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Abstract

Genome-wide association studies (GWAS) and subsequent dense-genotyping of associated loci identified over a hundred
single-nucleotide polymorphism (SNP) variants associated with the risk of rheumatoid arthritis (RA), type 1 diabetes (T1D),
and celiac disease (CeD). Immunological and genetic studies suggest a role for CD4-positive effector memory T (CD+ TEM)
cells in the pathogenesis of these diseases. To elucidate mechanisms of autoimmune disease alleles, we investigated
molecular phenotypes in CD4+ effector memory T cells potentially affected by these variants. In a cohort of genotyped
healthy individuals, we isolated high purity CD4+ TEM cells from peripheral blood, then assayed relative abundance,
proliferation upon T cell receptor (TCR) stimulation, and the transcription of 215 genes within disease loci before and after
stimulation. We identified 46 genes regulated by cis-acting expression quantitative trait loci (eQTL), the majority of which
we detected in stimulated cells. Eleven of the 46 genes with eQTLs were previously undetected in peripheral blood
mononuclear cells. Of 96 risk alleles of RA, T1D, and/or CeD in densely genotyped loci, eleven overlapped cis-eQTLs, of
which five alleles completely explained the respective signals. A non-coding variant, rs389862A, increased proliferative
response (p = 4.7561028). In addition, baseline expression of seventeen genes in resting cells reliably predicted proliferative
response after TCR stimulation. Strikingly, however, there was no evidence that risk alleles modulated CD4+ TEM abundance
or proliferation. Our study underscores the power of examining molecular phenotypes in relevant cells and conditions for
understanding pathogenic mechanisms of disease variants.
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Introduction

Memory T cells are an important component of the adaptive

immune system. They circulate between lymphoid organs, blood,

and peripheral tissues, and facilitate faster and more aggressive

immune response to antigens after re-exposure. CD4-positive

effector memory T (CD4+ TEM) cells are known to migrate to

peripheral sites of inflammation upon activation, and rapidly

produce both Th1 and Th2 cytokines [1]. Investigators have long

suggested their involvement in autoimmune diseases including

rheumatoid arthritis (RA), type I diabetes (T1D), and celiac disease

(CeD) [2–5]. However, whether changes in cell population subsets

and functions are causal or reactive to disease is uncertain. One

strategy to answer this question is to examine potential interme-

diate molecular phenotypes, and identify those modulated by

genetic variants. In order to understand the pathogenic roles of

CD4+ TEM cells in autoimmunity, we aimed to characterize the

variation in their phenotypic and functional markers in a healthy

PLOS Genetics | www.plosgenetics.org 1 June 2014 | Volume 10 | Issue 6 | e1004404

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1004404&domain=pdf


population, and to identify whether these markers intersect with

the genetic basis for autoimmunity.

The majority of autoimmune disease risk variants are located in

non-coding regions of the genome. It is reasonable to hypothesize

that a subset of them causes disease by altering gene regulatory

mechanisms as expression quantitative trait loci (eQTL) [6–9]. So

far, studies of gene regulation have largely been carried out in cell

lines and primary resting blood cells including undifferentiated

CD4+ T cells, B cells, monocytes, and dendritic cells [8,10–12].

However, to understand the pathogenic mechanisms of risk

variants, especially when studying the immune system where cells

are highly diverse and functionally specialized, it is crucial to focus

on relevant cell types and stimulated cellular states.

We have previously shown that genes within RA risk loci were most

specifically expressed in CD4+ TEM cells, compared to more than 200

other immune cell types of various lineages and developmental stages

(p = 1.0061028; Figure S1) [13]. Celiac disease and T1D loci were

also enriched for genes specifically expressed in CD4+ TEM cells

(p = 1.4361025 and 1.2961024, respectively; Figure S1) [13]. Non-

coding single nucleotide polymorphisms (SNPs) associated with RA

significantly overlap chromatin marks of trimethylation of histone H3

at lysine 4 (H3K4me3) specifically in CD4+ regulatory and memory T

cells (p = 1.361024 and 7.061024, respectively) [14].

We hypothesized that the risk alleles of these conditions might

influence CD4+ TEM quantitative molecular phenotypes: 1) the

expression of immune-related genes; 2) the relative abundance of

CD4+ TEM cells in peripheral blood; and 3) proliferative response

to T cell receptor (TCR) stimulation. To this end, we undertook a

large immunoprofiling study in a healthy population of 174

European-descent individuals, by cross-analyzing genotype, tran-

scription, abundance, and proliferative response in primary CD4+

TEM cells. Because the post-stimulation activation of CD4+ TEM

cells is presumably crucial for their autoimmune response, we

assayed cells not only at rest, but also after T cell receptor (TCR)

stimulation with anti-CD3/CD28 beads. As such, this study is the

first to our knowledge to map expression quantitative trait loci and

examine immunological cellular traits in primary CD4+ TEM cells

under multiple states.

Using the ImmunoChip platform, investigators recently densely

genotyped 186 loci disease that originally arose through genome-

wide association studies (GWAS) in case-control samples for RA,

CeD, and inflammatory bowel disease [15–17], as well as T1D

(unpublished data). Dense genotyping allowed localization of

association signals within these disease loci to a set of alleles that

are very likely to be causal. Within these loci, we have a greater

ability to identify co-localization between alleles driving variation

in molecular phenotypes (such as eQTLs) and the disease risk

alleles. However, in instances where multiple variants are in

perfect linkage, we cannot pinpoint the exact causal variant

without functional evaluation.

Results

The experimental protocol (Figure 1) is described in detail in

Methods and Text S1. Briefly, we obtained peripheral blood

mononuclear cells (PBMCs) from the whole blood of healthy

individuals via Ficoll-Paque centrifugation, and then used mag-

netic- and fluorescence-activated cell sorting to isolate CD4+ TEM

cells at a high degree of purity (.90%; see Figure S2A). We

acquired genome-wide genotype data of about 640,000 SNPs on

Illumina Infinium Human OmniExpress Exome BeadChips [18].

For each individual we then measured three quantitative

phenotypes: 1) the expression of 215 genes (see Table S1) before

and after T cell receptor (TCR) stimulation by anti-CD3/CD28

antibody beads; 2) the relative abundance of CD4+ TEM cells

(CD45RA2/CD45RO+/CD62L2/low) as a proportion of total

CD4+ T cells; and 3) proliferation upon stimulation. Since we had

low numbers of primary cells for expression profiling, we used the

highly sensitive NanoString nCounter assay to avoid biases

potentially induced by cDNA preparation. Out of the 215 genes

assayed, 115 were within densely genotyped disease risk loci (see

Tables S2 and S3). We quantified CD4+ TEM cell abundance

with X-Cyt, an automated statistical method that accurately

identifies cell populations in cytometry data [19].

Mapping cis-eQTLs that regulate genes in risk loci
We first aimed to identify SNP variants that regulated

expression of genes in cis. To best localize eQTL signals, we

imputed 1000 Genomes variants within 250 kb from the

transcription start site (TSS) of each gene (excluding five HLA

genes and five long non-coding RNAs). We tested SNPs in gene-

coding and non-coding regions in both resting and stimulated

CD4+ TEM cells. We included gender and the top five principal

components of the genotype data (calculated by EIGENSTRAT)

as covariates in regression. To adjust for multiple hypothesis

testing, we conducted 10,000 permutations within each gene

region to calculate empirical p-values, and then reported

associations at a false discovery rate of 5%.

In total, we observed 46 genes (22.4%) with cis-eQTL signals,

including 17 in resting cells and 43 in stimulated cells (Tables 1
and 2, Figure 2A). For 14 of the 46 genes (30.4%), we detected

eQTL signals in both resting (14/17, 82.4%) and stimulated (14/

43, 32.6%) states. In four of these 14 genes (FHL3, GRB10,

IL18R1, and PIGC), the lead eQTL SNPs across resting and

stimulated states were identical. In another five genes (C1QTNF6,

PRDM1, SKAP2, DDX6, and LYRM7), the lead SNPs are in tight

LD (r2 = 0.80,1; based on 1000 Genomes Release 2, European

samples). For the remaining five genes (BLK, TMPRSS3, CD101,

ORMDL3, and GSDMB), the lead SNPs from the two states were in

partial LD (0.42,r2,0.56). In these five cases, we could not be

confident that the eQTL SNPs across stimulation states were

tagging the same variant.

Author Summary

Genome-wide association studies have identified hun-
dreds of genetic variants associated to autoimmune
diseases. To understand the mechanisms and pathways
affected by these variants, follow-up studies of molecular
phenotypes and functions are required. Given the diversity
of cell types and specialization of functions within the
immune system, it is crucial that such studies focus on
specific and relevant cell types. Here, we studied genetic
and cellular traits of CD4-positive effector memory T (CD4+

TEM) cells, which are particularly important in the onset of
rheumatoid arthritis, celiac disease, and type 1 diabetes. In
a cohort of healthy individuals, we purified CD4+ TEM cells,
assayed genome-wide single nucleotide polymorphisms
(SNPs), abundance of CD4+ TEM cells in blood, proliferation
upon T cell receptor stimulation, and 215 gene transcripts
in resting and stimulated states. We found that expression
levels of 46 genes were regulated by nearby SNPs,
including disease-associated SNPs. Many of these expres-
sion quantitative trait loci were not previously seen in
studies of more heterogeneous peripheral blood cells. We
demonstrated that relative abundance and proliferative
response of CD4+ TEM cells varied in the population,
however disease alleles are unlikely to confer risk by
modulating these traits in this cell type.

Autoimmune Alleles and eQTLs in CD4 Effector Memory T Cells
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Three genes (IL23R, PLCH2, and RGS1) had statistically

significant eQTLs exclusively in the resting state, while 29 genes

had statistically significant eQTLs exclusively in stimulated cells,

such as rs942793 associated with ZMIZ1 expression (Figure 2B).

One possibility is that some SNPs failed to reach significance

threshold due to the small sample size or low expression levels in

resting cells. However, we observed many genes with truly state-

specific eQTLs, where the estimated effect sizes (b) of the eQTL

SNP differed significantly across resting and stimulated states. To

systematically compare the brest and bstim for each gene, we used a

z-statistic to quantify the probability that they differ. We then

reported the p-value (two-tailed) assuming that z is distributed as

standard normal, considering p,0.05 to be significantly different

(‘‘state-specific’’; see Tables 1 and 2). For example, rs12746918T

increased the expression of PLCH2 significantly only in resting

cells; and brest was approximately twice as large as bstim

(Figure 2C). We note that 1 of the 3 eQTLs in resting cells

was state-specific (p,0.05), and 13 out the 29 eQTLs seen in

stimulated cells were state-specific (p,0.05). Of the 14 eQTLs that

were shared between resting and stimulated cells, only 4 of them,

BLK (Figure 2D), CD101, PIGC, and PRDM1, had different b’s

across states. The abundance of eQTLs detected exclusively in

stimulated cells underscores the importance of studying cells in

different cellular states.

We wanted to assess whether the eQTLs might act by altering

gene regulatory elements in CD4+ TEM cells. To this end we asked

whether the eQTL SNPs co-localized with marks of active

promoters or enhancers. We utilized H3K4me3 marks from the

NIH Roadmap Epigenomics Mapping Consortium [20] measured

by ChIP-seq in primary CD4+ memory T cells. For the SNP with

the strongest association to each gene, we queried the distance of the

nearest H3K4me3 mark to this SNP or its LD partners (r2.0.8). We

compared this distance measure between two sets of SNPs: the 46

SNPs with significant eQTL associations (FDR,5%, resting or

stimulated), and the SNPs most strongly correlated with the other

159 genes but did not reach significance threshold. Indeed, the 46

significant eQTL SNPs were located at smaller distances to

H3K4me3 marks (p = 1.1061027, one-sided Mann-Whitney test,

Figure S3A). In addition, we queried the height of each H3K4me3

mark’s peak, which reflected the number of reads at a given position

compared to genomic controls as defined by the MACS software

package. A tall peak gives us confidence that the mark is present in a

large proportion of cells. Comparing the marks nearest to the two

sets of SNPs, we saw that the 46 eQTL SNPs were also located near

taller peaks (p = 9.5661028, Figure S3B).

Many eQTLs are CD4+ TEM cell-specific
We compared the cis-eQTLs we discovered to those found in

heterogeneous peripheral blood mononuclear cells (PBMC) in a

large genome-wide eQTL meta-study (n = 5,331) conducted by

Westra et al. [8]. At 5% FDR, eleven of the 46 eQTL genes we

identified showed no detectable signal in PBMCs at 50% FDR.

We saw significant associations in 131 genes at 50% FDR, 53 of

which had no signal in PBMCs at 50% FDR (Tables 1 and 2).

We hypothesized that these genes tended to be more specifically

expressed in CD4+ TEM cells, thus making eQTLs readily

detectable in the purified cell population. To assess this, we

examined cell-specific expression of the genes the ImmGen

dataset, which assayed the genome-wide expression in 247 murine

mouse immunological cell types [13,21]. We found that the genes

with CD4+ TEM cell-specific eQTLs (at 50% FDR) were more

specifically expressed in CD4+ TEM cells than genes with eQTLs

detected in both datasets (p = 0.044, one-sided Mann-Whitney

test).

Autoimmune disease alleles affect the transcription of
genes in cis

We then focused on 115 genes near 96 risk alleles of RA, T1D,

and/or CeD in densely genotyped loci (182 gene-SNP pairs,

including two risk alleles shared by at least two diseases, see

Tables S2 and S3). We discovered that eleven (11.4%) disease-

associated SNPs (6 of 24 RA SNPs, 5 of 37 T1D SNPs, and 3 of 37

CeD SNPs) correlated significantly with the expression of ten

genes in either resting or stimulated state (Table S3). In addition,

there was substantial enrichment of nominally significant associ-

ations (p,0.05) among disease SNPs. By random chance, we

expected about nine SNP-gene pairs to reach nominal association

Figure 1. Schematic of the experimental workflow. We collected
four types of data from each individual: 1) quality-controlled genome-
wide SNP data containing 638,347 markers collected on Illumina
Infinium Human OmniExpress Exome BeadChips, 2) abundance of CD4
TEM cells as a percentage of all CD4 T cells obtained by FACS and
quantified by X-Cyt, 3) average cell division upon T cell receptor
stimulation by anti-CD3/CD28 commercial beads, measured using a
CFSE (carboxyfluorescein succinimidyl ester) dye dilution assay, and 4)
expression of 215 genes measured by NanoString nCounter. We
repeated each proliferation assay in two-three technical replicates. Cell
sorting purity and replication correlations for CD4 TEM abundance,
division index, and proliferation index are shown in Figure S2.
doi:10.1371/journal.pgen.1004404.g001

Autoimmune Alleles and eQTLs in CD4 Effector Memory T Cells
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in each stimulation state. However, we observed 26 pairs (14.2%)

with nominal association in resting cells (p = 4.6761027, one-tailed

binomial test). Even more strikingly, we observed 45 pairs (24.7%)

with nominal association in stimulated cells (p,10215, one-tailed

binomial test).

To identify those instances where the disease-associated SNP

could explain the entire eQTL signal in the gene region, we

applied conditional analysis to identify any residual signals after

controlling for the disease SNP. In five of the ten genes (BLK,

C5orf30, GSDMB, IRF5, PLEK), conditioning on the disease SNP

obviated any remaining eQTL signal in the region (no SNP with

permutation p-value ,0.05; Figure 3), suggesting that there was a

single variant (the disease-associated SNP or one in very high LD

to it) that drove variation in expression. Interestingly, as previously

noted, the lead SNPs in resting and stimulated states for BLK and

GSDMB were in partial linkage to each other. The absence of

residual eQTL signal upon conditioning on the same risk allele

might suggest that the lead SNPs were indeed tagging the same

causal SNP in each of these genes. In each of the other five genes

(ORMDL3, SKAP2, TMPRSS3, TNFRSF14, and ZMIZ1), evidence

of independent eQTL effect remained after conditional analysis.

In these instances the disease-associated SNP and remaining lead

signal are in partial linkage disequilibrium (r2 = 0.36–0.73). In

these cases, we could not conclude whether the disease SNPs drove

the alteration in expression, or whether the true causal SNPs were

in partial linkage and caused spurious associations. It is probable

that disease risk alleles were indeed causal, yet we could not

confidently fine-map the effect due to experimental noise in

expression assays or inadequate sampling.

We note that another 26 genes within disease loci associated

contained cis-eQTL signals, but that these cis-eQTL signals did not

co-localize with RA, T1D, or CeD alleles. As these loci had been

fine-mapped using Immunochip, the lack of overlap strongly

suggested that these cis-eQTLs and disease-causing variants were

distinct. For example, rs798000 is an RA risk allele located in a

non-coding region upstream of CD2, CD58, and PTGFRN.

However, it was not associated with the expression of any of

these genes (p.0.5). Another example was rs6911690, an RA

allele located about 60 kb 59 of PRDM1, that was not associated

with the expression of the gene at rest or after stimulation (p.0.5).

The lead eQTL SNP associated to PRDM1 was rs578653 (FDR,

1023), which was not in LD with the disease allele (r2,0.05).

Figure 2. State-specific effects of eQTL SNPs. A) For a subset of genes, the correlation effects (b) of the top associated SNP across resting and
stimulated cells differed. The genes shown with a black-dotted vertical lines had significantly different effect sizes across states. Black horizontal
segments in B)–D) denote median values. Blue panels show resting-state (normalized) expression values; red panels show stimulated expression
values. B) rs942793G significantly increased the expression of ZMIZ1 only in stimulated cells. C) rs12746918T was correlated with increased expression
of PLCH2 in resting cells only. D) rs4840565C decreased BLK expression in stimulated cells nearly twice as much as in resting cells [brest(SE) = 2
0.366(0.085), bstim = 20.805(0.071)].
doi:10.1371/journal.pgen.1004404.g002
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The genetic basis of CD4+ TEM cell proliferation
The relative peripheral abundance of CD4+ TEM cells varied

between individuals (mean = 9.57%; SD = 4.85%), and was

reproducible 35 individuals with two separate blood draws more

than one month apart (Pearson’s r = 0.87, p = 1.77610211, see also

Figure S2B). Consistent with other studies, we observed that the

relative proportion of CD4+ TEM cells increased with age by

0.11% per year (page = 1.9261023) [22]. We also observed that on

average men had 2.22% more CD4+ TEM cells than women

(pgender = 3.8061022; see Figure S4). Upon anti-CD3/CD28

stimulation, there was a substantial inter-individual variation in

proliferation measured by both division index (DI, average

number of divisions undergone by all cells; mean = 1.46,

SD = 0.35), and proliferation index (PI, average number of

divisions undergone only by dividing cells; mean = 2.16,

SD = 0.21). Proliferation metrics were also reproducible in the

35 individuals (Pearson’s rDI = 0.57; Pearson’s rPI = 0.62, Figures
S2C and S2D). Interestingly, proliferation was negatively

correlated to the proportion of CD4+ TEM cells

(pDI = 1.2861023, pPI = 1.9361023), but was not associated to

age or gender (p.0.3). This negative correlation needs to be

replicated in an independent dataset. Effector functions of TEM

cells with higher proliferative capacities need to be examined to

understand whether they represent a hyperactive subset whose

abundance is controlled to maintain immune homeostasis. Possibly

individuals with a lower proportion of TEM cells are relatively

enriched for these subsets.

We tested genome-wide SNPs for association to relative

abundance, division index, and proliferation index, considering

p,561028 as the threshold for significance. For abundance, we

included gender, age, and the top five principal components of

genotypes as covariates. Given the correlation with proliferation,

we also included the measured CD4+ TEM relative abundance as

an additional covariate. We observed associations to division index

in several loci, including 13q34 led by rs389862 (p = 4.7561028;

Figure 4A). This SNP is a non-coding variant located 30 kb

upstream of RASA3, and 70 kb upstream from CDC16. Both genes

have known roles in regulating cell proliferation or differentiation

[23,24]. This SNP was also strongly associated with proliferation

index (p = 2.7561027). Additionally, there was a strongly sugges-

tive association to rs3775500 on chromosome 4, located in the

intron of DAPP1, which encodes the Bam32 protein

(p = 5.4061027; Figure 4B), which is an adaptor protein

expressed solely in antigen presenting B cells. Interestingly,

mutations in this gene have been shown by several groups to

affect T cell activation [25,26], suggesting the possibility that B

cells may indirectly regulate T cell function in autoimmunity. We

did not observe any significant association with the relative

abundance of CD4+ TEM cells.

When we extracted the association statistics of 118 densely

genotyped risk alleles of CeD, RA, and/or T1D, they showed no

inflation in association p-values for relative abundance of CD4+

TEM cells (Figure 5A, Table S2). This suggested that risk

variants did not modify risk via modulation of CD4+ TEM

peripheral abundance. We recognized that the power to detect

significant associations might have been limited in our study by the

sample size. However, this negative finding was corroborated by

results from a recently published study with data from ,2800

individuals, in which the same set of risk alleles also showed no

significant association to CD4+ TEM (see Figure S5) [27].

Similarly, the same set of risk alleles did not show significant

association to proliferative response (Figure 5B, Table S2).

Based on these data, it was unlikely that SNP variants associated to
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RA, T1D, or CeD conferred risk through modulation of CD4+

TEM cell abundance or proliferation.

Gene expression in resting cells predicted post-TCR
stimulation proliferation

After stimulation we observed that 122 genes showed significant

changes in expression in response to stimulation, including 78

whose expression at least doubled or decreased by 50% (Table
S1). The gene with the greatest post-stimulation induction was

GZMB (average fold change = 93.48), which encodes granzyme B,

a protein involved in the apoptosis of target cells during cell-

mediated immune response in cytotoxic and memory lympho-

cytes. The most significantly down-regulated gene was GRB10

(average fold change = 0.18), which is near rs6944602 associated

with T1D and encodes growth factor receptor-bound protein 10,

whose function in the immune system is unclear.

We observed that relative gene expression at rest predicted

proliferative response. In 182 individuals with both proliferation

and gene expression data, 17 of the 215 genes were associated

with proliferation index (p,0.01, two-tailed test by permuting

Figure 3. Five disease risk alleles explained the eQTL associations with five genes. The left-sided panels show unconditional SNP-
expression association results. Green dashed lines mark the TSS of the eQTL gene. The red dots indicate the risk alleles associated with the expression
of respective genes shown as red arrows. The right-sided panels show adjusted association results after conditioning for the respective risk alleles. In
each of the five loci, conditioning on the disease SNP obviated signals in the entire region, such that no association more significant than p = 0.05
remains.
doi:10.1371/journal.pgen.1004404.g003
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proliferation data, Figure 6, Table S1). Increased expression of

15 of the 17 genes including CCR5, IL2RB, PRR5L, and TBX21,

were correlated with reduced proliferative response, while CCR9

and the lncRNA XLOC_003479 showed significant correlation

with increased proliferation. This number of correlated genes was

far in excess of random chance based on a null distribution

consisting of 1000 permutations (p,1023, median 2, maximum

15). The weighted sum of the 17 genes served as a ‘‘proliferation

potential signature’’, where we weighted the positively- and

negatively-correlated genes as +1 and 21, respectively. This

signature strongly predicted proliferation index (r = 0.55). We

show the correlation between each of the 17 genes as well as the

aggregate signature to proliferation as a heatmap (Figure 6A). To

assess if we were overfitting the data, we applied a two way cross-

validation, where we defined the proliferation signature based on

genes from half of the individuals and tested correlation to

proliferation in the remaining half of the individuals. In both

instances we again observed significant prediction of proliferation

(r = 0.41,one tailed p,1023 by permutation; r = 0.39, p,1023).

To search for biological pathways underlying genes correlated

to proliferation, we applied gene set enrichment analysis (GSEA)

to test for enrichment for 1,008 functional gene sets based on Gene

Ontology codes [28] (Figure 6B). Genes correlated to reduced

proliferation were most significantly enriched for GO:0012502

(induction of programmed cell death; one tailed p = 1.861024);

those correlated with increased proliferation were most signifi-

cantly enriched for GO:0002285 (lymphocyte activation involved

in immune response, one tailed p = 3.961024).

Figure 6. Relationship between baseline expression and post-
stimulatory response. A) Baseline expression of 17 genes correlated
with post-stimulation proliferation. Rows in the heatmap are ordered
from top to bottom by ascending proliferation index. Genes/columns
are ordered from the most negatively correlated (IL23RB) to the most
positively correlated (CCR9). The 17-gene signature was calculated as
the weighted sum of the 17 genes, where the negatively-correlated
genes were given a weight of 21, and the positively-correlated genes
were given a weight of +1. Table S1 lists the correlation coefficient and
p-value for each gene. B) Genes correlated with proliferative response
were enriched for apoptosis and lymphocyte activation pathways.
Genes correlated to lower proliferative response (proliferative index)
were enriched for Gene Ontology code GO:0012502 (induction of
programmed cell death, p = 1.861024). Conversely, genes correlated to
higher proliferative response were enriched for GO:0002285 (lympho-
cyte activation, p = 3.961024).
doi:10.1371/journal.pgen.1004404.g006

Figure 4. Genome-wide association to division index (the
average number of division undergone by all cells). A)
rs389862A on chromosome 13 was significantly associated to increased
division index at p = 4.7561028, and is located in a non-coding region
30 kb upstream of RASA3, and 70 kb upstream from CDC16. B)
rs3775500G on chromosome 4 shows a strongly suggestive association
at p = 5.4061027, and is located within the DAPP1 (Bam32) gene.
doi:10.1371/journal.pgen.1004404.g004

Figure 5. Risk alleles of CeD, RA, and T1D, showed no
significant association to CD4 TEM cell abundance or prolifer-
ation. A) The 118 SNPs with association to diseases in densely
genotyped regions on Immunochip platform were not significantly
associated to CD4 TEM cell abundance. The shaded region shows 95%
confidence interval. See also Figure S5. B) The same set of 118 risk
alleles also showed no inflation in association with proliferative
response measured as division index.
doi:10.1371/journal.pgen.1004404.g005
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Using data from 29 individuals each with two samples collected

at least one month apart, we replicated the observed correlation.

In these samples we performed a cross-visit analysis, and observed

that the same 17-gene signature from the first visit significantly

predicted proliferation indices on the second visit (r = 0.65,

p = 0.0006, 1-tailed permutation), and vice versa (r = 0.55, p = 0.0019).

Discussion

To fine-map and link risk loci to their pathogenic mechanisms,

we investigated molecular and immune phenotypes potentially

leading to disease end-points. The immune system is particularly

complex, and different cells under various activation states have

specialized functions that may not be adequately captured by

examining PBMCs. Therefore, we focused on one purified cell

population that had been shown to be important for the patho-

genesis of several autoimmune diseases. We quantified population

variation in several traits, including peripheral abundance,

proliferative response to TCR stimulation, and expression of

genes within autoimmune disease loci at rest and after stimulation.

In Tables 1, 2, and S2, we provide significant cis-eQTLs and

genome-wide association results.

To our knowledge this study was a first cross-examination of

genetic-, transcriptional-, and cellular-level quantitative traits in

CD4+ TEM cells. It demonstrated the importance of focusing

functional studies in a purified cell population under relevant

developmental and stimulation states. By examining the prolifer-

ative response upon TCR stimulation, we identified a subset of

genes whose baseline expression predicted proliferative potential.

Intriguingly, these genes were involved in programmed cell death

and lymphocyte activation. Whether variation in proliferative

abilities correlated with cytokine production and other signaling

functions, thus affecting susceptibility to autoimmunity, remains a

question to be addressed by future studies.

Of the 205 genes in disease loci that we examined, 46 had cis-

eQTLs. Notably, eleven of these were specific to stimulated CD4+

TEM cells, and not previously found in PBMCs. We noted that

approximately 10% of genes within risk loci of diseases had cis-

eQTLs. However in many instances the lead eQTL SNPs were

unrelated to the disease-associated SNPs. One example of a

disease allele that functioned as cis-eQTL was rs39984, which was

associated to lower risk of RA, and regulated the expression of

C5orf30 encoding an UNC119-binding protein. This SNP variant

is located in the first intron of C5orf30, and indeed explained the

entire cis-eQTL signal in this gene (see Figure 2B). This eQTL

effect was previously undetected in PBMCs, and the protein’s

functional role in the immune system is largely unknown.

However, a recent study showed that rs26232 (the lead GWAS

SNP prior to fine-mapping, r2 = 0.988 to rs39984) was correlated

with lower severity of radiologic damage in RA, independent of

previously established biomarkers [29]. Another gene in the locus,

GIN1, is located 140 kb from rs39984; however its expression

showed no correlation with the SNP (p.0.5).

Another CD4+ TEM cell-specific eQTL gene was DDX6, which

encodes DEAD-box RNA helicase 6. However, in this case, the

lead eQTL SNP (rs4938544) associated to increased expression of

DDX6 in stimulated cells was not in LD with the known CeD risk

allele (rs10892258, r2,0.1) or the RA risk allele (rs4938573, r2,

0.1). Neither risk allele showed significant association to DDX6

expression (p = 0.19 and 0.26, respectively). Both risk alleles are

also located near CXCR5, BCL9L, and TREH; none of these genes

had reported cis-eQTLs in PBMCs [8]. However, we did not assay

these three genes in this study, therefore could not confirm the role

of disease alleles in regulating their expression in CD4+ TEM cells.

Although we did not assay all genes or test for trans-acting

eQTLs, based on the level of co-localization between eQTL SNPs

and risk alleles observed in the study, we found it unlikely that all

non-coding risk variants caused disease by altering gene expression

within resting or stimulated CD4+ TEM cells. In addition, while

changes in proportions of lymphocyte subsets had been observed

in patients of autoimmune disorders [30–35], we did not find

evidence to support disease alleles’ roles in directly modulating

CD4+ TEM cell abundance or proliferative response. Ultimately,

other cell states and cell types will need to be investigated.

We recognize several limitations to the current study. In order

to conduct a focused study on a small amount of purified primary

cells we used the NanoString nCounter assay system. This avoided

potential biases and artifacts arising from cDNA synthesis required

for microarray or RNA-seq studies, but restricted our analysis to a

subset of candidate genes within risk loci of CeD, RA, and T1D,

rather than a genome-wide expression analysis. Consequently we

could not identify trans-eQTLs, splice variants, or epistatic effects

on expression regulation. Additionally, anti-CD3/CD28 stimula-

tion for memory T cells is not antigenic, especially while in

isolation from a ‘‘natural’’ multi-cellular environment, thus it was

only partially physiological.

This and other cell-specific studies on population variation in

molecular phenotypes are only a beginning of examining potential

intermediate phenotypes. Post-activation cytokine production by

CD4+ TEM cells are likely crucial in driving autoimmunity.

Therefore, it is critical that future studies of molecular phenotypes

include proteomic assays to quantify functional markers of immune

response. Finally, functional experiments will need to be conducted

in the future to determine whether these molecular phenotypes are

indeed intermediary to disease.

Materials and Methods

Ethics statement
All research was approved by our Institutional Review Board,

and informed consent was obtained from each volunteer.

Study sample
We enrolled 225 healthy volunteers (134 females, 91 males) of

non-Hispanic Caucasian descent that proved informed consent

through the Phenogenetics Project at Brigham and Women’s

Hospital. Subjects’ ages ranged from 19 to 57 years with average

female and male ages of 28.8 years and 34.9 years, respectively.

Thirty-five subjects (18 females, 17 males) returned for a second

study visit one to nine months after their initial visits.

Genotyping
We genotyped each subject using the Illumina Infinium Human

OmniExpress Exome BeadChip. In total, we genotyped 951,117

SNPs, of which 704,808 SNPs are common variants (minor allele

frequency [MAF].0.01) and 246,229 are part of the exome. After

quality control, 638,347 common SNPs remained. Of all subjects,

174 subjects had abundance, proliferation, gene expression, and

quality controlled genotype data. Detailed quality control criteria

are described in Text S1.

SNP imputation
For each gene, we selected a 500 kb region (250 kb each in the

39 and 59 directions) around the transcription start site and

imputed 1000 Genomes SNPs into the genome-wide SNP data

using BEAGLE Version 3.3.2. We used the European samples

from 1,000 Genomes as the reference panel. We excluded markers

that had MAF,0.05 in the reference panel as well as all insertion/
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deletions. After imputation, we excluded markers with a BEAGLE

R2,0.4 or MAF,0.01 in the imputed samples.

CD4+ TEM cell isolation and stimulation
We isolated peripheral blood mononuclear cells (PBMC) from

whole blood using a Ficoll density gradient (GE Healthcare). We

then isolated CD4+ effector memory T cells from PBMCs first by

magnetic-activated cell sorting to enrich for CD4+ T cells, followed

by fluorescent-activated cell sorting using labeled antibodies

against CD45RA, CD45RO, and CD62L.

We stimulated CD4+ TEM cells by incubation with commercial

anti-CD3/CD28 beads for 72 hours. For proliferation studies, we

labeled cells with carboxyfluorescein diacetate succinimidyl ester

(CFSE; eBioscience), and measured proliferation by dye dilution.

Detailed isolation and purification methods are described in Text
S1 (also see Figure S2A).

Gene expression
We designed the NanoString codeset based on GWAS SNPs

associated with CeD, RA, and T1D as of April 2012. This list of

SNPs can be found in Supplementary Table S4. As the

numbers of associated loci with autoimmune diseases continuously

expand, we refer the reader to ImmunoBase (https://www.

immunobase.org) for up-to-date disease regions. For each locus,

we defined a region of interest implicated by the GWAS lead SNP

[36]. We identified the furthest SNPs in LD in the 39 and 59

directions (r2.0.5). We then extended outward in each direction

to the nearest recombination hotspot. If no genes were found in

this region, we extended an additional 250 kb in each direction.

All genes overlapping this region were considered implicated by

the locus. The final NanoString codeset (prior to expression data

quality control) included 312 genes, including 270 genes near

SNPs associated with 157 RA, CeD, and T1D through GWAS, 26

genes of immunological interest, and 15 reference genes with

minimal change in expression after TCR stimulation (see

Supplementary Table S1).

After quality control, 215 genes remained. Of all 225 subjects in

the study, 187 subjects passed gene expression quality control for

both resting and stimulated cells. Specific normalization and

quality control procedures are described in Text S1.

Genotype principal component analysis
To control for any potential population stratification, we

adjusted all association tests using the top five principal

components of our genome-wide SNP data. Principal components

were generated via EIGENSTRAT using unsupervised analysis

(no reference populations were used). The top five PCs explained

6.88% (2.08%, 1.27%, 1.20%, 1.17%, and 1.16%, respectively) of

the total variance. After controlling for these five PCs, the lambda

GC for CD4 TEM proportion association was 1.008; that of

division index was 1.001.

Cis-eQTL analysis
For each gene-SNP pair, we applied linear regression using the

first five principal components of the genotype data and gender as

covariates. As such, normalized expression = b0+b1*allelic dosage+
b2*PC1+b3*PC2+b4*PC3+b5*PC4+b6*PC5+b7*(factor)gender. To

adjust for multiple hypothesis testing while taking into consider-

ation the correlation among SNPs within each locus, we calculated

a permutation-based p-value for each SNP. We performed 10,000

permutations of the residual expression values. We reported each

SNP’s p-value the proportion of permutation P value smaller than

the analytical p-value. For conditional analysis, the vector of allelic

dosages of the disease-associated SNP was included as an

additional covariate.

Quantification of CD4+ TEM cells and proliferative
response

We defined CD4+ TEM cells as CD45RA2, CD45RO+, and

CD62Llow/2. In all samples CD4+ TEM cells were quantified using

X-Cyt, a mixture-modeling based clustering program for automat-

ed cell population identification (see Figure S6) [19]. We fit

proliferation division peaks with one-dimensional Gaussian

mixture models (see Figure S7). Detailed protocol and algorithms

are described in Text S1.

Statistical analysis
All linkage disequilibrium calculations (r2) were based on 1000

Genomes Release 3 European samples. All association tests were

performed using Plink v1.07. We considered p,561028 to be

genome-wide significant; p,561025 was considered as suggestive.

CD4+ TEM abundance and proliferation correlations with age and

gender were calculated by multivariate linear model implemented

in R-3.0. We calculated two-sample comparisons (CD4+ TEM cell-

specific expression between genes, and H3K4me3 h/d scores

between SNPs) with the Mann-Whitney test. Details of statistical

analyses are described in Text S1.

Data access
We make all phenotypic data (expression, peripheral abundance,

and proliferation) along with eQTL results publicly available online

(http://immunogenomics.hms.harvard.edu/CD4eqtl.html). Ge-

nome-wide genotype data will become available through dbGAP

and through the ImmVar project. These data are potentially useful

to investigators wishing to assess the potential of genetic variants in

altering these molecular phenotypes.

Supporting Information

Figure S1 Enrichment of cell-specific expression of genes within

risk loci. As described in Hu et al. AJHG 2011, A) genes within risk

loci of RA were the most specifically expressed in CD4+ TEM cells

(p = 1.0061028) followed by signal in regulatory T cells

(p = 5.0061028). B) Genes within CeD were also the most strongly

enriched in CD4 TEM cells (p = 1.4361025) followed by

regulatory T cells (p = 3.7861025). C) In T1D, CD8 memory T

cells showed the strongest enrichment (p = 2.2661025), followed

by regulatory T cells (p = 5.1361025) and CD4+ TEM cells

(p = 1.2961024).

(TIFF)

Figure S2 A) Using a combination of magnetic and fluores-

cence-activated cell sorting (MACS and FACS), CD4+ T cells were

isolated to a high degree of purity. The isolated population

contained ,97% CD3+ cells, ,90% CD4+ cells, ,0.4% CD8+

cells, and ,0.03% CD19+ cells. B) The relative abundance (as a

percentage of all sorted lymphocytes), C) division index (average

division of all cells), and D) proliferation index (average division of

all cells that went into division), were reproducible in 35

individuals with two blood draws at least one month apart.

Pearson’s r = 0.87, 0.57, and 0.62, respectively.

(TIFF)

Figure S3 The 46 eQTL SNPs show more overlap with

H3K4me4 marks. A) Cis-eQTL SNPs were located nearer

H3K4me3 peaks in CD4 TEM cells than the 159 top SNPs that

did not reach statistical significance at 5% FDR (p = 1.1061027,

one-sided Mann-Whitney test). B) The 46 cis-eQTL SNPs were

Autoimmune Alleles and eQTLs in CD4 Effector Memory T Cells

PLOS Genetics | www.plosgenetics.org 11 June 2014 | Volume 10 | Issue 6 | e1004404

https://www.immunobase.org
https://www.immunobase.org
http://immunogenomics.hms.harvard.edu/CD4eqtl.html


near larger H3K4me4 peaks (peak height) and located at smaller

distances to the summit of the peaks (p = 9.5661028, one-sided

Mann-Whitney test).

(TIFF)

Figure S4 The relative abundance of CD4 TEM cells as the

percentage of CD4 T cells. A) increased with age, at 0.11% per

year; and B) was correlated with gender, where men on average as

2.2% more CD4 TEM cells than women. The associations

remained significant in a multivariate linear regression.

(TIFF)

Figure S5 SNPs associated to CeD, RA, and T1D, showed no

significant association to CD4 TEM cell abundance. The 119 risk

alleles within densely genotyped loci showed no significant

association to CD4 TEM abundance as a percentage of CD4 T

cells in the study by Orru et al. The shaded area shows the 95%

confidence interval.

(TIFF)

Figure S6 Quantification of CD4 TEM cells using X-Cyt. A) In

each sample of enriched CD4 T lymphocytes, X-Cyt clustered all

flow events based on fluorescence intensities in CD45RA, CD45RO,

and CD62L simultaneously, using a seven-component multivariate

Gaussian mixture-modeling. The TEM cell population is shown in

red, defined as CD45RA2, CD45RA+, and CD62Llow/2. B) X-Cyt

clustered and quantified CD4 TEM cells in all samples (four random

samples are shown here) in the study following the template in A).

The TEM cell population is shown as the red cluster in each sample.

In Sample 3, the subset of the black population residing in the lower

left quadrant is the light green population identified as ‘‘debris’’ in

Panel A); they are CD62L2, CD45RA2, and CD45RO2.

(TIF)

Figure S7 The CFSE intensity peak present in the pooled

resting wells for each subject (data underlying the green fitted

curve) was modeled as a single Gaussian distribution. Its mean and

variance were then used to initialize the location of the first

component (undivided cells) and the variance of all components in

each of the stimulated wells (data underlying the red fitted curve).

The CFSE dilution peaks from stimulated wells were fitted using a

one-dimensional mixture model of multiple Gaussian components

of equal peak-to-peak distance and equal variance via a gradient

descent optimization algorithm. A maximum of six components

(five divisions) was fitted to each stimulated well; the weight of each

component was allowed to be 0.

(TIF)

Table S1 Table S1 lists all genes included in the NanoString

codeset, including those that did not pass quality control for

downstream analyses. We list each gene’s relationship to GWAS

SNPs, resting and stimulated expression levels, as well as the

correlation between baseline expression and post-stimulation

proliferation.

(XLSX)

Table S2 Table S2 lists all densely-genotyped disease-associated

SNPs for CeD, RA, and T1D included in this study. We list each

SNP’s association to disease(s), nearby genes included in the study,

as well as association p-values to CD4+ TEM relative abundance

and proliferation.

(XLSX)

Table S3 Table S3 lists the 182 (densely-genotyped disease-

associated) SNP-gene pairs included in the eQTL study. We list

each pair’s effect size and p-value in resting and stimulated states.

(XLSX)

Table S4 Table S4 contains all GWAS associated SNPs to CeD,

RA, and/or T1D, used for designing the NanoString codeset in

April 2012. For each gene, we list its lead SNP in LD, disease

association (to the lead SNP), GO code, and functional

description.

(XLSX)

Text S1 Text S1 includes detailed descriptions of materials,

experimental methods, and statistical analyses used in our study.

We provide protocols and analytical methods for 1) cell population

collection, isolation, staining, stimulation, flow cytometry, and

NanoString assays; 2) cell abundance and proliferation quantifi-

cation; and 3) gene selection, expression analysis, and eQTL

analysis.

(DOCX)
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