5% are removed. Chromosomes are distinguished by colors.

The Bonferroni-corrected significance threshold is marked by the

horizontal line.

(TIF)

S3 Figure Summary of results for minimum temperature in the

coldest month. A: Phenotypic and p-value distributions. Top-left:

phenotypic distribution; Top-right: -log10p-values after genomic

control (GC) against minor allele frequencies (MAF); Bottom

panels: Quantile-quantile plots of p-values and -log10p-values

before (blue) and after (green) GC. B: Genome-wide association

mapping for climate adaptability. The plotted -log10p-values are

genomic controlled. Markers with minor allele frequencies less

than 5% are removed. Chromosomes are distinguished by colors.

The Bonferroni-corrected significance threshold is marked by the

horizontal line.

(TIF)

S4 Figure Summary of results for precipitation in the wettest

month. A: Phenotypic and p-value distributions. Top-left:

phenotypic distribution; Top-right: -log10p-values after genomic

control (GC) against minor allele frequencies (MAF); Bottom

panels: Quantile-quantile plots of p-values and -log10p-values

before (blue) and after (green) GC. B: Genome-wide association

mapping for climate adaptability. The plotted -log10p-values are

genomic controlled. Markers with minor allele frequencies less

than 5% are removed. Chromosomes are distinguished by colors.

The Bonferroni-corrected significance threshold is marked by the

horizontal line.

(TIF)

S5 Figure Summary of results for precipitation in the driest

month. A: Phenotypic and p-value distributions. Top-left:

phenotypic distribution; Top-right: -log10p-values after genomic

control (GC) against minor allele frequencies (MAF); Bottom

panels: Quantile-quantile plots of p-values and -log10p-values

before (blue) and after (green) GC. B: Genome-wide association

mapping for climate adaptability. The plotted -log10p-values are

genomic controlled. Markers with minor allele frequencies less

than 5% are removed. Chromosomes are distinguished by colors.

The Bonferroni-corrected significance threshold is marked by the

horizontal line.

(TIF)

S6 Figure Summary of results for precipitation CV. A:

Phenotypic and p-value distributions. Top-left: phenotypic

distribution; Top-right: -log10p-values after genomic control

(GC) against minor allele frequencies (MAF); Bottom panels:

Quantile-quantile plots of p-values and -log10p-values before

(blue) and after (green) GC. B: Genome-wide association mapping

for climate adaptability. The plotted -log10p-values are genomic

controlled. Markers with minor allele frequencies less than 5% are

removed. Chromosomes are distinguished by colors. The

Bonferroni-corrected significance threshold is marked by the

horizontal line.

(TIF)

S7 Figure Summary of results for photosynthetically active

radiation in spring. A: Phenotypic and p-value distributions. Top-

left: phenotypic distribution; Top-right: -log10p-values after

genomic control (GC) against minor allele frequencies (MAF);

Bottom panels: Quantile-quantile plots of p-values and -log10p-

values before (blue) and after (green) GC. B: Genome-wide

association mapping for climate adaptability. The plotted -log10p-

values are genomic controlled. Markers with minor allele

frequencies less than 5% are removed. Chromosomes are

distinguished by colors. The Bonferroni-corrected significance

threshold is marked by the horizontal line.

(TIF)

S8 Figure Summary of results for length of the growing season.

A: Phenotypic and p-value distributions. Top-left: phenotypic

distribution; Top-right: -log10p-values after genomic control (GC)

against minor allele frequencies (MAF); Bottom panels: Quantile-

quantile plots of p-values and -log10p-values before (blue) and

after (green) GC. B: Genome-wide association mapping for climate

adaptability. The plotted -log10p-values are genomic controlled.

Markers with minor allele frequencies less than 5% are removed.

Chromosomes are distinguished by colors. The Bonferroni-

corrected significance threshold is marked by the horizontal line.

(TIF)

S9 Figure Summary of results for number of consecutive cold

days. A: Phenotypic and p-value distributions. Top-left: pheno-

typic distribution; Top-right: -log10p-values after genomic control

(GC) against minor allele frequencies (MAF); Bottom panels:

Quantile-quantile plots of p-values and -log10p-values before

(blue) and after (green) GC. B: Genome-wide association mapping

for climate adaptability. The plotted -log10p-values are genomic

controlled. Markers with minor allele frequencies less than 5% are

removed. Chromosomes are distinguished by colors. The
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Bonferroni-corrected significance threshold is marked by the

horizontal line.

(TIF)

S10 Figure Summary of results for number of consecutive frost-

free days. A: Phenotypic and p-value distributions. Top-left:

phenotypic distribution; Top-right: -log10p-values after genomic

control (GC) against minor allele frequencies (MAF); Bottom

panels: Quantile-quantile plots of p-values and -log10p-values

before (blue) and after (green) GC. B: Genome-wide association

mapping for climate adaptability. The plotted -log10p-values are

genomic controlled. Markers with minor allele frequencies less

than 5% are removed. Chromosomes are distinguished by colors.

The Bonferroni-corrected significance threshold is marked by the

horizontal line.

(TIF)

S11 Figure Summary of results for relative humidity in spring.

A: Phenotypic and p-value distributions. Top-left: phenotypic

distribution; Top-right: -log10p-values after genomic control (GC)

against minor allele frequencies (MAF); Bottom panels: Quantile-

quantile plots of p-values and -log10p-values before (blue) and

after (green) GC. B: Genome-wide association mapping for climate

adaptability. The plotted -log10p-values are genomic controlled.

Markers with minor allele frequencies less than 5% are removed.

Chromosomes are distinguished by colors. The Bonferroni-

corrected significance threshold is marked by the horizontal line.

(TIF)

S12 Figure Summary of results for day-length in spring. A:

Phenotypic and p-value distributions. Top-left: phenotypic

distribution; Top-right: -log10p-values after genomic control

(GC) against minor allele frequencies (MAF); Bottom panels:

Quantile-quantile plots of p-values and -log10p-values before

(blue) and after (green) GC. B: Genome-wide association mapping

for climate adaptability. The plotted -log10p-values are genomic

controlled. Markers with minor allele frequencies less than 5% are

removed. Chromosomes are distinguished by colors. The

Bonferroni-corrected significance threshold is marked by the

horizontal line.

(TIF)

S13 Figure Summary of results for aridity index. A: Phenotypic

and p-value distributions. Top-left: phenotypic distribution; Top-

right: -log10p-values after genomic control (GC) against minor

allele frequencies (MAF); Bottom panels: Quantile-quantile plots

of p-values and -log10p-values before (blue) and after (green) GC.

B: Genome-wide association mapping for climate adaptability.

The plotted -log10p-values are genomic controlled. Markers with

minor allele frequencies less than 5% are removed. Chromosomes

are distinguished by colors. The Bonferroni-corrected significance

threshold is marked by the horizontal line.

(TIF)

S14 Figure Principle components of the genomic kinship for the

two alleles on chromosome 2 at 12,169,701 bp. Corresponding

climate variable: temperature seasonality. A: Genomic kinship

principle components categorized based on geographical regions.

B: Genomic kinship principle components colored based on the

scale of the climate variable. The colors scale from pure blue (the

minimum climate variable value) to pure red (the maximum

value).

(TIF)

S15 Figure Principle components of the genomic kinship for the

two alleles on chromosome 4 at 10,406,018 bp. Corresponding

climate variable: temperature seasonality. A: Genomic kinship

principle components categorized based on geographical regions.

B: Genomic kinship principle components colored based on the scale

of the climate variable. The colors scale from pure blue (the minimum

climate variable value) to pure red (the maximum value).

(TIF)

S16 Figure Principle components of the genomic kinship for the

two alleles on chromosome 1 at 6,936,457 bp. Corresponding

climate variable: maximum temperature in the warmest month. A:

Genomic kinship principle components categorized based on

geographical regions. B: Genomic kinship principle components

colored based on the scale of the climate variable. The colors scale

from pure blue (the minimum climate variable value) to pure red

(the maximum value).

(TIF)

S17 Figure Principle components of the genomic kinship for the

two alleles on chromosome 2 at 18,620,697 bp. Corresponding

climate variable: minimum temperature in the coldest month. A:

Genomic kinship principle components categorized based on

geographical regions. B: Genomic kinship principle components

colored based on the scale of the climate variable. The colors scale

from pure blue (the minimum climate variable value) to pure red

(the maximum value).

(TIF)

S18 Figure Principle components of the genomic kinship for the

two alleles on chromosome 2 at 19,397,389 bp. Corresponding

climate variable: minimum temperature in the coldest month. A:

Genomic kinship principle components categorized based on

geographical regions. B: Genomic kinship principle components

colored based on the scale of the climate variable. The colors scale

from pure blue (the minimum climate variable value) to pure red

(the maximum value).

(TIF)

S19 Figure Principle components of the genomic kinship for the

two alleles on chromosome 5 at 14,067,526 bp. Corresponding

climate variable: minimum temperature in the coldest month. A:

Genomic kinship principle components categorized based on

geographical regions. B: Genomic kinship principle components

colored based on the scale of the climate variable. The colors scale

from pure blue (the minimum climate variable value) to pure red

(the maximum value).

(TIF)

S20 Figure Principle components of the genomic kinship for the

two alleles on chromosome 5 at 18,397,418 bp. Corresponding

climate variable: minimum temperature in the coldest month. A:

Genomic kinship principle components categorized based on

geographical regions. B: Genomic kinship principle components

colored based on the scale of the climate variable. The colors scale

from pure blue (the minimum climate variable value) to pure red

(the maximum value).

(TIF)

S21 Figure Principle components of the genomic kinship for the

two alleles on chromosome 2 at 18,620,697 bp. Corresponding

climate variable: number of consecutive cold days. A: Genomic

kinship principle components categorized based on geographical

regions. B: Genomic kinship principle components colored based

on the scale of the climate variable. The colors scale from pure

blue (the minimum climate variable value) to pure red (the

maximum value).

(TIF)

S22 Figure Principle components of the genomic kinship for the

two alleles on chromosome 2 at 19,397,389 bp. Corresponding
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climate variable: number of consecutive cold days. A: Genomic

kinship principle components categorized based on geographical

regions. B: Genomic kinship principle components colored based

on the scale of the climate variable. The colors scale from pure

blue (the minimum climate variable value) to pure red (the

maximum value).

(TIF)

S23 Figure Principle components of the genomic kinship for the

two alleles on chromosome 5 at 7,492,277 bp. Corresponding

climate variable: number of consecutive cold days. A: Genomic

kinship principle components categorized based on geographical

regions. B: Genomic kinship principle components colored based

on the scale of the climate variable. The colors scale from pure

blue (the minimum climate variable value) to pure red (the

maximum value).

(TIF)

S24 Figure Principle components of the genomic kinship for the

two alleles on chromosome 5 at 18,397,418 bp. Corresponding

climate variable: number of consecutive cold days. A: Genomic

kinship principle components categorized based on geographical

regions. B: Genomic kinship principle components colored based

on the scale of the climate variable. The colors scale from pure

blue (the minimum climate variable value) to pure red (the

maximum value).

(TIF)

S25 Figure Principle components of the genomic kinship for the

two alleles on chromosome 2 at 12,169,701 bp. Corresponding

climate variable: day length in spring. A: Genomic kinship

principle components categorized based on geographical regions.

B: Genomic kinship principle components colored based on the

scale of the climate variable. The colors scale from pure blue (the

minimum climate variable value) to pure red (the maximum

value).

(TIF)

S26 Figure Principle components of the genomic kinship for the

two alleles on chromosome 3 at 12,642,006 bp. Corresponding

climate variable: day length in spring. A: Genomic kinship principle

components categorized based on geographical regions. B:

Genomic kinship principle components colored based on the scale

of the climate variable. The colors scale from pure blue (the

minimum climate variable value) to pure red (the maximum value).

(TIF)

S27 Figure Principle components of the genomic kinship for the

two alleles on chromosome 4 at 14,788,320 bp. Corresponding

climate variable: day length in spring. A: Genomic kinship

principle components categorized based on geographical regions.

B: Genomic kinship principle components colored based on the

scale of the climate variable. The colors scale from pure blue (the

minimum climate variable value) to pure red (the maximum

value).

(TIF)

S28 Figure Principle components of the genomic kinship for the

two alleles on chromosome 3 at 1,816,353 bp. Corresponding

climate variable: relative humidity in spring. A: Genomic kinship

principle components categorized based on geographical regions. B:

Genomic kinship principle components colored based on the scale

of the climate variable. The colors scale from pure blue (the

minimum climate variable value) to pure red (the maximum value).

(TIF)

S29 Figure Principle components of the genomic kinship for the

two alleles on chromosome 4 at 14,834,441 bp. Corresponding

climate variable: relative humidity in spring. A: Genomic kinship

principle components categorized based on geographical regions. B:

Genomic kinship principle components colored based on the scale

of the climate variable. The colors scale from pure blue (the

minimum climate variable value) to pure red (the maximum value).

(TIF)

S30 Figure Principle components of the genomic kinship for the

two alleles on chromosome 5 at 8,380,640 bp. Corresponding

climate variable: relative humidity in spring. A: Genomic kinship

principle components categorized based on geographical regions.

B: Genomic kinship principle components colored based on the

scale of the climate variable. The colors scale from pure blue (the

minimum climate variable value) to pure red (the maximum

value).

(TIF)

S31 Figure Principle components of the genomic kinship for the

two alleles on chromosome 3 at 576,148 bp. Corresponding climate

variable: length of the growing season. A: Genomic kinship

principle components categorized based on geographical regions.

B: Genomic kinship principle components colored based on the

scale of the climate variable. The colors scale from pure blue (the

minimum climate variable value) to pure red (the maximum value).

(TIF)

S32 Figure Principle components of the genomic kinship for the

two alleles on chromosome 1 at 953,031 bp. Corresponding

climate variable: number of consecutive frost-free days. A:

Genomic kinship principle components categorized based on

geographical regions. B: Genomic kinship principle components

colored based on the scale of the climate variable. The colors scale

from pure blue (the minimum climate variable value) to pure red

(the maximum value).

(TIF)

S33 Figure Principle components of the genomic kinship for the

two alleles on chromosome 1 at 6,463,065 bp. Corresponding

climate variable: number of consecutive frost-free days. A:

Genomic kinship principle components categorized based on

geographical regions. B: Genomic kinship principle components

colored based on the scale of the climate variable. The colors scale

from pure blue (the minimum climate variable value) to pure red

(the maximum value).

(TIF)

S34 Figure Principle components of the genomic kinship for the

two alleles on chromosome 2 at 9,904,076 bp. Corresponding

climate variable: number of consecutive frost-free days. A:

Genomic kinship principle components categorized based on

geographical regions. B: Genomic kinship principle components

colored based on the scale of the climate variable. The colors scale

from pure blue (the minimum climate variable value) to pure red

(the maximum value).

(TIF)

S35 Figure Principle components of the genomic kinship for the

two alleles on chromosome 5 at 18,061,531 bp. Corresponding

climate variable: number of consecutive frost-free days. A:

Genomic kinship principle components categorized based on

geographical regions. B: Genomic kinship principle components

colored based on the scale of the climate variable. The colors scale

from pure blue (the minimum climate variable value) to pure red

(the maximum value).

(TIF)

S36 Figure Comparison between the RegMap and 1001ge-

nomes collections in terms of the allele-frequency of CMT2STOP
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across different geographic regions in the Eurasian A. thaliana
population. The numbers in the bars are the number of

CMT2STOP alleles in this area.

(TIF)

S37 Figure Defined geographical regions across the Eurasian

sampling area.

(TIF)

S38 Figure CMT2-by-temperature interaction effects on leaf

serration. The analysis was performed using the genome-wide

association data reported by [28]. Each point is the mean leaf

serration level of a combination of CMT2 genotype and temperature.

The vertical bars represent standard errors of the mean estimates.

(TIF)

S39 Figure Associations between the CMT2STOP genotype and

the 107 scored phenotypes in [28]. The most significant three

associations are labeled in pink, with a false discovery rate of 0.17.

The definition of each labeled phenotype should be referred to the

Tables in [28].

(TIF)

S40 Figure Comparison between the correlations among the

climate variables (upper triangle) and the overlap in variance-

heterogeneity GWA profiles (lower triangle). Numbers shown in

the figure are percentages. Pearson’s correlation coefficients were

calculated for each pair of the climate variables. Overlaps in GWA

profiles were calculated as the proportion of shared SNPs above

the threshold of 1.061024.

(TIF)

S41 Figure Comparison between the correlations among the

residual climate variables after genomic kinship correction (upper

triangle) and the overlap in variance-heterogeneity GWA profiles

(lower triangle). Numbers shown in the figure are percentages.

Pearson’s correlation coefficients were calculated for each pair of

the climate variables. Overlaps in GWA profiles were calculated as

the proportion of shared SNPs above the threshold of 1.061024.

(TIF)

S42 Figure Comparison between the correlations among the

residual climate variables after genomic kinship correction (upper

triangle) and the correlations among the original climate variables

(lower triangle). Numbers shown in the figure are percentages.

Pearson’s correlation coefficients were calculated for each pair of

the climate variables.

(TIF)

S43 Figure Comparison between the correlations among the

climate variables (upper triangle) and the overlap in ordinary GWA

profiles (lower triangle). Numbers shown in the figure are percentages.

Pearson’s correlation coefficients were calculated for each pair of the

climate variables. Overlaps in GWA profiles were calculated as the

proportion of shared SNPs above the threshold of 1.061024.

(TIF)

S44 Figure Comparison between the correlations among the

climate variables (upper triangle) and the overlap in simple GWA

profiles without correction for population structure (lower

triangle). Numbers shown in the figure are percentages. Pearson’s

correlation coefficients were calculated for each pair of the climate

variables. Overlaps in GWA profiles were calculated as the

proportion of shared SNPs above the threshold of 1.061024.

(TIF)

S45 Figure Gene-model of CMT2 and T-DNA insertion

confirmation. Boxes indicate exons, lines represent introns. The

triangle shows the T-DNA insertion site. Arrow heads indicate the

location of primers that were used to assay CMT2 transcripts.

CMT2: PCR reaction with CMT2-specific primers, PP2A: PCR

reaction with PP2A-specific primers. Lanes 1: cmt2-5 cDNA,

lanes 2: Col cDNA, lanes 3: Col genomic DNA, lanes 4: no

template controls. CMT2 cDNA and genomic DNA are predicted

to give 940bp and 1159bp bands, respectively. PP2A cDNA and

genomic DNA are predicted to give 84 bp and 210 bp bands,

respectively.

(TIF)

S46 Figure Prolonged heat stress is often lethal. Ten-day-old

seedlings were heat-stressed at 37.5uC for 24 h based on a

published protocol [27]. Plants were counted as non-viable if shoot

apices were completely bleached. Note that the lamina of

cotyledons often remains green for a longer time but no recovery

was observed if apices were bleached.

(TIF)

S1 Table Detailed information about the missense mutations

significantly associated with climate adaptability of Arabidopsis
thaliana.

(PDF)

S2 Table Loci significantly associated with climate adaptability

of Arabidopsis thaliana but without non-synonymous mutations in

high LD detected. P-values were obtained from linear regression of

squared z-scores. GC P-values were the P-values after genomic

control. Gamma P-values were obtained by fitting generalized

linear models with Gamma response. Pleiotropic loci are marked

with stars. bp = base pair; MAF = minor allele frequency.

(PDF)

S3 Table Experimental data of the heat-stress treatment on Col-

0 and cmt2 knockouts.

(PDF)

S4 Table Experimental data of root growth (mm) of Col-0 and

cmt2 knockouts, with and without 6 h heat stress.

(PDF)

S1 Text Additional results, methods, source-code and com-

ments.

(PDF)
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(2004) Galactinol synthase1. A novel heat shock factor target gene responsible

for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis.

Plant Physiology 136: 3148–3158. doi:10.1104/pp.104.042606.

22. Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, et al. (2002) Important roles of

drought- and cold-inducible genes for galactinol synthase in stress tolerance in

Arabidopsis thaliana. Plant J 29: 417–426.

23. Barrick JE, Lenski RE (2013) Genome dynamics during experimental evolution.

Nat Rev Genet 14: 827–839. doi:10.1038/nrg3564.

24. Zemach A, Kim MY, Hsieh P-H, Coleman-Derr D, Eshed-Williams L, et al.

(2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyl-

transferases to access H1-containing heterochromatin. Cell 153: 193–205.

doi:10.1016/j.cell.2013.02.033.

25. Stroud H, Do T, Du J, Zhong X, Feng S, et al. (2013) Non-CG methylation

patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 21:

64–72. doi:10.1038/nsmb.2735.

26. Joshua G Dunn CKFNGBERGJSW (2014) Correction: Ribosome profiling

reveals pervasive and regulated stop codon readthrough in Drosophila

melanogaster. eLife 3. doi:10.7554/eLife.03178.

27. Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, et al. (2011) An siRNA

pathway prevents transgenerational retrotransposition in plants subjected to

stress. Nature 472: 115–119. doi:10.1038/nature09861.
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