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Abstract

Annotating and interpreting the results of genome-wide association studies (GWAS) remains challenging. Assigning
function to genetic variants as expression quantitative trait loci is an expanding and useful approach, but focuses
exclusively on mRNA rather than protein levels. Many variants remain without annotation. To address this problem, we
measured the steady state abundance of 441 human signaling and transcription factor proteins from 68 Yoruba HapMap
lymphoblastoid cell lines to identify novel relationships between inter-individual protein levels, genetic variants, and
sensitivity to chemotherapeutic agents. Proteins were measured using micro-western and reverse phase protein arrays from
three independent cell line thaws to permit mixed effect modeling of protein biological replicates. We observed enrichment
of protein quantitative trait loci (pQTLs) for cellular sensitivity to two commonly used chemotherapeutics: cisplatin and
paclitaxel. We functionally validated the target protein of a genome-wide significant trans-pQTL for its relevance in
paclitaxel-induced apoptosis. GWAS overlap results of drug-induced apoptosis and cytotoxicity for paclitaxel and cisplatin
revealed unique SNPs associated with the pharmacologic traits (at p,0.001). Interestingly, GWAS SNPs from various regions
of the genome implicated the same target protein (p,0.0001) that correlated with drug induced cytotoxicity or apoptosis
(p#0.05). Two genes were functionally validated for association with drug response using siRNA: SMC1A with cisplatin
response and ZNF569 with paclitaxel response. This work allows pharmacogenomic discovery to progress from the
transcriptome to the proteome and offers potential for identification of new therapeutic targets. This approach, linking
targeted proteomic data to variation in pharmacologic response, can be generalized to other studies evaluating genotype-
phenotype relationships and provide insight into chemotherapeutic mechanisms.
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Introduction

Pharmacogenomics aims to identify clinically actionable mark-

ers associated with response or toxicity; for oncology, evaluating

genotype-phenotype relationships is particularly important be-

cause non-response and adverse events associated with chemo-

therapy can be life-threatening. Drug response and toxicity are

thought to be multi-genic traits requiring whole genome studies to

capture the most relevant variants. To complement clinical data

and enhance discovery of genetic variants associated with

sensitivity to drugs using a whole genome approach, we and

others (reviewed by Wheeler and Dolan [1]) have developed

cell-based models using International HapMap lymphoblastoid

cell lines (LCLs). The genetic and expression environment for

these cells has been well characterized thus allowing for genome-

wide association studies (GWAS) and functional follow-up studies.

Genetic variants associated with a given chemotherapeutic

discovered in the LCL pharmacogenomic model have been

replicated in clinical trials, arguably the most relevant system for

biomedical science [2,3,4,5,6].

In addition to their value in pharmacogenomics discovery

[7,8,9,10,11], LCLs have had broad utility as a discovery tool for

genetic markers associated with many functional phenotypes,

including: gene expression [12,13,14,15,16]; modified cytosines
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[17]; variation in mRNA decay rates across individuals [18];

DNase hypersensitivity [19]; and baseline micro RNA levels [20].

In addition, the LCL model has been used to identify genetic

markers of inflammatory cell death [21], bipolar disorder [22],

and response to serotonin reuptake inhibitors [23,24]. Therefore,

incorporating protein expression information into an existing

dataset of genetic, epigenetic, mRNA expression, and drug

sensitivity has the potential to identify novel candidates and

mechanisms relevant to pharmacologic traits.

Previously, we reported that SNPs associated with inter-

individual variation in cytotoxicity of chemotherapeutic agents in

LCLs are enriched in expression quantitative trait loci (eQTLs)

and separately, enrichment was observed for eQTLs associated

with ten or more target genes [25]. SNPs that overlapped between

preclinical LCL studies and outcomes of patients treated with the

same drug were also enriched in eQTLs [2]. An implicit

assumption in these analyses and studies of other complex traits

is that mRNA transcript abundances are a suitable proxy

measurement for their corresponding protein levels. However,

recent data has demonstrated poor overall correlations between

mRNA and protein expression [26,27,28,29,30].

To investigate the role of genomics in protein expression and

the role protein expression plays in altering pharmacologic

responses, we employed the micro-western array (MWA) [31], a

method that is approximately 1000-fold more sensitive and has an

,100-fold greater dynamic range than standard mass spectrom-

etry methods and requires ,200-fold less sample and antibody

than standard immunoblotting methods [32,33]. After screening

4,366 previously unvalidated antibodies targeting 1,848 transcrip-

tion factors (TFs) and 200 well-validated antibodies targeting cell

signaling proteins, we used MWAs and reverse phase protein

arrays (RPPAs) to collect protein data regarding 441 protein

isoforms from 68 HapMap Yoruba (YRI) LCLs. Baseline protein

levels were evaluated for their correlations with cellular sensitivity

to cisplatin and paclitaxel, two of the most widely-used and

successful chemotherapeutics worldwide that are mechanistically

distinct [34,35,36]. The measurement of proteins in HapMap

LCLs is of great value to complement the extensive publicly

available genetic information already available on these cell lines.

Although LCLs are not tumor cells, upon transformation they are

likely to have changes in pathways that control cell cycle and cell

proliferation, which are relevant pathways for anti-cancer drugs.

Furthermore, we identified genetic variants associated with

chemotherapeutic sensitivity that acted through their effect on

protein levels. We observed an enrichment of pQTLs in genome

variants associated with pharmacologic phenotypes. We combined

this information to identify proteins relevant for pharmacologic

phenotypes through multiple independent SNPs throughout the

genome.

Results

Biological replicates enable robustness in measurement
of protein levels

Prior to our global analysis, a pilot study consisting of three

independent biological replicates of six cell lines demonstrated

significant variation not only among protein levels from different

individuals, but also among cells thawed and propagated

independently from the same individual. Based on a significant

thaw effect explaining 3.75% of global protein expression variation

(p = 0.01, F test), we measured baseline, steady-state protein levels

from three independent thaws (thawed simultaneously) from each

of 68 unrelated YRI LCLs to have a more accurate estimate of

inter-individual variation in protein expression. These measure-

ments were evaluated with both fixed effect (by averaging the three

thaws) and mixed effect (by incorporating a random thaw effect

per individual) models. Mixed effect modeling (MEM) allowed us

to gain additional power from multiple measurements compared

with simply averaging across the biological replicates in a linear

model (Figure 1a). Relationships identified by fixed effect that

had conflicting trends (i.e. positive and negative associations)

across biological replicates were more likely to be false

positives (Figure 1b) than the observations that were repro-

ducible by MEM (across biological replicates) (Figure 1c); we

therefore considered the MEM to be the more robust approach

and used this method for all subsequent estimates of protein-drug

associations.

Relationship between drug phenotypes with protein
levels

Cell growth inhibition and caspase 3/7 activation were

measured following treatment of 68 unrelated YRI LCLs with

cisplatin (5 mM) or paclitaxel (12.5 nM). Notably, the correlation

between cytotoxicity and apoptosis was greater for paclitaxel

(r2 = 0.35) than cisplatin (r2 = 0.04), indicating that apoptotic cell

death was a larger contributor to paclitaxel-mediated cell growth

inhibition compared with cisplatin (Figure S1). We also assessed

the effect of date of cell thaw on cellular phenotypes and found a

significant correlation across two independent thaws (Figure S2;

p,0.0001 and r2.0.28 for cytotoxicity, p,0.003 and r2.0.38 for

apoptosis).

From a starting pool of 4,366 antibodies, 198 antibodies

producing a single predominant signal at the predicted molecular

weight were carried forward for population-level quantification

with the RPPA approach and 243 antibodies that displayed at least

one band the size of the targeted protein isoform of interest with a

signal-to-noise ratio $3 (but additional bands) were selected for

subsequent population-level quantification by MWAs. We quan-

tified the expression of 441 proteins across the same set of 68

individual LCLs for which we measured responses to chemother-

apeutic agents. At an FDR of 20%, 64 proteins were associated

with one or more of the four drug phenotypes. At p,0.05, 52 and

60 protein levels were associated with paclitaxel-induced apoptosis

Author Summary

The central dogma of biology explains that DNA is
transcribed to mRNA that is further translated into protein.
Many genome-wide studies have implicated genetic
variation that influences gene expression and that
ultimately affect downstream complex traits including
response to drugs. However, because of technical limita-
tions, few studies have evaluated the contribution of
genetic variation on protein expression and ensuing
effects on downstream phenotypes. To overcome this
challenge, we used a novel technology to simultaneously
measure the baseline expression of 441 proteins in
lymphoblastoid cell lines and compared them with
publicly available genetic data. To further illustrate the
utility of this approach, we compared protein-level
measurements with chemotherapeutic induced apoptosis
and cell-growth inhibition data. This study demonstrates
the importance of using protein information to understand
the functional consequences of genetic variants identified
in genome-wide association studies. This protein data set
will also have broad utility for understanding the relation-
ship between other genome-wide studies of complex
traits.

Protein SNPs Associated with Chemotherapy
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and cytotoxicity, respectively, and 47 and 39 proteins were

associated with cisplatin-induced apoptosis and cytotoxicity,

respectively. Table S2 details these nominal associations for each

phenotype and Table 1 highlights the top three associations for

each phenotype. We compared the overlap between the two drugs

and identified four proteins that were unique to the apoptotic

pathway including CDKN2B, PDK1, TFB1M and ZNF132.

EP300 was the only protein exclusively associated with cytotoxicity

for both drugs. This observation implies that loss of cell viability in

response to these two drugs occurs through distinct mechanisms.

Using hierarchical clustering of the drug-protein effect sizes,

seven significant clusters were defined by permutation analysis

(p,0.001) (Figure 2a). We were unable to identify any significantly

enriched pathways due to the limited and biased background set of

proteins evaluated; however, we did observe proteins of similar

function within the clusters. Protein levels in cluster one (Figure 2b)

were associated with increased resistance to both drugs when

measured for either phenotype. Proteins in this cluster included

many known metabolism-regulating proteins, DNA damage

response factors, proteins associated with innate immune response,

and transcription factors associated with various stages of

developmental biology. Metabolism-regulating proteins included

mTor, p70S6K(T421/S424), Gab1(Y627), GSK3beta, and ONE-

CUT2. DNA damage-related proteins in cluster one included

apoptosis antagonizing transcription factor (AATF) and structural

maintenance of chromosomes protein 1A (SMC1A). Proteins with

known associations to immune response included several ubiquitin

ligases such as TRIM13 and TRIM26.

Protein levels in cluster 3 (Figure 2c) were associated with

increased cellular sensitivity to both cisplatin and paclitaxel

phenotypes and included many proteins related to calcium

signaling: phospholipase C gamma 2 (PLCG2), c-Src (SRC) and

Figure 1. Protein levels regressed against four cytotoxicity phenotypes using fixed effect or mixed effect models representing the
three biological replicates. We analyzed 441 protein levels against 5 mM cisplatin induced apoptosis and cytotoxicity and 12.5 nM paclitaxel
apoptosis and cytotoxicity using both fixed effect and mixed effect modeling (a). The Y-axis represents the total number of protein-drug phenotype
(A, apoptosis and C, cytotoxicity) correlations (p,0.05) using fixed effect (medium grey) or mixed effect (light grey) or those that showed a
correlation for both methods (dark grey). Five micromolar cisplatin induced caspase activity correlated with WHSC1 protein levels demonstrates
strong association (p = 0.009) using the fixed effect, whereas the individual thaw association reveals no association from the third thaw, resulting in a
greater than p.0.05 MEM result (b). Five micromolar cisplatin-induced caspase activity correlated with STAT3A (,90 kDa) protein levels across three
thaws ranging had p,0.05 ranging from 0.02 to 1.661026 and a mixed effect p-value of 1.5561027 (c).
doi:10.1371/journal.pgen.1004192.g001
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focal adhesion kinase (FAK). Other proteins in cluster three

included the tumor suppressor p15ink4b (CDKN2B), estrogen

receptor beta (ESR2), beta actin (BACT), alpha tubulin (TUBA),

and several transcription factors including c-MYC (MYC),

Hairless homolog (HR), H6 family homeobox 1(HMX1), and

ETS-related transcription factor Elf-4 (ELF4).

Protein levels in cluster 7 (Figure 2d) were associated more

strongly with cellular sensitivity/resistance to drug cytotoxicity as

compared with drug-induced apoptosis. Drug-induced cytotoxicity

is a broad phenotype that includes cellular processes such as

necrosis, cell death through apoptotic and non-apoptotic path-

ways, cell cycle arrest, and damaged cells undergoing DNA repair

[37], whereas caspase 3/7 activation represents a specific process

of cell death.

Top protein quantitative trait locus implicates DIDO1 for
paclitaxel-induced apoptosis

Upon evaluation of all proteins with a genome-wide significant

pQTL, we identified one protein that was also associated with

paclitaxel-induced apoptosis. The trans pQTL on chromosome 16,

rs6834, was significantly correlated (p = 2.66610215) with death

inducer-obliterator 1 (DIDO1) protein levels (Figure 3a). DIDO1

was in cluster 3 (Figure 2c), indicating that increased baseline levels

conferred greater cellular sensitivity to both chemotherapeutic

agents. DIDO1 protein levels were significantly correlated with

paclitaxel-induced apoptosis (p = 0.01 r2 = 0.02; Figure 3b). How-

ever, the DIDO1 pQTL was not significantly associated with

paclitaxel-induced apoptosis (p = 0.25, Figure 3c). Despite the lack

of statistical significance (likely because of small sample size), the

directionality was consistent with the observed protein relation-

ship: cells containing two C alleles had lower levels of DIDO1 and

lower paclitaxel-induced caspase 3/7 activation. DIDO1 mRNA

levels were not associated with paclitaxel apoptosis (p.0.05),

suggesting that this relationship was protein-specific.

Using RNA interference, we performed gene knockdowns in

YRI LCLs and examined the effect of knockdown on paclitaxel-

induced cytotoxicity and apoptosis. Three different LCLs were

nucleofected with siRNA against DIDO1. Although knockdown

levels varied considerably, the maximal degrees of protein

knockdown observed for 24 or 48 hours in 18522, 18853, and

19192, were 20%, 48%, and 59%, respectively. When we pooled

data from all cell lines and experiments using a MEM, knockdown

of DIDO1 resulted in a significant (p = 0.005) decrease in

paclitaxel-induced caspase activity. On average, paclitaxel-in-

duced apoptosis was decreased by 11.9% in cells following

knockdown of DIDO1 (Figure 3d).

Enrichment of SNPs associated with chemotherapeutic
phenotypes

Using the pQTLs and eQTLs (unadjusted p,1024) from the

genes included in our protein dataset, we evaluated enrichment

with paclitaxel and cisplatin-induced cytotoxicity and apoptosis

associated SNPs at unadjusted p,1023 (Figure 4). For cisplatin,

only the apoptosis phenotype demonstrated pQTL enrichment

(p,0.001) (Figure 4a, 4b, left panels). Conversely, both paclitaxel

phenotypes demonstrated pQTL enrichment (Figure 4c, 4d).

When evaluating eQTLs, only cisplatin cytotoxicity showed

enrichment for eQTLs (Figure 4b). However, when evaluating

all expressed genes, eQTLs showed enrichment for all drugs and

phenotypes except for cisplatin-induced apoptosis (data not

shown).

Utilizing pQTLs to identify proteins implicated in cisplatin
and paclitaxel cellular response

Using both cell growth inhibition and apoptosis as cellular

phenotypes, we identified pQTLs (defined at p,1024) associated

with these phenotypes at p,0.001. From that overlap of pQTLs,

we then analyzed the relationship between target protein levels

and the respective drug phenotype (p#0.05) (Figure 5). Overlap-

ping GWAS signals identified five proteins for cisplatin phenotypes

and 21 proteins for paclitaxel phenotypes (Table S3). For each

phenotype, we also identified individual lists of proteins-pQTL

pairs that both associate with cisplatin or paclitaxel phenotypes

(Table S4). For cisplatin GWAS, there were 79 pQTLs targeting

27 proteins for cytotoxicity and 169 pQTLs targeting 27 proteins

for apoptosis. For paclitaxel GWAS, there were 107 pQTLs

targeting 38 proteins for cytotoxicity and 119 pQTLs targeting 42

proteins for apoptosis. Interestingly, the protein SRC was

implicated through all four phenotypes.

We prioritized proteins for functional studies using the apoptosis

relationship for paclitaxel and the cytotoxicity relationship for

cisplatin. Among the five proteins whose baseline expression levels

associated with cisplatin cytotoxicity and apoptosis, we found

structural maintenance of chromosomes 1A (SMC1A) to have the

Table 1. Top proteins associated with cisplatin and paclitaxel phenotypes using a mixed effect model.

Protein Gene Name Phenotype MEM p-value Beta

p-S6.ribosomal.protein.(S240/244) RPS6 Cisplatin Cytotoxicity 5.10E-04 1.08

NCKAP1L.75 kDa NCKAP1L Cisplatin Cytotoxicity 1.16E-03 21.36

ZNF497 ZNF497 Cisplatin Cytotoxicity 2.56E-03 20.84

STAT3A (,90 kDa) STAT3 Cisplatin Apoptosis 1.46E-07 20.78

STAT3B (,80 kDa) STAT3 Cisplatin Apoptosis 1.12E-04 20.59

ENO1 ENO1 Cisplatin Apoptosis 3.16E-04 20.48

STAT3A (,90 kDa) STAT3 Paclitaxel Cytotoxicity 1.13E-05 1.23

GTF2F2 GTF2F2 Paclitaxel Cytotoxicity 3.10E-04 21.15

ZNF266.75-100 ZNF266 Paclitaxel Cytotoxicity 3.12E-04 20.89

ENO1 ENO1 Paclitaxel Apoptosis 1.09E-05 20.47

STAT3A (,90 kDa) STAT3 Paclitaxel Apoptosis 1.06E-03 20.42

ZNF132 ZNF132 Paclitaxel Apoptosis 1.99E-03 20.42

doi:10.1371/journal.pgen.1004192.t001
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most significant relationship with cytotoxicity (p = 0.005,

r2 = 0.039) (Figure 6a and 6b). We therefore selected it for further

functional validation. SMC1A did not associate with either

cisplatin phenotype at the mRNA level suggesting that this was

a protein-specific relationship. Because more proteins were

associated with paclitaxel-mediated apoptosis and cytotoxicity

phenotypes, we prioritized functional follow-up based on a

combination of p-values and q-values (to correct for multiple

hypothesis testing). At p,0.005, five proteins were significantly

associated with paclitaxel-induced apoptosis. Zinc finger protein

569 (ZNF569) (Figure 6c, 6d) had the lowest association q value.

At the mRNA level, ZNF569 had a weak correlation with

paclitaxel-induced apoptosis (p = 0.04, r2 = 0.06), but no relation-

ship with paclitaxel-induced cytotoxicity. Table 2 lists the pQTLs

that implicated SMC1A with the two cisplatin phenotypes and

ZNF569 with the two paclitaxel phenotypes. We observed a

different set of SNPs associated with each protein-drug pair that

also associated with either apoptosis or cytotoxicity (Table 2).

Because independent pQTLs associated with the drug-induced

phenotypes, we functionally validated the relationship of these

proteins with their respective drug-induced phenotypes. We

selected three LCLs (18502, 19138,19201) with mid to high

protein expression and performed siRNA nucleofection. We

assessed knockdown at 24 and 48 hours post nucleofection.

Knockdown of SMC1A protein levels varied across the cell lines;

we did not observe more than 57%, 71%, and 62% protein

knockdown for 18502, 19138, and 19201, respectively, for either

time point. Using a MEM to examine the effect across cell lines,

Figure 2. Establishing hierarchical clustering of baseline protein levels correlated with cisplatin and paclitaxel phenotypes.
Hierarchical clustering was performed on 370 protein levels (rows) for 5 mM cisplatin apoptosis and cytotoxicity and 12.5 nM paclitaxel apoptosis and
cytotoxicity (columns). The correlation for each protein-drug phenotype pair is indicated with blue showing increased protein levels associating with
greater sensitivity to the drug, red showing increased protein levels associating with resistance to the drug and white indicating no correlation (a).
The number of significant clusters was determined by performing 1000 permutations of the column correlations, clustering them, and selecting the
number of observed clusters at a tree height that significantly exceeded all tree heights from the permutations (k = 7, p,0.001). Clusters 1 (b) and 3
(c) depict proteins that are related in the same direction to all cellular phenotypes. Cluster 7 (d) depicts proteins more related strongly to drug
sensitivity through cytotoxicity than apoptosis.
doi:10.1371/journal.pgen.1004192.g002

Figure 3. Identification of a protein quantitative trait locus relevant for paclitaxel-induced apoptosis. On chromosome 16, rs6834
genotypes were correlated with DIDO1 protein levels (p = 2.66610215) (a). DIDO1 protein levels were also significantly (p = 0.01) correlated with
paclitaxel-induced apoptosis (b). The three shades of grey circles indicate data from each of the three thaws. Rs6834 was not significantly correlated
with paclitaxel apoptosis (p.0.05); however, the CC individuals had both the lowest mean DIDO1 levels and lowest paclitaxel-induced apoptosis
levels (c). Three LCLs were nucleofected with pooled DIDO1 or nontargeting control and apoptosis was measured 24 hrs after 12.5 nM paclitaxel (d).
Mixed effect modeling revealed a significant (p = 0.005) reduction in caspase activity.
doi:10.1371/journal.pgen.1004192.g003
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we determined that knockdown of SMC1A resulted in a 19%

increase in apoptosis (p = 0.0002) and a 10.4% decrease in cell

survival (p = 0.009) in response to cisplatin (Figure 7a). Knock-

down of ZNF569 protein levels varied across the cell lines, but we

observed no more than 45%, 58%, and 54% protein knockdown

across 18502, 19138, and 19201, respectively, for either time

point. Using a MEM to combine the effect across cell lines,

knockdown of ZNF569 resulted in a 9.9% average reduction in

apoptosis (p = 0.002) and a 26.8% increase in cell growth

inhibition (p = 0.0001) (Figure 7b) in response to paclitaxel.

Role of growth in protein-drug relationships
Because growth rate has been previously identified as a heritable

trait that is relevant in pharmacologic studies, we evaluated the

relationship between steady state protein levels and intrinsic

growth rate [38] for the proteins measured. Approximately 10%

(45/441) of the proteins were correlated with growth at p,0.05

(Table 3). Notably, SMC1A protein levels were significantly

correlated with growth rate (p = 0.0007), whereas ZNF569 protein

levels were not (p.0.05) (Figure S3). When we adjusted for growth

rate, the association of SMC1A protein levels with cisplatin

phenotypes was no longer significant (p.0.05).

Discussion

In this study, we evaluated 4,366 antibodies targeting 2,048

unique proteins. From this set, we identified antibodies targeting

441 protein isoforms expressed at baseline in LCLs and quantified

them across three biological samples from 68 YRI LCLs. The use

of multiple biological samples allowed us to implement mixed

effects modeling to increase the robustness of our observations.

Many protein expression levels were correlated with sensitivity to

two cellular phenotypes (cytotoxicity and apoptosis) of two

chemotherapeutic agents: paclitaxel and cisplatin. We validated

one such finding through knockdown of DIDO1 in three LCLs,

which resulted in a decrease in paclitaxel-induced apoptosis.

Quantitative trait loci for pharmacologic phenotypes were

compared to quantitative trait loci for protein expression to better

understand the functional significance of genetic variants contrib-

uting to inter-individual variability in drug response. For each

drug, we identified overlapping and unique sets of genetic variants

associated with protein expression that were also correlated with

drug-induced apoptosis and cytotoxicity. We further validated two

such proteins through gene knockdown and concomitant modu-

lation of cellular sensitivity to drug treatment: SMC1A levels were

associated with resistance to cisplatin treatment, and ZNF569

levels were associated with sensitivity to paclitaxel treatment.

This study illustrates the utility of applying a highly-sensitive,

novel, antibody-based technology to simultaneously measure

many proteins across a large set of individuals. Using this method,

we identified hundreds of novel genome loci that uniquely

influence the expression of proteins that ultimately influence the

sensitivity of cells to chemotherapeutic agents through both

caspase 3/7 activation and other pathways leading to loss of cell

viability. We evaluated protein expression in the International

HapMap LCLs because these samples have previously been used

for many studies relating genetics to gene expression [14,16,39]

and cellular phenotypes [1], thus allowing us to perform

comprehensive studies of genetics, protein expression, and

pharmacology. LCLs are immortalized B-lymphocytes and, as a

result, represent ‘‘non-cancerous’’ cells that may provide us with

important protein targets for ameliorating bone marrow suppres-

sion. However they also have some of the pathways relevant to

anti-cancer drugs. We specifically chose the YRI population

because of their greater genetic diversity relative to other

populations. We expect that this data will have wide applicability

to other genetic and pharmacological studies because of the

important addition of protein levels to other studies.

Whereas polymorphisms in coding regions that affect amino

acid composition would seem to have the greatest effect on drug

response, genetic variation that affects transcript abundance level

has also been shown to affect drug response [25]. A dispropor-

tionate number of drug response associated SNPs in a broad array

of chemotherapeutic agents are eQTLs and are associated with the

transcriptional expression level of multiple genes [25]. However,

our work has demonstrated poor global correlations between inter-

individual mRNA and protein levels (unpublished data). There-

fore, functional annotation of pharmacologic SNPs and their

relationships with proteins may result in important new discoveries

as it has in this study. We note that 46,863 of the 121,484 trans

pQTLs identified at P,1024 are also cis-acting eQTLs (within

1 Mb upstream of the transcription start state to 1 Mb

Figure 4. Evaluation of eQTL and pQTL enrichment associated
with chemotherapeutic-induced phenotypes. Distribution of
eQTL or pQTL count in 1000 permutations, each matching the MAF
distribution of the chemotherapeutic drug sensitivity associated SNPs at
p,1023 and controlling for linkage disequilibrium using recombination
blocks. The observed number of pQTLs (left plots) and eQTLs (right
plots) are shown relative to these background permutations for
cisplatin apoptosis (a) and cytotoxicity (b) and paclitaxel apoptosis (c)
and cytotoxicity (d).
doi:10.1371/journal.pgen.1004192.g004
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downstream of the transcription end site) for at least one of the

18,227 gene models quantified by RNA-Seq at P,0.05. This

proportion (38.6%) is statistically enriched compared with the

proportion of all single nucleotide variants genome-wide that are

cis-eQTLs (36.6%, Fisher’s exact test P,2.2610216, odds

ratio = 1.09), suggesting that cis-acting may contribute to some

extent to underlying trans-genetic regulation of protein levels.

Because we performed multiple analyses to examine overlap

and enrichment of protein and drug QTL, the p-value thresholds

used in this study were more permissive relative to that typically

used for genome-wide analyses. By contrast to various chemo-

therapeutics that exhibit GWAS enrichment in eQTLs [25],

paclitaxel GWAS results were not enriched in eQTLs; however,

we identified enrichment in pQTLs for both paclitaxel-induced

apoptosis and cytotoxicity phenotypes. Therefore, genetic variants

associated with the level of a protein appear to be more important

for sensitivity to this drug than mRNA regulatory variants. We

functionally validated one of these observations, DIDO1, by

siRNA knockdown.

DIDO1 is a tyrosine phosphorylated transcription factor that is

localized to the nucleus [40]. DIDO1 was also found within cluster

3, which contained proteins with increased baseline levels

correlating with greater cytotoxicity and apoptosis to each

chemotherapeutic agent tested. DIDO1 is generally believed to

function through apoptosis-related processes; however, it has also

been suggested to function in mitotic division based on gene

overexpression in mice [41]. This proposed function provides a

clear mechanistic connection to paclitaxel, a drug that kills cells

through microtubule inhibition.

Both paclitaxel and cisplatin have been in use for decades, and

significant effort has been expended to identify strategies that

result in increased tumor sensitivity to these agents, including

targeting the activity of drug resistance pathways. However, this

approach is only successful if the cancerous and non-cancerous

cells differ in their response to modulation. Improving the

therapeutic index for patients occurs if the ‘‘modulating agent’’

increases the sensitivity of chemotherapy in the tumor while

decreasing toxicity in non-tumor tissues. This study offers an

Figure 5. Identification of common proteins associated with differing phenotypes through independent pQTL signals for cisplatin
and paclitaxel. Genome-wide association results (p,1023) on two cellular phenotypes (growth inhibition and apoptosis) for both cisplatin (a) and
paclitaxel (b) were analyzed for pQTLs. All SNP that were pQTLs (p,1024) had their target proteins evaluated for correlation with the drug phenotype
(p#0.05). For each drug, the target protein overlap between cytotoxicity and apoptosis is indicated as the final number. The grey shading indicates
the shift from numbers of variants to numbers of proteins and the SNPs presented in the grey area represent the number of SNPs targeting the
proteins.
doi:10.1371/journal.pgen.1004192.g005
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opportunity to identify the relationship between transcription

factors and signaling molecules and drug sensitivities in a non-

tumor environment. For example, high levels of proteins

identified in cluster 3 were associated with greater sensitivity to

both cisplatin and paclitaxel; yet several of these proteins

including c-Src [42,43] and c-Myc [44,45] have been shown to

be overexpressed in tumor cells and their expression correlates

with paclitaxel or cisplatin resistance. c-Src tyrosine kinase is

overexpressed in a high proportion of ovarian cancers and

ovarian cancer cell lines. Its inhibition, either pharmacologically

or through gene knockdown, results in an increase in sensitivity

of ovarian cancer cells to paclitaxel and cisplatin [43]. The

increased cytotoxicity in response to c-Src inhibition was

associated with a large increase in processing and activation of

caspase-3. Our data support these proteins as potential drug

targets, because reducing their levels in LCLs would result in

lower sensitivity to the toxic effects of cisplatin and paclitaxel in

contrast to cancerous cells. We anticipate that this dataset

will therefore have great utility for the development of novel

modulators of chemotherapy.

Although LCLs are a more likely model for toxicity, we

identified several relationships that have been recapitulated in

tumor response. Signal transducer and activator of transcription 3

(STAT3) had the strongest negative associations with cisplatin-

and paclitaxel-induced apoptosis, suggesting high levels of STAT3

protein conveyed drug resistance. STAT3 mRNA expression has

previously been reported to be associated with cisplatin resistance

in many cancer types, including head and neck [46], small cell

lung carcinoma [47], and human epidermoid cancer cells [48], in

which the CRE/ATF binding elements in the STAT3 promoter

were shown to be important for mediating cisplatin resistance.

STAT3 mRNA expression has also been implicated in paclitaxel

Figure 6. Genetic variants relevant in chemotherapeutic response implicated through protein effects. For proteins implicated through
SNPs in both apoptosis and cytotoxicity GWASes, mixed effect modeling was performed to measure the direction of the relationships. SMC1A,
structural maintenance of chromosomes 1A, was positively associated (p = 0.0007) with 5 mM cisplatin induced apoptosis (a) and negatively
associated (p = 0.004) with 5 mM cisplatin-induced cytotoxicity (b). ZNF569, zinc finger protein 569, was negatively associated (p = 0.0002) with
12.5 nM paclitaxel-induced apoptosis (c) and positively associated (p = 0.0005) with 12.5 nM paclitaxel-induced cytotoxicity (d). All four plots display
data from the three thaws represented by diamonds, triangles, or inverted triangles.
doi:10.1371/journal.pgen.1004192.g006
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resistance. Knockdown of STAT3 conveyed sensitivity to paclitaxel

in lung cancer cell lines [49]. STAT3 has been hypothesized as a

potential target to modulate paclitaxel sensitivity in cancer patients

[50]. PTEN is also an example of same direction of effect in LCLs

and cancer cells, however unlike STAT3, increased levels of

PTEN convey sensitivity. Recent studies have demonstrated that

PTEN has the ability to enhance cancer cell sensitivity to

particular anticancer agents. PTEN might reverse the chemore-

sistance of human ovarian cancer cells to cisplatin through

inactivation of the PI3K/AKT cell survival pathway and may

Table 2. Protein QTLs implicating SMC1A for cisplatin and ZNF569 for paclitaxel.

Protein-Drug SNP MAF
Protein
(p-value)

Apoptosis
(p-value)

Cytotoxicity
(p-value)

Most significant
cis eQTL
(gene-level
RNA-Seq)

mRNA
(p-value)

SMC1A-cisplatin chr13.44815900 0.12 5.36E-05 NA 4.93E-05 SLC25A30 0.041

chr15.30332097 0.11 8.85E-06 NA 8.81E-04 FMN1 0.016

rs17159458 0.20 2.14E-05 NA 6.61E-04 C7orf67 5.33E-03

rs10423794 0.16 4.46E-05 NA 7.25E-04 ZNF578 0.030

rs905495 0.22 2.49E-05 NA 1.23E-04 NA NA

chr12.114791277 0.06 2.84E-05 9.07E-06 NA NA NA

chr19.24361339 0.23 2.2E-05 6.10E-04 NA ZNF726 9.34E-03

chr4.65471656 0.10 4.23E-05 6.29E-04 NA NA NA

chr8.134151684 0.38 9.77E-05 6.05E-04 NA NA NA

rs2256292 0.25 7.74E-05 3.19E-04 NA NA NA

rs7186500 0.26 9.56E-05 4.00E-05 NA NA NA

ZNF569- paclitaxel chr1.68459252 0.19 4.15E-05 5.11E-04 NA RP11-518D3.4 0.011

chr12.118319993 0.49 3.04E-06 8.15E-04 NA NME2P1 0.030

chr2.indel83558053 0.22 6.77E-05 7.10E-04 NA NA NA

rs6958145 0.32 5.03E-05 4.01E-04 NA NA NA

rs9486877 0.29 1.33E-05 2.87E-04 NA SESN1 0.012

chr1.98729516 0.06 1.7E-05 NA 8.14E-04 NA NA

Protein QTLs that also associate with either apoptosis or cytotoxicity are shown for each protein with bold indicating SMC1A and cisplatin and non-bold indicating
ZNF569 and paclitaxel relationships. NA indicates that the p-value was greater than 0.001 for the drug phenotypes and 0.05 for the cis-eQTL associations.
doi:10.1371/journal.pgen.1004192.t002

Figure 7. Functional validation of SMC1A and ZNF569. Three lymphoblastoid cell lines (18502, 19138, 19201) were evaluated 24 h and 48 h
following 5 mM cisplatin treatment for cytotoxicity and apoptosis following nucleofection of pooled SMC1A and non-targeting control (a). Three
lymphoblastoid cell lines (18502, 19138, 19201) were evaluated 24 h and 48 h following 12.5 nM paclitaxel treatment for cytotoxicity and apoptosis
following nucleofection of pooled ZNF569 and non-targeting control (b).
doi:10.1371/journal.pgen.1004192.g007
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serve as a potential molecular target for the treatment of

chemoresistant ovarian cancer [51].

SMC1A is part of the multi-protein cohesion complex required

for sister chromatid cohesion. This cohesion complex has been

shown to interact with the BRCA1 DNA repair protein and has

been shown to be phosphorylated by ATM, a serine/threonine

kinase activated by DNA double-strand breaks [52]. The cohesion

complex has also been shown to be important for expression

regulation and genomic stability [53]. Mutations in SMC1A have

been shown to cause Cornelia de Lange syndrome, a multisystem

developmental disorder with defects ranging from limb formations

to cardiac, gastrointestinal, growth and cognitive systems [53].

Coding variants have also been identified in colon cancer [54] and

have been implicated in impairing cellular response to toxic

treatment [55]. Accumulated SMC1A protein has been linked to

bortezomib-induced cell death, demonstrating its relevance for

another chemotherapeutic agent [56], but this is the first study

implicating SMC1A for cisplatin-induced cellular response.

Recently, Wip1, an important signaling protein in cellular growth

following DNA damage, has been identified as an upstream

regulator of SMC1A [57], further suggesting an important role for

this protein in cancer and chemotherapeutic response. SMC1A

has also been linked to cellular growth rate and was identified

within cluster one which included proteins whose levels were

associated with reduced cytotoxicity and apoptosis phenotypes

across both drugs.

Another protein we functionally validated associated with

paclitaxel, ZNF569, was a notable candidate because it has been

functionally implicated as a transcriptional repressor that sup-

presses MAPK signaling [58]. Because of the importance of

MAPK signaling in breast cancer [59] and the common use of

paclitaxel as a breast cancer therapy [60], this association presents

an interesting biological mechanism and potential therapeutic

marker. ZNF569 is supported in our data as a transcriptional

suppressor of MAPK signaling, because lower ZNF569 protein

levels were correlated with increased cellular survival. In addition,

ZNF569 was also found in the cluster of proteins that negatively

correlated more strongly with cytotoxicity than apoptosis for both

drugs, perhaps indicating a role for ZNF569 in cell growth

inhibition unrelated to caspase 3/7 activation.

Notably, this study focused on two widely used but mechanis-

tically distinct agents. By examining two distinct cell phenotypes,

cell growth inhibition and caspase 3/7 activation, our study

identified proteins associated with different cell signaling pathways

responsible for cell growth inhibition. Although our study did not

reveal candidates with strikingly high effect sizes that were

predictive of drug sensitivity, it revealed many unique proteins

whose expression levels were correlated with phenotypic measure-

ments for a single drug. This observation is consistent with

multiple proteins contributing small influences to drug sensitivity.

The protein data collected in this study allowed us to gain a new

understanding of the potential mechanisms and pathways relevant

for cell viability and the genetic variants regulating those proteins.

Interpreting GWAS results continues to present challenges;

increasingly, eQTL studies are being used to inform [25,61,62]

interpretation of these results and are the focus of expanded studies

to understand biological mechanisms [63,64]. These association

tests have been extended to other functional units in the genome

from microRNAs [20] to DNA hypersensitivity sites [19] and

modified cytosines [17]. The main factor limiting the inclusion of

proteins in GWAS studies has been the lack of a reliable, high-

throughput methodology to quantify them across populations of

individuals. The approach described in this study, including the

newly developed microwestern array [32], has started to bridge

Table 3. Proteins associated with growth.

Protein Gene P-Value Rho

p-S6.ribosomal.protein.(S240/244) RPS6 2.58E-05 20.492

NCKAP1L.75 kDa NCKAP1L 6.66E-04 0.408

SMC1A SMC1A 6.72E-04 20.405

IRF5 IRF5 6.86E-04 20.405

Src.A070 SRC 1.33E-03 0.384

Src.A071 SRC 1.86E-03 0.373

TAF15 TAF15 2.56E-03 20.365

c-Myc MYC 4.57E-03 0.341

ATG4B ATG4B 5.38E-03 0.346

ZNF266.50-75 ZNF266 5.84E-03 0.332

ZNF778 ZNF778 6.31E-03 20.356

HMX1 HMX1 8.07E-03 0.320

STAT3A (,90 kDa) STAT3 8.39E-03 20.318

PKCzeta(C24) PRKCZ 1.00E-02 20.311

p-PTEN.(S380) PTEN 1.02E-02 0.311

TULP1 TULP1 1.13E-02 0.306

GTF2F2 GTF2F2 1.15E-02 0.306

TUB TUB 1.28E-02 0.301

RhoC RHOC 1.33E-02 20.309

ZBTB22 ZBTB22 1.42E-02 20.297

DIDO1 DIDO1 1.51E-02 0.294

STAT3B (,80 kDa) STAT3 1.54E-02 20.294

ZMYND11 ZMYND11 1.65E-02 20.290

BACT ACTB 1.79E-02 0.287

AFF2.50 kDa AFF2 2.23E-02 20.279

MYB MYB 2.28E-02 20.285

PLCgamma2 PLCG2 2.35E-02 0.275

p65 RELA 2.53E-02 20.305

ENO1 ENO1 2.53E-02 20.272

IRF5 IRF5 2.58E-02 20.271

RRN3 RRN3 2.58E-02 0.326

TUBA TUB 2.66E-02 0.303

HIVEP1 HIVEP1 2.79E-02 20.269

SPHK2 SPHK2 2.91E-02 0.278

FOXO4 FOXO4 3.14E-02 20.262

KLHL14 KLHL14 3.36E-02 20.372

TBX19 TBX19 3.72E-02 0.254

TIAL1 TIAL1 3.84E-02 0.260

MED12.70 kDa MED12 3.95E-02 0.253

FAK PTK2 3.96E-02 0.251

HOXC6 HOXC6 4.10E-02 20.249

FBXL10 KDM2B 4.42E-02 20.249

FBN1 FBN1 4.53E-02 20.244

IRF4 IRF4 4.54E-02 0.244

EP300 EP300 4.97E-02 20.239

At p,0.05, approximately 10% of the 441 proteins assayed correlate with cell
growth including SMC1A.
doi:10.1371/journal.pgen.1004192.t003
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that technological gap [33], and this study demonstrates the utility

of targeted protein-omic datasets to understand cellular pheno-

types and genomic studies.

Materials and Methods

Cell lines
YRI LCLs derived from unrelated individuals from the

population residing in Ibadan, Nigeria (n = 68) were chosen for

consistency with publicly available mRNA expression data on a

single population [16]. LCLs were cultured in RPMI 1640 media

containing 20 mM L-glutamine and either 15% fetal bovine

serum (Hyclone, Logan, UT) for baseline protein quantification,

cisplatin and paclitaxel apoptosis and cisplatin cytotoxicity

experiments or bovine growth serum (Hyclone, Logan, UT) for

paclitaxel cytotoxicity experiments. Cell lines were diluted three

times per week at a concentration of 300,000–350,000 cells/mL

and maintained in a 37uC, 5% CO2 humidified incubator.

Medium and components were purchased from Cellgro (Herndon,

VA).

Drug-induced cell apoptosis and cytotoxicity phenotypes
Drug-induced apoptosis and cytotoxicity phenotypes were

determined at 5 mM cisplatin and 12.5 nM paclitaxel. Both drugs

were prepared as described previously: cisplatin [65] and

paclitaxel [66]. The cytotoxic effect of cisplatin [65] and paclitaxel

[66] was determined using a short-term cellular growth inhibition

assay, and the apoptotic effect was measured using a caspase 3/7

activity detection reagent Caspase-Glo 3/7 (Promega Corpora-

tion, Madison, WI).

Protein isolation
Three independent thaws constituting biological replicates of 68

unrelated YRI cell lines were propagated and pelleted (5.1 million

cells per pellet). Cells were spun at 400 RPM, aspirated, and

washed in ice-cold PBS. This process was repeated twice and then

the pellets snap frozen in liquid nitrogen and placed at 280

degrees. Total protein was extracted by re-suspension in 1.0 mL of

1.5% SDS lysis buffer (240 mM Tris-acetate, 1.5% w/v SDS,

0.5% w/v glycerol, 5 mM EDTA) containing 50 mM DTT,

protease inhibitors (1 mg/mL aprotinin, 1 mg/mL leupeptin, 1 mg/

mL pepstatin), and phosphatase inhibitors (1 mM sodium

orthovanadate, 10 mM b-glycerophosphate). To ensure complete

protein denaturation, samples were boiled for 10 min, sonicated

for 10 min (alternating 30 s on, 30 s off) with a Bioruptor

(Diagenode), and concentrated to 5–10 mg/mL using a 96-well

micro-concentration device with a 10 kDa molecular weight cutoff

(Millipore).

Pilot study
To identify sources of steady-state protein expression variation,

we performed a pilot study to quantify 21 proteins across three

independent cultures from two independent thaws from two YRI

LCLs (NA18861 and NA19193). We performed a multifactorial

ANOVA to assess the proportion of protein expression variation

explained for each of these variables across all proteins. We

observed a significant thaw effect explaining 3.75% of global

protein expression variation (p = 0.01, F test), whereas culture only

explained 0.13% of protein expression variation (p = 0.85, F test).

Using a mixed-effects model with a random nested effect,

(1|individual/thaw/culture), only 2.71610214% of protein ex-

pression variation was between cultures within thaws, whereas

5.29% of variation was between thaws within individuals.

Protein quantification and analysis with pharmacologic
phenotypes

Initially, three biological replicates for each of 11–12 individuals

were pooled together into six pools for screening 4,366 rabbit

polyclonal antibodies at a 1:1000 dilution. Printing, gel fabrication,

horizontal semidry electrophoresis, transfer, blotting, and scanning

were performed as in Ciaccio et al. [32], permitting 96 antibodies

to be screened over six pooled lysates per MWA. The 4,366

antibodies were directed against 1,848 unique TFs and 200 unique

cell signaling proteins. Of this set, 198 antibodies producing a

single predominant band the size of the targeted protein isoform of

interest with a signal-to-noise ratio $3 were selected for

subsequent population-level quantification by RPPAs; antibodies

that displayed at least one band the size of the targeted protein

isoform of interest with a signal to noise ratio $3 but additional

bands were selected for subsequent population-level quantification

by MWAs. This approach ultimately allowed us to quantify

protein levels from 441 antibodies (341 TF and 100 signaling)

directed at 391 unique protein isoforms across three biological

replicates of 68 LCLs. Additional antibody details are listed in

Table S5.

For RPPA quantification, four technical replicates of each of

three biological replicates of all 68 individuals were spotted using a

noncontact piezoelectric microarrayer (GeSiM Nanoplotter 2.1E)

onto nitrocellulose membranes (Biorad). Serial dilutions of each of

the six pooled lysates used for the original antibody screen and an

A431 skin carcinoma cell line control were also printed for each

array to ensure the linearity and quality of the antibody signal.

Features with background-subtracted integrated intensities ,0 or

signal to noise ratio ,3 (Z test p.0.05) were identified in each

array and excluded from further analysis. The distributions of

background-corrected integrated intensities for all features on each

array were first log2-quantile normalized using the limma package

in R to correct for overall antibody hybridization efficiency

differences in the signal. The relative expression of a given protein

for a sample was then quantified using the linear model (1)

yjp*mjpzljze, where mjp is the log-quantile normalized,

background-corrected integrated intensity of sample j on array p,

lj is the effect due to sample j across all arrays in a print (due to

differing amounts of total protein spotted on the array for each

sample), estimated by medianj(cjp). Odyssey output text files were

parsed in Python and quantified and normalized in R.

For micro-western quantification, three technical replicates of

each of the three biological replicates of all 68 individuals were

spotted as above onto polyacrylamide gels. Gel fabrication,

horizontal semidry electrophoresis, transfer, and scanning were

performed as in Ciaccio et al. [32] with the exception of separating

each blot into four quadrants rather than using a 96-well gasket to

permit 6863 = 204 samples to be quantified with a single antibody

on a single quadrant. Feature extraction and data normalization

were performed as with RPPAs. For antibodies that produced

multiple bands (signal to noise ratio .3), all isoforms were

quantified and their relative molecular weights recorded. The

expression of a given protein for an individual was quantified using

the above linear model (equation 1) with the addition of a batch

term (b) to correct for global intensity distribution differences

across multiple microwesterns for the same antibody. For

replicates within platforms for the same antibody across the entire

population, we took the average of the expression measurements.

For replicates across platforms, we selected the platform that

yielded the highest median background-corrected integrated

intensity. To reduce the inflated effect of technical noise because

of low antibody signals and provide more accurate inter-individual

protein expression measurements, antibodies in the bottom deciles
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of median background-corrected integrated intensities or in the

top deciles of technical CVs for either platform were flagged and

eliminated from further comparative analyses.

For each protein measurement from either method, we

constructed linear mixed effects models y*pzCzT DIze, in

which p is the array- and sample-load normalized integrated

signal intensity for all biological replicates of all individuals

comprising the population, C is the fixed effect of the drug, T|I is

the random thaw effect per individual, and e is the residual error.

The model was fitted to each protein by residual maximum

likelihood using the lmer function in the R package lme4 (v

0.999999-0). This mixed effect model incorporates the direction of

effect for each biological replicate and insures that those with

conflicting directions would result in a less significant p-value.

Fixed effect p-values for covariates were estimated using the

pamer.fnc function in the LMERConvenienceFunctions

package (v 1.6.8.3). The significance of covariate effects was

assessed by estimating false discovery rates using Storey’s q-value

method.

Hierarchical Clustering. Hierarchical clustering was performed in R

using Euclidean distance and the Ward method in hclust() for the

standardized coefficients between the regression of 370 protein

isoforms (rows) by the four drug phenotypes (columns), with the

apoptosis coefficients inverted to match directionality with the

cytotoxicity coefficients. The number of significant clusters was

determined by performing 1000 permutations of the column

coefficients, clustering them, and selecting the number of observed

clusters at a tree height that significantly exceeded all tree heights

from the permutations (k = 7, p,0.001).

Genome-wide association studies
HapMap genotypes were obtained from the 1000 genomes,

June 2011, phase I, low-pass whole genome SNP genotype release

(www.1000genomes.org). Missing values were imputed by BIM-

BAM (v 1.0) using the default parameters to derive mean imputed

genotypes. SNPs with MAF,0.05 and SNPs with significant

deviation from Hardy-Weinberg equilibrium (Fischer’s exact test,

p,0.001) were excluded, reducing the set to 9,345,571 SNPs and

indels for association analyses. To ensure that low MAF SNPs

were not generating spurious associations due to outliers, we

compared the MAF distribution of SNPs associated with protein

and drug phenotypes with all SNPs (Figure S4). The average

MAFs for protein (.17) and drug (.15) associations do not show a

bias as compared with the genome (.16). Each protein expression

measurement was inverse normal transformed prior to association

analysis. Drug-induced cytotoxicity phenotypes were log-trans-

formed to better approximate normal distributions. We tested for

normality using the Shapiro-Wilk test and none of the drug

phenotypes deviated significantly from normality (p.0.001). We

selected this threshold because of the smaller sample size and also

examined the frequency distribution to ensure that outliers were

not substantially driving false positive associations. Protein

expression and drug phenotypes were then tested for association

with all markers genome-wide by linear regression implemented in

Python and R using custom scripts. For each phenotype, we

selected the most significantly associated SNV within each

recombination window, defined by splitting the genome into

25,307 blocks flanked by .10 cM/Mb recombination rates

estimated from HapMap.

Enrichment analysis
For each drug, we generated 1,000 randomly selected sets of

SNPs of the same size and matching the same MAF distribution as

all SNPs significantly associated with that drug (dQTLs) at

p,1023 and examined the overlap of these dQTLs with pQTLs

and eQTLs at p,1024, as previously described [25]. We

empirically determined the enrichment p-value by comparing

the observed dQTL-pQTL or dQTL-eQTL SNP overlap to the

null distribution. We also evaluated enrichment of dQTLs at

p,1024 for the SNP-transcript association to test the robustness of

an enrichment result to the choice of p-value threshold. To

investigate whether the observed enrichment of dQTLs to be

pQTLs or eQTLs was driven by linkage disequilibrium, we

performed an additional simulation analysis after selecting only the

most significant dQTLs for each recombination block.

siRNA nucleofection
LCLs were seeded at a density of 550,000 cells/mL 24 hours

before nucleofection. Amaxa’s Cell Line 96-well Nucleofector Kit

SF (Lonza Inc, Basel, Switzerland) was used to perform the

transfection. Cells were centrifuged at 90 g for 10 minutes at room

temperature and resuspended at a concentration of 1,000,000 cells

in 20 mL of SF/supplement solution (included in SF Kit Lonza

Catalog #V4SC2096) and 2 mM final concentration of AllStars

negative Control siRNA labeled with AlexaFluor488 (Qiagen Inc.,

Valencia, CA) or a pool of siRNA (Qiagen) (See Table S1). The

cells were nucleofected using Amaxa’s DN-100 program. Cells

were allowed to rest for 10 minutes before the addition of pre-

warmed (in 37u water bath for a minimum of 20 minutes) RPMI

media and then another 5 minutes after the addition of warm

RPMI media. Cells were then plated for protein measurements

and drug treatments. Cells were harvested at 24 and 48 hours

post-nucleofection for protein measurement. Drug treatment was

done 18 hours following transfection for cell survival measurement

and 24 hours after transfection for apoptosis measurement.

Apoptosis was measured as described above, whereas cell survival

was measured as described above for cisplatin and using Cell-Titer

Glo (Promega) for paclitaxel. Each experiment was done twice,

with two independent transfections.

siRNA analyses
To assess the size and significance of the effect of siRNA

knockdown on drug response (survival for cytotoxicity assay and

caspase activity for apoptosis assay) we fit the following linear

mixed effect model: response*knockdownzdosez 1Didð Þz
1Dexperimentð Þ, in which knockdown is 1 if the gene was knocked

down and 0 if scrambled. Cell line id (denoted by id) and experiment

were used as random effects to properly account for correlation

between replicates. To increase precision, we pooled the data from

all cell lines. The mixed effects model was fit using lme4 package in

the R Statistical package (http://cran.r-project.org/). The good-

ness-of-fit of the model was assessed by examining the residuals.

Normality of the residuals was assessed using the Shapiro-Wilk test

in the R Statistical package. Log-transformation of the response

variable was used to achieve approximate normality.

Supporting Information

Figure S1 Cellular growth inhibition is inversely correlated with

caspase 3/7 apoptosis measurements. In 68 unrelated YRI LCLs,

both cisplatin (a) and paclitaxel (b) cytotoxic phenotypes were

negatively correlated with apoptosis measurements. Paclitaxel’s (c)

correlation (r2 = 0.35) was much stronger than cisplatin’s (d)

correlation (r2 = 0.04).

(TIF)

Figure S2 Correlation of cellular phenotypes across thaw. We

correlated the cellular phenotypes for cisplatin cytotoxicity (a) and

apoptosis (b) and paclitaxel cytotoxicity (c) and apoptosis (d) using
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63 cell lines for cytotoxicity and 21 for apoptosis. Both cytotoxicity

phenotypes were correlated p,0.0001 with r2 of .28 (a) and .35 (c).

Apoptosis phenotypes were correlated p,0.003 with r2 of .63 (b)

and .38 (d).

(TIF)

Figure S3 Role of growth in proteins associated with chemo-

therapeutic phenotypes. SMC1A protein levels (a) are significantly

correlated with intrinsic growth rate (p = 0.001) whereas ZNF569

(b) was not (p.0.05).

(TIF)

Figure S4 Minor allele frequency distribution comparing

associated SNPs with all SNPs. SNPs associated with proteins’

MAF distribution (middle) contained more common MAF variants

than all SNPs tested genome-wide (left, two-sample Kolmogorov-

Smirnov test p = 1, pQTL median MAF = 0.17 vs. genome-wide

median MAF = 0.16). However, we appreciate that low MAF

variants are statistically more prevalent in our dQTL associations

(right) (C, K–S test p,0.05) but by not a large magnitude (dQTL

median MAF = 0.15).

(TIF)

Table S1 siRNA used in functional experiments. The siRNAs

that were purchased from Qiagen and pooled are listed for each

gene indicated. The asterisk indicates that the siRNA was

functionally validated to the target gene by Qiagen.

(DOC)

Table S2 Relationship between drug phenotypes and proteins.

The mixed effect model (MEM) p-value and beta for all nominal

(p,0.05) correlations between each phenotype (5 mM cisplatin

apoptosis, 5 mM cisplatin cytotoxicity, 12.5 nM paclitaxel apop-

tosis, 12.5 nM paclitaxel cytotoxicity) and proteins are listed.

(XLSX)

Table S3 Overlap proteins implicated through apoptosis and

cytotoxicity GWAS pQTLs. Genome-wide association results

(p,1023) on two cellular phenotypes (growth inhibition and

apoptosis) for both cisplatin and paclitaxel were analyzed for

pQTLs. All SNP that were pQTLs (p,1024) had their target

proteins evaluated for correlation with the drug phenotype

(p#0.05). For each drug, the target protein overlap between

cytotoxicity and apoptosis is listed.

(DOC)

Table S4 SNPS correlated with drugs that are also pQTLs.

Genome-wide association results (p,1023) on two cellular

phenotypes (growth inhibition and apoptosis) for both cisplatin

and paclitaxel were analyzed for pQTLs (p,1024) and are listed.

(XLSX)

Table S5 Antibodies used in this study. Information regarding

the companies, antigens and gene names for the antibodies

quantified in the 68 samples is provided.

(XLSX)
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