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Abstract

Although vertebrates harbor bacterial communities in their gastrointestinal tract whose composition is host-specific, little is
known about the mechanisms by which bacterial lineages become selected. The goal of this study was to characterize the
ecological processes that mediate host-specificity of the vertebrate gut symbiont Lactobacillus reuteri, and to systematically
identify the bacterial factors that are involved. Experiments with monoassociated mice revealed that the ability of L. reuteri
to form epithelial biofilms in the mouse forestomach is strictly dependent on the strain’s host origin. To unravel the
molecular basis for this host-specific biofilm formation, we applied a combination of transcriptome analysis and
comparative genomics and identified eleven genes of L. reuteri 100-23 that were predicted to play a role. We then
determined expression and importance of these genes during in vivo biofilm formation in monoassociated mice. This
analysis revealed that six of the genes were upregulated in vivo, and that genes encoding for proteins involved in epithelial
adherence, specialized protein transport, cell aggregation, environmental sensing, and cell lysis contributed to biofilm
formation. Inactivation of a serine-rich surface adhesin with a devoted transport system (the SecA2-SecY2 pathway)
completely abrogated biofilm formation, indicating that initial adhesion represented the most significant step in biofilm
formation, likely conferring host specificity. In summary, this study established that the epithelial selection of bacterial
symbionts in the vertebrate gut can be both specific and highly efficient, resulting in biofilms that are exclusively formed by
the coevolved strains, and it allowed insight into the bacterial effectors of this process.
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Introduction

Most members of the animal kingdom form associations with

symbiotic microorganisms that are often of fundamental impor-

tance for their biology [1]. These symbioses vary in terms of their

effects on the host and the evolutionary and ecological processes

that maintain the partnership. To date, host-microbial symbiosis is

best understood in invertebrates such as insects, nematodes, and

the Hawaiian squid Euprymna scolopes [2,3,4,5,6]. These symbioses

are often mutualistic, coevolved, and remarkably specific, with the

host being able to select for the correct symbiotic partners and

stably maintain them over ecological and evolutionary time-scales

[7]. Host specificity is considered one of the factors that support

the evolution and maintenance of mutualistic interactions [8], and

scientists have begun to use model systems to identify the

molecular mechanisms by which exclusive symbiotic alliances

become established [2].

Vertebrates also form relationships with microbial populations

that play important roles in their biology and development, and

therefore qualify as symbioses [9,10]. Microbial communities

associated with vertebrates are generally more diverse than those

found with invertebrates, comprising hundreds of microbial

species, most of which are bacteria. The densest bacterial

population associated with vertebrates is found in the gastrointes-

tinal (GI) tract (the gut microbiota), and as a whole, this

community makes important contributions to the host in the form

of nutrient provision, resistance to infections, and development of

immune system functions [1,10]. Despite the importance of the gut

microbiota, there is still little known on how bacterial populations

become acquired, are stably maintained by the host. 16S rRNA

surveys revealed that the fecal microbiota of mammals is to a large

degree specific for their particular host species [11,12] and

remarkably stable [13,14], indicating that mechanisms are in place

to recruit and maintain selected bacterial populations. However, in

contrast to microbial symbioses in invertebrates, virtually nothing

is known about the molecular processes by which recognition,

selection, and capture of bacterial lineages are conferred in

vertebrates.

Lactobacillus reuteri is a gut symbiont present in a variety of

vertebrate species, likely benefiting its host [10]. We have recently
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demonstrated, by using a combination of population genetics and

comparative genomics, that the species is composed of host-

specific clades [15] with lineage-specific genomic differences that

reflect the niche characteristics in the GI tract of respective hosts

[16]. Experiments in Lactobacillus-free mice to measure the

ecological fitness of strains originating from different hosts

supported host adaptation, as only rodent strains colonized mice

efficiently [16]. Overall, the findings indicated that L. reuteri is a

host specific symbiont, and the separate lineages within the species

suggest that host restriction was maintained over evolutionary time

spans, allowing host-driven diversification [15,16]. We have

demonstrated the ecological significance of a subset of rodent-

specific L. reuteri genes in the context of the murine gut [16], but

the mechanisms by which these genes influence host colonization

and the molecular processes that mediate host specificity have not

been systematically investigated.

In rodents, pigs, chickens, and horses, lactobacilli form large

populations in proximal regions of the GI tract, and they adhere

directly to the stratified squamous epithelium present at these sites

[17,18]. In mice and rats, adherence occurs in the forestomach

[19], and this process appears to be important with regards to the

ecological fitness of the bacteria [20]. The epithelial associations

formed can be considered biofilms as the bacteria are arranged in

multiple layers and are encased in a polysaccharide matrix

[21,22]. Although there is ample microscopic evidence that

supports the existence of these biofilms [17,23,24], there is very

limited information on how they form and the underlying

molecular processes. In addition, while studies have shown that

the adherence of Lactobacillus isolates to epithelia and epithelial

cells is host-specific [19,25,26], it has not been established if

differences in biofilm formation contribute to the host specificity

observed within the species L. reuteri.

In this study, we used experiments with monoassociated mice

and demonstrated that epithelial biofilm formation in L. reuteri is

dependent on host origin of the stains. To gain insight into the

molecular basis of host-specific biofilms, we identified genes of L.

reuteri 100-23 that are upregulated during growth in an in vitro

biofilm, are lineage-specific and are predicted to contribute to

biofilm formation, or are orthologs of genes from other bacteria

with established roles in biofilm formation. The importance of

these genes to in vivo biofilm formation was then determined by

monitoring their expression level and assessing the phenotype of

null mutations in mouse colonization experiments.

Results

Temporal characterization of L. reuteri biofilms in the
forestomach of mice

As shown previously in ex-Lactobacillus-free BALB/c mice

[21,22], L. reuteri 100-23 forms dense layers of cells on the

forestomach epithelium of monoassociated (ex-GF) Swiss Webster

mice that can be visualized by both scanning electron microscopy

(SEM) and confocal microscopy (Figure 1A–D). A subset of the

bacterial cells were directly attached to the epithelium and

protruding epithelial cells, while other bacteria were attached to

bacteria, forming multiple layers of cells (Video S1). Temporal

characterization of colonization revealed that it required 48 hours

for a mature biofilm to develop (Figure 1E). After 24 hours,

individual cells were found adhering directly to the epithelium,

and microcolonies, composed of clumps of cells, became visible.

48 hours after gavage, luminal bacterial populations in the

stomach reached a stable plateau of around 108 cells/gram (data

not shown), and the biofilm appeared to reach a final density as no

further increase occurred. However, even within mature biofilms,

colonization was patchy, with some areas being densely populated

by various layers of cells, while others showed few adherent cells.

These patterns are likely caused by the continuous shedding of

epithelial cells, resulting in vacant areas that have to be

recolonized.

L. reuteri biofilm formation is strictly dependent on the
strain’s host origin

We developed an experimental approach by which to compare

in vivo biofilm formation of L. reuteri strains after 48 hours of

colonization in germ-free mice. Although our previous studies

were in Lactobacillus-free mice which approximate a microbiota

functionally equivalent to conventional animals [16], we specifi-

cally chose monoassociated mice here as they allow the specific

study of biofilms and the underlying bacterial factors in the

absence of competitive interactions. Competitive interactions that

affect colonization unrelated to biofilms (e.g. interference through

bacteriocins, competition for substrates, bacteriophages) would

confound our ability to first interpret the exact ecological role of

biofilms, and second, to identify bacterial factors that specifically

contribute to their formation. In our case, the monoassociated

mouse model was necessary to exclusively compare biofilm

formation of rodent and non-rodent strains as the latter are poor

colonizers of mice with a competitive microbiota [16].

Using this mouse model, biofilm formation of nine wild-type

strains (Table 1) originating from different hosts (mouse, rat,

human, pig, and chicken) was evaluated. Biofilms were quantified

by confocal microscopy, measuring the pixel area in images where

bacterial cells were stained with propidium iodide. The analysis

revealed adherence of rodent strains to the forestomach epithelium

and biofilm formation (Figure 2A, B, and C), while non-rodent

strains were virtually absent from the epithelium (Figure 2A, D,

and E). Interestingly, in the absence of competition, both rodent

and non-rodent strains reached similar luminal populations (107 to

109 CFU/gram)(Figure 2A).

Identification of L. reuteri genes predicted to be involved
in biofilm formation

To gain insight into the molecular processes that facilitate host-

specific biofilm formation, we identified genes of L. reuteri 100-23

Author Summary

The bacterial communities found in the vertebrate
gastrointestinal tract are remarkably stable and host-
specific. However, the ecological and molecular processes
that facilitate the selection of microbial symbionts and the
exclusion of detrimental bacteria are not well understood.
Here, we explore the mechanisms that underlie coloniza-
tion and biofilm formation in specific strains of the gut
symbiont Lactobacillus reuteri. When previously germ-free
mice are colonized by individual strains of L. reuteri, only
strains originating from rodents formed biofilms on the
forestomach epithelium. Genomic, proteomic, and molec-
ular analysis provide a detailed look into the host-specific
molecular processes, such as adhesion, that contribute to
colonization and biofilm formation. Our findings demon-
strate high fidelity in the epithelial selection of a bacterial
gut inhabitant, which can differentiate even between
strains of the same species, strengthening the notion that
some relationships between vertebrates and their micro-
bial symbionts are highly coevolved and exclusive.

In vivo Biofilm Formation of Lactobacillus reuteri
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predicted to play a role, using three independent approaches of

gene discovery. First, we performed a transcriptome analysis to

identify genes whose expression is upregulated during in vitro

biofilm growth. Second, we identified genes specific to host-

confined L. reuteri lineages [16] that were also predicted to be

involved in biofilm formation. Finally, we searched for genes that

were not host-specific but were orthologs of genes with established

roles in bacterial biofilms.

Transcriptome analysis of L. reuteri during in vitro

biofilm growth. Genes of L. reuteri 100-23 that were differen-

tially expressed during biofilm formation in a flow cell when

compared to regular batch culture were identified by microarray

analysis and whole transcriptome sequencing (RNA-seq). Micro-

array analysis identified 91 genes upregulated more than twofold

during growth in the biofilm; an additional 37 genes showed

greater than twofold overexpression during planktonic growth

(Table S1). Amongst the loci with the most significant upregulation

during biofilm growth were a cystathionine gamma-lyase gene

cluster, four genes encoding for putative surface proteins

containing LysM domains/YG motifs, and genes encoding the

LrgAB system (which is involved in the control of cell death and

lysis in Staphylococcus aureus biofilms [27]). RNA-seq confirmed most

of the findings obtained with the microarray analysis (Table S1),

but also revealed that genes within the urease gene cluster were

upregulated in the biofilm, which were not detected by the

microarray.

Lineage-specific genes predicted to be involved in biofilm

formation. Our previous comparative genomic analysis identi-

fied several host-specific genes that contributed to ecological fitness

of L. reuteri 100-23 in Lactobacillus-free mice, and that were

annotated to have a putative role in biofilm formation [16].

Rodent and porcine L. reuteri strains possess an accessory Sec

system (the SecA2-SecY2 system), which is present in a small

number of Gram-positive species and is typically specialized in the

transport of heavily glycosylated adhesins [28]. In order to

determine the spectrum of proteins of L. reuteri 100-23 secreted

by the SecA2-SecY2 pathway, we performed a proteomic analysis

and compared extracellular and cell wall-associated proteins in the

secA2 mutant [16] and the wild-type 100-23C strain. In the wild-

type strain, 16 proteins were identified with high confidence to be

secreted or associated with the cell surface (Table S2). Many of

these proteins were predicted to be cell wall-associated, possessing

cell wall anchors or putative cell wall binding motifs. Interestingly,

the only detectable difference between the secA2 mutant and the

wild-type was the absence of the surface protein Lr70902 in the

spent media from the secA2 mutant, and a significant reduction of

this protein in the cell surface extract (Table S2). These findings

suggested that Lr70902, whose gene is colocalized with the secA2

Figure 1. Biofilms of Lactobacillus reuteri 100-23 on the keratinized squamous stratified epithelium of the mouse forestomach. (A)
Scanning electron microscopy micrograph of forestomach epithelium of ex germ-free mice two days after a single gavage of 107 CFU L. reuteri 100-
23. (B) Same epithelium in a germ-free mouse. (C) Image of biofilm after two days of colonization obtained with confocal microscopy after staining
with propidium iodide (bacterial cells stain red). (D) Same tissue obtained from a germ-free mouse visualized by confocal microscopy. (E) Confocal 3D
images showing the mouse forestomach epithelium after 6, 24, 48, and 96 h of inoculation.
doi:10.1371/journal.pgen.1004057.g001

Table 1. Strains used in this study.

Strain Relevant Characteristics Source or Reference

L. reuteri 100-23 Rat gastrointestinal isolate [26]

L. reuteri 100-23C Plasmid-cured derivative of strain 100-23 [53]

L. reuteri 100-23C cgl mutant Cystathionine c-lyase inactivated This study

L. reuteri 100-23C ureC mutant Urease a-subunit inactivated This study

L. reuteri 100-23C lrgA mutant lrgA inactivated This study

L. reuteri 100-23C lytS mutant lytS inactivated This study

L. reuteri 100-23C lysM2 mutant LysM-domain protein inactivated This study

L. reuteri 100-23C lysM3 mutant LysM-domain protein inactivated This study

L. reuteri 100-23C 70430 mutant Two-component system inactivated [16]

L. reuteri 100-23C secA2 mutant SecA2-transport system inactivated [16]

L. reuteri 100-23C lr70902 mutant Large surface protein inactivated [16]

L. reuteri 100-23C lr70532 mutant Two-component system inactivated [16]

L. reuteri 100-23C lsp mutant Large surface protein inactivated [30]

L. reuteri Lpuph Mouse isolate [16]

L. reuteri Mlc3 Mouse isolate [16]

L. reuteri DSM20016T (ATCC 23272) Human isolate Type strain

L. reuteri cf4-6g Human isolate [15]

L. reuteri ATCC 53608 Pig isolate [54]

L. reuteri LPA1 Pig isolate [15]

L. reuteri CS-F8 Chicken isolate [55]

L. reuteri 1366 Chicken isolate [15]

doi:10.1371/journal.pgen.1004057.t001

In vivo Biofilm Formation of Lactobacillus reuteri
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gene cluster [16], is the primary cell-wall associated protein of

strain 100-23 that is secreted through the accessory SecA2

pathway during in vitro growth. The presence of a few cytoplasmic

proteins detected at low levels in the extracellular and cell surface

extracts from both strains (data not shown) suggested that the

residual amount of Lr70902 in the secA2 mutant’s cell wall may be

due to low levels of cell lysis, although residual transport through

other secretory pathways cannot be ruled out.

Lr70902 (2180 aa) shows sequence homology with bacterial

adhesins, possesses a LPXTG cell wall anchor, and it displays

characteristics of a protein secreted through the SecA2 system

[28]. Like other SecA2-secreted proteins, it is extremely serine rich

and contains an unusually long signal peptide. The serine-rich

motif ‘SVSMSESLSN’ is repeated identically and in succession 74

times in Lr70902, and a similar repeating pattern of serine residues

is also found in the SecA2-secreted fimbrial adhesin (Fap1) of

Streptococcus parasanguinis [29].

The comparative genomic analysis further identified two

separate two-component regulatory systems (TCS) as being host

specific, and these systems might contribute to quorum sensing or

other regulatory functions during biofilm formation [16]. One of

these systems, comprised of a histidine kinase (Lr70430), a LytR/

AlgR family response regulator (Lr70431), and a bacteriocin

processing peptidase (Lr70432), was only found in strain L. reuteri

100-23 [16]. The other system was more conserved among rodent

strains [16] and contains a putative histidine kinase (Lr70529), a

response regulator of the LytR/AlgR family (Lr70530), a

bacteriocin-like peptide (Lr70531), an ABC-type bacteriocin

transporter (Lr70532), and an ABC-type bacteriocin/lantibiotic

exporter, containing an N-terminal double-glycine peptidase

domain (Lr70533).
Orthologous genes with established roles in bacterial

biofilm formation. L. reuteri genomes contain several ortholo-

gues of bacterial genes with demonstrated roles in biofilm

formation. All L. reuteri strains with the exception of those in

lineage VI possess a LytS/LytR system, which is a TCS that

serves as a regulator of cell autolysis in S. aureus, contributing to

biofilm formation by generating a DNA matrix within the biofilm

[27]. The antiholin LrgA is one of the genes regulated by LytS/

LytR in S. aureus. Like in S. aureus, the LytS/LytR system of L.

reuteri 100-23 (Lr69269/Lr69270) is found directly upstream of

the lrgAB operon (Lr69271/Lr69272) (Figure S1), which was

upregulated during in vitro biofilm formation of L. reuteri 100-23

(see above).

L. reuteri strains possess several surface proteins that are

predicted to be involved in biofilm formation or epithelial

adherence, including the Lsp protein from L. reuteri 100-23. Lsp

is a homologue of Esp and Bap from Enterococcus faecalis and S.

aureus, which are proteins involved in biofilm formation [30].

Previous work showed that Lsp contributes to ecological perfor-

mance of L. reuteri 100-23C in the mouse gut, and ex vivo adherence

assays suggested that this was through its role in initiating

adherence to the epithelium [30].

Functional characterization of genes predicted to be
involved in biofilm formation

The information obtained from the combined gene discovery

approach was used to select eleven genes of L. reuteri 100-23 for

functional studies (Table 2). Due to the high number of

differentially regulated genes during in vitro biofilm formation,

not all of the genes identified as over-expressed could be tested in

mouse experiments. Three of the four LysM/YG proteins whose

expression was induced during in vitro biofilm growth (Lr69719,

Lr69721, Lr71416) possess very similar LysM and YG domains

with high homology (.80% amino acid homology) (Figure S2).

Therefore, two of the genes (lr70152 and lr71416), which typified

this group of proteins in strain 100-23, were selected for further

characterization.

Temporal examination of in vivo gene expression during

colonization of the forestomach epithelium. Mice were

monoassociated with L. reuteri 100-23, and the expression of the

selected genes in cells adherent to the forestomach epithelium was

determined by qRT-PCR at different time points (6 to 96 hours),

Figure 2. Biofilm formation of L. reuteri strains is host specific. (A) Quantification of biofilm density (relative to biofilm of strain 100-23) by
confocal microscopy and cell counts in forestomach contents of L. reuteri strains two days after gavage with a single dose of ,107 cells. Bars are color
coded according to host origin (green, rodent; blue, human; red, pig, and orange, chicken). Confocal micrographs showing density and pattern of
bacteria (red) by strains (B) Lpuph (mouse), (C) Mlc3 (mouse), (D) DSM20016T (human), and (E) ATCC 53608 (pig).
doi:10.1371/journal.pgen.1004057.g002
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encompassing the different steps of biofilm formation (Figure 1E).

This analysis showed a wide spectrum of expression levels among

the genes (Table 3). The ureC and lsp genes were upregulated more

than 100-fold in vivo when compared to in vitro growth, while genes

such as lrgA, secA2, lr70902, lytS and lysM3 showed increases

ranging from 5 to 30-fold. For most genes, expression was not

temporarily regulated during in vivo biofilm formation, as no

difference was detected between time points at 6, 12, and 24 hours

(adherent cells and microcolonies) and time points .24 hours

(mature biofilm). The only exception was the lytS gene (Lr69269),

expression of which showed a progressive increase, reaching the

highest level of expression after 96 hours of colonization.

Evaluation of the genes’ contribution to in vivo biofilm

formation. To determine the importance of genes for in vivo

biofilm formation, groups of germ-free mice (n = 3) were colonized

for two days by mutant strains or wild-type 100-23C, and biofilm

density was compared by confocal microscopy. These experiments

revealed that several gene products were critical for biofilm

formation (Figure 3). SecA2, the ABC-type bacteriocin transporter

(Lr70532), LytS (Lr69269), and the two LysM-domain proteins

(Lr71416 and Lr70152), showed a significant contribution to

biofilm density, while mutation of lr70902 almost completely

eliminated epithelial associations (Figure 3E). Although these

mutants were impaired in biofilm formation, they reached

Table 2. Genes of L. reuteri 100-23 selected for functional characterization.

Gene Protein Description Putative Function Reason for Study

lr71416 LysM2 LysM/YG Domain
Protein

Aggregation; Described in L. johnsonii, L. gasseri, L.
acidophilus

Upregulated in Biofilm

lr70152 LysM3 LysM/YG Domain
Protein

Aggregation; Described in L. johnsonii, L. gasseri, L.
acidophilus

Upregulated in Biofilm

lr69271 LrgA LrgA biofilm regulator Regulator of Biofilm formation; Described in
Staphylococcus aureus

Upregulated in Biofilm

lr69360 Cgl Cystathionine gamma
lyase

Reactive Oxygen (RO) Resistance; Described in
L. reuteri BR11

Upregulated in Biofilm

lr70892 SecA2 secA2 protein
translocases

Transport of surface proteins to cell surface;
Described in Streptococcus gordonii, L. reuteri 100-23

Host specific and predicted to secrete proteins
related to biofilm formation and adhesion [28]

lr70902 Fap1-like
protein

Serine-rich large
surface protein

Adhesion to forestomach epithelium; described in
L. reuteri 100-23

Host specific and predicted to be involved in
adhesion [16]

lr70532 Putative ABC
bacteriocin transporter

Quorum sensing Host specific, and quorum sensing is often important
for biofilm formation

lr70430 Histidine kinase of
two-component
regulatory system

Strain-specific regulatory system Critical for ecological success [16]

lr70114 UreC Urease enzyme,
alpha subunit

Acid resistance Host specific, and acid resistance has been shown to
be important in biofilms [16]

lr69269 LytS LytS regulator Regulator of cell lysis during biofilm formation Biofilm regulatory gene in Staphylococcus aureus [39]

lr70580 Lsp Large surface protein Putative adhesin Homologe of biofilm related proteins and critical for
ecological success [30]

doi:10.1371/journal.pgen.1004057.t002

Table 3. Gene expression fold change (SEM) during colonization of the forestomach epithelium, compared to batch culture as
determined by qRT-PCR.

Gene 6 hrs 12 hrs 24 hrs 48 hrs 72 hrs 96 hrs

secA2 (Lr70892)1 17.37 (2.84) 25.01 (9.14) 2.45 (1.08) 11.99 (7.5) 58.30 (16.4) 14.74 (1.33)

lr70902 17.89 (0.78) 23.84 (10.4) 21.21 (7.15) 6.90 (3.14) 20.88 (4.83) 29.86 (15.3)

lytS (Lr69269)2 5.82 (0.035)a 12.05 (5.56)a 6.20 (3.26)a 19.41 (0.12)a, b 22.13 (3.51)a, b 55.98 (17.9)b

lysM3 (Lr70152) 4.58 (1.51) 5.66 (0.68) 0.43 (0.18) 13.43 (3.62) 6.89 (0.55) 5.06 (0.20)

lysM2 (Lr71416) 0.14 (0.06) 0.25 (0.03) 0.06 (0.03) 0.13 (0.03) 0.22 (0.4) 0.15 (0.01)

lr70532 0.0078 (0.01) 0.77 (0.48) 2.07 (1.55) 2.84 (2.68) 0.18 (0.05) 0.18 (0.03)

ureC (Lr70114) 131.94 (43.5) 110.17 (31.1) 106.59 (62.7) 0.799 (0.43) 88.90 (23.9) 103.13 (7.52)

lsp (Lr70580) 96.79 (21.8) 64.80 (3.34) 0.80 (0.67) 35.86 (22.6) 71.65 (41.4) 70.86 (7.64)

lr70430 2.18 (1.24) 1.90 (0.70) 2.56 (2.10) 14.98 (13.6) 0.57 (0.06) 0.77 (0.33)

cgl (Lr69360) 2.17 (0.94) 4.24 (2.20) 1.65 (0.88) 2.12 (1.28) 4.94 (0.82) 1.89 (1.32)

lrgA(Lr69271) 7.33 (0.42) 6.53 (3.13) 2.85 (0.16) 4.23 (1.40) 6.59 (0.65) 4.38 (1.55)

1Genes in bold contribute to biofilm formation.
2Significant changes over time are shown by superscript groups (a,b).
doi:10.1371/journal.pgen.1004057.t003
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population densities in the forestomach lumen of .107 cells/gram

after two days of colonization (Figure 3A), indicating that genes are

specifically involved in biofilm formation.

The inactivation of the other loci did not result in a significant

reduction in in vivo biofilm formation. Interestingly, three of these

loci (lsp, ureC, and lr70430) have been shown to contribute to

ecological performance of L. reuteri 100-23C in the mouse gut

([16,30] and unpublished observations). These genes may

contribute either to functions not related to biofilm formation

(e.g. acid resistance for the urease cluster), or they may be

functionally redundant. For example, the lsp mutant showed a

modest but not significant reduction in biofilm formation

(Figure 3A). In this respect, it is relevant to point out that L.

reuteri 100-23 possesses several paralogues of Lsp that could

account for the residual function in the mutant. This concurs with

previous findings in Lactobacillus-free mice which showed that the

lsp mutant, although impaired in vivo, could still attach to the

forestomach epithelium [30].

Discussion

The vertebrate gut microbiota makes critical contributions to

the host, but relationships have to be recapitulated each

generation as vertebrates are germ-free at birth. Here we

demonstrate that host epithelial selection of a bacterial symbiont

can be highly specific in the mouse gut, allowing efficient

differentiation between strains of the same species.

Epithelial associations of L. reuteri qualify as biofilms and
are host specific

Biofilms are populations of microorganisms that are concen-

trated at an interface (usually solid-liquid) and typically surround-

ed by an extracellular polymeric substance matrix, such as

exopolysaccharides (EPS) [31]. Growth in epithelial biofilms can

increase bacterial persistence in flowing habitats, and biofilms have

therefore often been postulated to constitute an important

hallmark of bacterial colonization of the intestinal tract [32].

However, evidence for the existence of biofilms in the intestinal

tract is inconclusive [33], and findings by the Hansson laboratory

indicated that most of the intestinal lining is covered by two layers

of mucus that prevent direct contact of bacteria with the

epithelium [34]. Bacteria are associated with the outer mucus

layer, but this matrix remains loosely attached and is constantly

replaced, and it is questionable if it would permit the formation of

biofilms. In contrast, the forestomach epithelium in mice is not

covered by mucus, allowing direct attachment of bacteria to the

epithelial cells (Figure 1A). The temporal analysis of L. reuteri

colonization of the forestomach epithelium using confocal

microscopy extended our previous studies [21,22] and revealed

some of the classic features of biofilm formation, such as

attachment followed by the formation of microcolonies (Figure 1E).

Most importantly, the ability to form biofilms on the

forestomach epithelium is completely congruent with the host

origin of the strains, with only rodent strains forming biofilms. It is

important to point out that, in contrast to the findings in

Lactobacillus-free mice [16], non-rodent strains were able to

colonize germ-free mice (Figure 2A). However, even the presence

of high numbers of bacteria in the lumen (107 to 109 CFU/gram)

did not lead to attachment to the epithelium (Figure 2D and E),

showing that epithelial capture is highly selective.

Molecular processes that underlie L. reuteri biofilm
formation

The combination of transcriptomics and comparative genomics

proofed a highly successful approach to identify biofilm-related

genes, as mutation of six out of the eleven selected genes had a

measurable effect. The information gained from the in vivo

characterization of these genes allow inferences of the molecular

processes that underlie L. reuteri biofilm formation in the mouse GI

tract, and a preliminary model of the process is presented in Figure 4.

As a first step, individual L. reuteri cells adhere to the

forestomach epithelium. The Fap1-like protein (Lr70902) is clearly

of key importance for initial adherence, as the loss of this protein

Figure 3. Characterization of in vivo biofilms of mutant strains of L. reuteri 100-23C. (A) Quantification of biofilm density (relative to biofilm
of wild-type strain 100-23C) by confocal microscopy and cell counts in forestomach contents of L. reuteri mutants two days after gavage with a single
dose of ,107 cells. ANOVA with Dunnett’s multiple comparison test, *, p,0.05; **, p,0.01; ***, p,0.001). Confocal micrographs of forestomach tissue
from mice colonized for two days with (B) wild type, (C) secA2 mutant, (D) lysM3 mutant, and (E) lr70902 mutant.
doi:10.1371/journal.pgen.1004057.g003
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prevented almost all surface attachment (Figure 3E). Interestingly,

our proteomic analysis suggested that L. reuteri 100-23 devotes a

specialized secretion system (the SecA2 system) to Lr70902,

underscoring the importance of this protein. The impairment of

the secA2 mutant in biofilm formation is therefore most likely

caused by the reduction in Lr70902 transport to the cell surface.

After initial attachment, L. reuteri biofilm development proceeds

with the formation of micro and macrocolonies composed of cell

aggregates (Figure 1E). The LysM/YG proteins of L. reuteri show

characteristics of proteins that can induce aggregation in

lactobacilli [35,36], possibly by the N-terminal LysM domain

binding to peptidoglycan [37] and the C-terminal YG-motif to

carbohydrate moieties [36]. The contribution of these proteins to

the formation of in vivo biofilms suggests an important role of

autoaggregation in the overall process.

In several model organisms, biofilm formation is a carefully

regulated process, which relies on cues from the population of cells

(quorum sensing) and the environment [38]. Our experiments

revealed two regulatory systems to contribute to L. reuteri biofilm

formation (Figure 3); the LytS system and the TCS associated with

an ABC bacteriocin transporter (Lr70532). During colonization,

the expression of the lytS gene increases progressively (Table 3),

suggesting that it is induced in mature biofilms in vivo. In S. aureus,

the LytSR system regulates expression of the lrgAB and cidABC

operons, influencing cell lysis and the release of extracellular DNA

(eDNA), which serves as a matrix in biofilms [27,39]. It is not yet

known how the LytSR system functions in L. reuteri and if eDNA

plays a role in biofilms of the species. Likewise, the TCS associated

with Lr70532, which might be involved in quorum sensing, is also

clearly important for biofilm formation (Figure 3), yet its function

and the genetic targets remain to be identified.

Adhesion is likely the major host specific step in biofilm
formation

While the ability to form biofilms in the rodent forestomach is a

specific trait of rodent L. reuteri strains, most genes identified to

contribute to biofilm formation are not unique to the rodent

lineages of the species. The LysM/YG proteins and the LytS/R

system are present in most L. reuteri genomes and are also found in

related species (Figures S1 and S2). These findings suggest that

biofilm formation may be an ancestral trait of the L. reuteri species,

and accordingly, the species is a component of biofilms in the gut of

rodents, pigs, and poultry. The complete absence of biofilm

formation for the lr70902 mutant suggests that it is the adhesion

step that confers host specificity. Homologues of Lr70902 are only

found in rodent and pig isolates of L. reuteri (in which they are always

co-localized with the SecA2 gene cluster), and these proteins may

fulfill a keystone role in specifically binding to the epithelium in their

respective hosts. The low sequence similarity between the proteins

of rodent and pig strains might account for the observed host

specificity, but experiments are needed to test this hypothesis.

Implications of host-specific biofilms for the ecology and
evolution of L. reuteri

Several of the genes identified during this study as important in

in vivo biofilm formation (secA2, lr70902, lr70532) were previously

Figure 4. Model depicting the in vivo biofilm formation of L. reuteri. (A) Schematic summary illustrating steps of biofilm formation. (B) L.
reuteri cells with the bacterial factors involved in biofilm formation.
doi:10.1371/journal.pgen.1004057.g004

In vivo Biofilm Formation of Lactobacillus reuteri

PLOS Genetics | www.plosgenetics.org 8 December 2013 | Volume 9 | Issue 12 | e1004057



shown to strongly contribute to the ecological performance of L.

reuteri in Lactobacillus-free mice [16], indicating that biofilm

formation represents the key ecological process for gut coloniza-

tion and likely the main mechanism by which host specificity is

conferred [16]. Thus, differences in the ability to form biofilm

provide an explanation for why rodent strains outcompete non-

rodent strains in the gut of mice [15], and why non-rodent strains

fail to efficiently colonize Lactobacillus-free mice [16]. In addition,

the impaired ecological performance of the secA2, lr70902, lr70532

mutants in Lactobacillus-free mice indicates that observations made

in monoassociated mice are also relevant in a more complex

setting, and that the gene functions remain relevant when a

bacterial community is present.

From an evolutionary perspective, it is important to point out

that the biofilm phenotypes of L. reuteri strains are completely

consistent with the inferred phylogeny of the species [15]; non-

rodent strains, which cluster separately from rodent strains, do not

form biofilms, while isolates from both mice and rats form biofilms

and cluster together in phylogenetic clades. This coherence

suggests that host-specific biofilms are the result of a long-term

evolutionary process, and the high fidelity of the epithelial

selection provides a mechanism by which L. reuteri could diversify

into host-specific lineages [15,16].

Is epithelial selection a common mechanism for
symbiont capture in vertebrates?

As described above, mammals are able to select a host specific

gut microbiota, but most microbes that reside in the intestinal tract

are unlikely to maintain direct associations with the epithelium due

to the presence of mucus [34]. It is not yet known whether these

associations are sufficient to maintain stable symbiotic relation-

ships over ecological and evolutionary time spans. However, most

human isolates of L. reuteri show adherence to mucus, while rodent

isolates do not [40], and this phenotype might be an adaptation to

the human gut, which lacks a mucus-free stratified epithelium. In

addition, computer modeling revealed that epithelial selection

could be achieved through specific secretions provided by the host

(e.g. nutrients such as glycoconjugates) [41]. Accordingly, it has

been shown that Bacteroides fragilis is stably established in the

colonic crypts, probably by being able to utilize a specific glycan

structure provided by the host [42]. Nutrient-based epithelial

selection is predicted to overrule competitive disparities between

microbes, even those that result from large differences in growth

rates [41]. This process could be highly relevant, as it would allow

the host to select for true mutualists that bear fitness disadvantages

due to the provision of costly benefits. Thus, epithelial selection,

whether mediated through direct adhesion, as shown for L. reuteri,

or through secretion, provides a mechanism for the selection of

beneficial microbial populations in the vertebrate gut and a

stabilization of mutualism.

Conclusion
As a reservoir of potential pathogens, the gut microbiota has the

ability to harm the host, especially if perturbed. In addition,

evolutionary theory predicts that characteristics of the vertebrate

microbiota, such as genetic diversity and horizontal transmission,

create opportunities for conflict that can destabilize mutualistic

partnerships [43]. It is therefore important for the host to not only

have the capability to select beneficial microbes at every new

generation, but also to stably maintain them over longer timescales

to align fitness interests between the host and the symbiont [8].

The work here has contributed novel insight into the character-

istics of the microbial symbiosis in the vertebrate GI tract in that it

demonstrated highly efficient epithelial differentiation of bacterial

strains, providing a mechanism for fidelity during transmission.

The findings suggest that some L. reuteri-host interactions utilize

similar mechanisms as described for invertebrate symbiosis

(specific adherence, biofilms, cell aggregation) and pathogen-host

interactions (SecA2, LytSR), but more work is necessary to

elucidate the exact role of these bacterial factors in vertebrate host

colonization in the context of beneficial alliances. Most impor-

tantly, the findings suggest that microbial symbiosis in vertebrates

can display a high level of host specificity, suggesting that it might

be more coevolved, exclusive, and obligate than so far recognized.

Methods

Ethic statement
All mouse experiments were performed with approval of the

Institutional Animal Care and Use Committee of the University of

Nebraska (Project ID 731).

Strains and media used in the study
Strains used in this study are described in Table 1. The genetic

work was performed with a plasmid-free variant of Lactobacillus

reuteri 100-23, a rat isolate that belongs to the rodent-specific

lineage III of the species [15]. The genome sequence for this

organism has been determined (Genbank accession number: NZ

AAPZ00000000.2). This strain has also been used in previous

experiments examining biofilm formation in vivo in the rodent host

[21,22]. Bacteria were cultured anaerobically on modified MRS

(mMRS) medium (MRS supplemented with 10 g/L maltose and

5 g/L fructose) at 37uC, unless otherwise noted. Inocula for mouse

experiments were prepared by growing L. reuteri strains for

14 hours in liquid culture before recovering the cells by

centrifugation (40006 RPM for 10 minutes). Prior to gavage, L.

reuteri cells were washed twice with phosphate-buffered saline (PBS,

pH 7.0) and suspended in the same buffer to generate the inocula.

Mouse experiments
Germ-free Swiss Webster mice were maintained at the

University of Nebraska Gnotobiotic Mouse Facility. For experi-

ments to compare in vivo biofilm formation among strains, germ-

free mice (6–16 weeks of age) were moved to sterile, individually

ventilated biocontainment cages (Allentown Inc, Allentown, NJ,

USA). Mice in a treatment group (n = 3) were housed together,

and each mouse was gavaged with 100 mL of a cell suspension

containing 107 viable cells of L. reuteri. After 48 hours of

colonization, mice were sacrificed by CO2 asphyxiation and the

stomachs were obtained, contents were removed, and the

forestomachs were fixed for microscopy. Bacterial numbers were

determined in forestomach and/or cecal contents by plate count

on mMRS. Each experiment included a sterile control group,

where 1 or 2 mice were gavaged with sterile PBS instead of L.

reuteri. Forestomach contents were cultured anaerobically on Brain

Heart Infusion (BHI) Agar and mMRS to confirm the sterility of

the ventilator system and the mouse cohort. In addition, from each

cage of L. reuteri colonized mice, contents from one forestomach

and one cecum were also cultured anaerobically on BHI Agar to

control for bacterial growth other than L. reuteri (BHI does not

support the growth of L. reuteri but is a commonly used universal

medium, and is therefore suitable to detect potential contami-

nants). The mice in ventilated biocontainment cages remained

germ-free over the duration of the experiments, as no biofilms

were detected in mice that received PBS, and no growth occurred

in any of the mice on BHI agar (data not shown).

For time course colonization experiments with L. reuteri 100-23

(Figure 1E and Table 3), eighteen 6–9 week old germ-free Swiss
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Webster mice were housed in three cages in a germ-free isolator

and gavaged with 107 CFU of the organism. One mouse per cage

was removed 6, 12, 24, 48, 72, and 96 hours after gavage. Mice

were sacrificed at indicated timepoints by CO2 asphyxiation, and

tissue was immediately transferred to fixatives for microscopy, or

transferred to RNase-free bead beating tubes and snap frozen in

liquid nitrogen for RNA extraction (see below).

Investigation of in vivo biofilms by SEM
Forestomach tissues were fixed in 0.1 M Sorenson’s phosphate

buffer containing 2.5% EM grade glutaraldehyde (Electron

Microscopy Sciences, Hatfield, PA USA) and stored at 4uC until

use. Fixed tissues were critical point dried and palladium/gold-

sputter coated, and samples were visualized using a Hitachi

S3000N scanning electron microscope (Hitachi High Technolo-

gies America, Schaumburg, Illinois).

Visualization and quantification of in vivo biofilm
formation by confocal microscopy

Forestomach tissues were fixed immediately in 3% formalin/

phosphate-buffered saline (PBS, pH 7.0) for 30 min and then

transferred to fresh 3% formalin/PBS pH 7.0 and stored at 4uC
until usage. Samples were transferred to PBS pH 7.0 to remove

residual methanol, and maintained for 60 min with one exchange

of buffer after 30 min. Tissues were stained in 5 mg/mL

propidium iodide (in PBS, pH 7.0) for 10 min. Samples were

washed twice in PBS (pH 7.0), and mounted on glass cover slips in

Fluorogel (Electron Microscopy Sciences, Hatfield, PA USA)

suspended by a CultureWell chambered cover glass (Grace Biolabs

Bend, OR USA), and imaged with an Olympus FV500 Confocal

Laser Scanning Microscope using an Olympus Ix81 inverted

microscope (Olympus, Center Valley, PA, USA). Series of Z-axis

confocal optical images were collected by a technician with no

knowledge of sample identities from three random sites of the

forestomach tissue with a 606 oil lens using the dual excitation

and emission mode (excitation laser lines: 488 nm and 543 nm,

emission filters: 525 nm and 600 nm, respectively). In three Z-

stacks per sample, bacteria cells stained with propidium iodide (the

600 nm red fluorescence) in each of the optical images were

counted and pooled for the image analysis using a method

described previously [44]. Using ImageJ [45], L. reuteri biofilm

formation was quantified by determining the red-channel pixel

area in images captured from three separate fields of view per

individual sample (which results in a total area of 0.144 mm2 per

mouse). The auto-fluorescence of the mouse forestomach tissue

was captured as background (488 nm excitation and 525 nm

emission). Dual-color (red-colored bacteria and green autofluores-

cence background) confocal images with extended depth of focus

(overlapping all z-optical stacks) were used for presentations in

figures 1–3. For 3D rendering, the fixed tissue was imaged using a

Nikon A1 upright scanning confocal microscope (Nikon, Melville,

New York) at 1 mM slices and rendered using the Nikon Analysis

software.

In vitro biofilm
L. reuteri 100-23 was grown in MRS supplemented with 1%

maltose, 0.5% fructose and 0.1% sucrose (suMRS; pH 5.5)

overnight and, after subculture (1% inoculum), for another

8 hours. 2.5 mL of this culture was injected into a disposable

convertible flow cell with plastic (PET) cover slip (IBI Scientific,

Peosta IA USA) which had been pre-conditioned with half-

strength suMRS (pH 5.0; 37uC) as described previously [46].

Media flow from a reservoir of sterile half-strengh suMRS (pH 5.0;

37uC) was started 30 min after inoculation and maintained at a

rate of 48 mL/h for 24 h (leading to six replacements of the

chamber volume per hour). After 24 h, the flow chamber was

carefully opened, and the biofilm was recovered in 3 ml growth

media and immediately added to 7 ml RNAprotect. After 5 min

incubation at room temperature, RNA was extracted as described

below. Three individual in vitro biofilms were used to generate

triplicate biological replicates. To compare the transcriptome of L.

reuteri 100-23 cells grown in biofilms with that of planktonic cells,

100 mL batch cultures (three biological replicates) of prewarmed

(37uC) suMRS (pH 5.5) were inoculated with 1% of an overnight

culture of L. reuteri 100-23 grown in the same medium. Batch

cultures were incubated for 4 h at 37uC to an OD600 of around

0.6. 50 mL were harvested by centrifugation (3 min for 30006 g)

at 4uC, resuspended in 5 ml of 1 vol mMRS and 2 vol

RNAprotect, and incubated for 10 min at room. Cells were

recovered by centrifugation and subjected to RNA extraction. At

harvest, the cultures were at pH 5 (+/20.2), and therefore almost

identical to the pH of the culture medium used for biofilm growth.

RNA extraction and purification
RNA was extracted from in vitro biofilms and batch cultures (for

transcriptome analysis) and from frozen forestomach samples and

8 h in vitro cultures (for qRT-PCR analysis). Bacterial cells from

biofilm and batch cultures were collected by centrifugation and

homogenized in 1 mL TRI Reagent (Molecular Research Center,

Inc Cincinnati, OH USA) (Molecular Research Center, Inc.,

Cincinnati, OH USA). Cells were disrupted with three one-minute

intervals in a Mini-Bead Beater (BioSpec Products, Inc. Bartles-

ville, OK USA) using zirconia/silica beads and cooling tubes on

ice for one minute between intervals. Frozen forestomachs were

added to 1 ml TRI Reagent and homogenized using the same

conditions. Total RNA was extracted from these solutions

according to the TRI Reagent instructions. Genomic DNA was

removed using the TURBO DNA-free kit (Applied Biosystems/

Ambion Austin, TX USA) followed by on-column DNase-

treatment using the Qiagen RNeasy Kit (Qiagen Valencia, CA

USA). DNase-treated RNA was quantified using the Nanodrop-

1000 (NanoDrop Technologies, Wilmington, DE USA) and

overall RNA integrity was determined in a RNase-free 1.2%

agarose gel.

Transcriptome comparison of cells grown in biofilm and
planktonic cultures by microarray analysis

For the transcriptome work, the quality and concentration of

RNA was determined using an Agilent 2100 Bioanalyzer (Agilent,

Palo Alto, CA USA) and a NanoDrop ND-1000 Spectro-

photomoter (ThermoScientific Wilmington, DE USA). Spotted

microarrays containing probes for each of the annotated ORFs of

L. reuteri 100-23 [16] were used for the experiment. Total RNA

was directly labeled by reversed transcription using SuperScript II

Reverse Transcriptase (Invitrogen, Carlsbad, CA) according to the

manufacturer’s instruction. The 20 mL reaction mix included

20 mg total RNA, random hexamers (200 ng/mL), 0.01 M

dithiothreitol, 0.05 mM dATP, 0.05 mM dTTP, 0.05 mM dGTP

and 0.02 mM dCTP, SUPERase (2 U/mL), 3.75 nM Cy3-dCTP

dye or Cy5-dCTP (GE Healthcare UK limited, Little Chalfont

Buckinghamshire, UK), and reverse transcriptase (30 U/mL). The

reaction was incubated at 42uC for 2 h and terminated by adding

3 mL of 0.2 mM-filtered 0.5 M EDTA (final concentration 0.05 M)

and an incubation for 2 min at RT. The RNA was removed by

adding 3 mL 0.2 mM-filtered 1 M NaOH (final concentration

0.1 M) and incubating at 65uC for 30 min. The solution was

neutralized by adding 3 mL 0.2 mm-filtered 1 M HCL. The
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labeling concentration was measured using a Nanodrop, and equal

amounts of Cy3 and Cy5 labeled cDNAs were mixed together and

purified using a QIAquick PCR purification kit according to the

manufacturer’s instruction (Qiagen Valencia, CA USA). 22 mL of

LowTemp Hybridization buffer (ArrayIt Corporation, Sunnyvale,

CA, USA) was used for elution. The final hybridization solution

was prepared by mixing the 22.0 mL labeling mix, 3.5 mL Salmon

sperm DNA (5 mg/mL) and 2.0 mL yeast tRNA (9.2 mg/mL).

The hybridization was incubated at 43uC in dark overnight

(approximately 16–20 h). The hybridized chips were washed using

16 SSC buffer plus 0.03% SDS, followed by 0.26 SSC, then

0.056 SSC for 5 min at room temperature sequentially with

gentle agitation. Slides were immediately scanned with an Axon

GenePix 4000 scanner (Axon, Union City, CA). Images were

subsequently analyzed using Axon GenePix 4.0 software (Axon,

Union City, CA). The experiment was performed in triplicate with

biologically independent samples. The statistical analysis was

carried out using R/Bioconductor and the LIMMA analysis

package [47]. The complete data set of the gene expression

analysis by microarray is presented in Table S3.

Transcriptome comparison of cells grown in biofilm
versus planktonic cultures using RNA sequencing (RNA-
seq)

RNA from one sample of each condition (biofilm and batch

culture) was subjected to the MICROBExpress Bacterial mRNA

purification kit to reduce 16S and 23S rRNAs in the sample. The

resulting RNA was subjected to standard Illumina library

preparation and sequenced with an Illumina GAII sequencer,

generating 16,004,489 (batch culture) and 14,005,687 (biofilm)

reads of 50 bp length. Sequence reads were quality filtered

resulting in 13,280,611 and 11,957,648 reads for the batch and

biofilm culture, respectively. The reads were mapped to the L.

reuteri 100-23 genome (NZ_AAPZ00000000.2) using Bowtie [48]

while omitting reads that mapped to multiple locations or

contained mismatches. This resulted in 822,571 (batch culture)

and 693,758 (biofilm) reads that uniquely mapped to a library of

ORFs constructed from the annotated 100-23 genome. The

number of reads per ORF per condition was compared using

GFOLD [49], which calculates a generalized fold change to

identify differentially expressed genes. The complete dataset of the

gene expression analysis by RNAseq is presented in Table S3.

Quantitative Reverse Transcription PCR (qRT-PCR)
DNase-treated RNA isolated from forestomach tissues and 8 hr

cultures was reverse transcribed using the Superscript VILO RT

kit according to the manufacturer’s instructions using the

manufacturer’s random primers (Invitrogen CA USA). Briefly,

20 mL reactions, containing approximately 1 mg of total RNA, of

the Superscript VILO RT reaction were incubated for 10 min at

25uC, 60 min at 42uC and the reaction was terminated by heating

to 85uC for 5 min. qRT-PCR was carried out on an Eppendorf

Mastercycler Realplex2 machine (Eppendorf AG, Hamburg,

Germany) using the Quanti-Fast SYBR Green PCR kit and

primers designed with Primer3 [50] (Table S4). Primers were

validated using serial ten-fold dilutions of pooled cDNA to

determine specificity and efficiency. Tenfold dilutions of pooled

cDNA were also included in each PCR reaction as efficiency

controls. Efficiency controls were carried out in triplicate and

experimental samples were performed in duplicate. For RT-PCR

reactions, 12.5 mL of 26 Quantifast SYBR Green Mastermix

(Qiagen Valencia, CA USA), 1 mL of ten-fold diluted cDNA, and

25 pMol of each primer were used per 25 mL reaction. A five-min

denaturation step at 95uC was followed by 40 2-step cycles of 10 s

at 95uC, then 30 s at 60uC. To confirm specificity of the PCR,

products from each reaction were validated on an agarose gel and

through inspection of their melting curves (denaturation step of

15 s at 95uC, an increase from 60uC–95uC over a 20 min period,

and a final step of 15 s at 95uC). Gene transcripts were quantified

relative to the glyceraldehyde-3-phosphate dehydrogenase house-

keeping gene, whose expression did not differ between biofilm and

batch culture growth (Table S1). Relative quantification of gene

expression was performed using the method of Pfaffl [51] and

compared using one-way ANOVA followed by Tukey’s post-test.

Gene inactivation
Insertional inactivation of target genes and in vitro characteriza-

tion of mutant strains was carried out as described previously [30].

Growth experiments revealed that none of the mutants had any

growth defects (data not shown).

Proteomic analysis of cell-wall associated and secreted
proteins

L. reuteri 100-23C wild-type and secA2 mutant strains were

subcultured overnight at 37uC in suMRS broth (pH 6.2) and

mutant strains received erythromycin supplementation at 5 mg/

mL. Cultures in 20 mL suMRS broth (pH 6.2) without antibiotic

were subsequently inoculated 61/100 and incubated at 37uC for

12 h. Cells were collected by centrifugation at 30006g for 10 min

at 4uC. Spent culture media samples (10 mL) were buffer-

exchanged into TE1/1 (1 mM Tris-HCl, 1 mM EDTA, pH 8.0)

and concentrated 35-fold by ultrafiltration through 3 kDa

MWCO Ultra-4 spin filters (Amicon) at 40006g and 4uC. Pelleted

cells were washed with 5 mL ice-cold TES buffer (10 mM Tris-

HCl, 1 mM EDTA, 25%, w/v, sucrose, pH 8.0) and re-

centrifuged at 4uC for 2 min at 170006g. Cell surface extracts

were prepared by digesting whole cells in 2 mL TES buffer

containing 6 mg/mL (577 kU/mL) lysozyme and 18 mg/mL

(200 U/mL) mutanolysin for 3 h at 37uC. The treated cells were

incubated on ice for 15 min and centrifuged at 4uC for 10 min at

25006g and the supernatants containing released cell surface

proteins removed carefully by pipette to avoid cellular contami-

nation. Cell surface extracts were buffer-exchanged with TE1/1

buffer containing Complete Protease Inhibitor Cocktail and

EDTA (Roche) and concentrated 15-fold by ultrafiltration through

10 kDa MWCO Ultra-0.5 spin filters (Amicon) at 140006g and

4uC. Samples of concentrated spent media and cell surface

extracts were electrophoresed through 4–12% Bis-Tris gradient

gels (Novex Invitrogen) with MOPS-SDS buffer for 50 min at

200V constant voltage, followed by fixing and staining with

Colloidal Blue (Novex Invitrogen). HiMark Unstained High

Molecular Weight Protein Standard (Invitrogen) was electropho-

resed for comparison. Individual protein bands or larger regions of

each gel lane were excised from the gel, gel pieces were cut into

,1 mm cubes and washed with 2615 min incubations in 500 ml

of 200 mM ammonium bicarbonate (ABC) in 50% (v/v)

acetonitrile (ACN; Fisher) to equilibrate the gel to pH 8.0 and

remove the stain, followed by a 10 min incubation with 500 ml

ACN. Cysteine thiol side chains were reduced by incubation with

500 ml of 10 mM dithiothreitol in 50 mM ABC for 30 min at

60uC before being alkylated with 500 ml of 100 mM iodoaceta-

mide in 50 mM ABC for 30 min at room temperature. The gel

pieces were then washed with 2615 min incubations in 500 ml of

200 mM ABC in 50% (v/v) ACN followed by 10 min in 500 ml

ACN to dehydrate and shrink the gel pieces before air drying.

Proteins were digested by the addition of 100 ng trypsin (modified

porcine trypsin; Promega) in 10 ml of 10 mM ABC, or a mixture
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of 100 ng trypsin and 100 ng endoproteinase GluC (Roche) in

10 ml of 10 mM ABC before incubation overnight at 37uC.

Following digestion, the samples were acidified by incubating with

10 ml of 1% (v/v) formic acid for 10 min. The digest solution was

removed from the tube into an Eppendorf tube and the gel pieces

were then washed with 20 ml of 50% ACN for 10 min to recover

more digest peptides from the gel. The combined extracted digest

samples were dried down at the low drying setting on a Speed Vac

SC110 (Savant) fitted with a refrigerated condensation trap and a

Vac V-500 (Buchi). Samples were stored frozen at 280uC prior to

LC-MS/MS analysis in a nanoflow-HPLC system (nanoAC-

QUITY: Waters) and a LTQ-Orbitrap mass spectrometer

(Thermo). Peptides were trapped on line to a Symmetry C18

Trap (5 mm, 180 mm620 mm) which was then switched in-line to

a UPLC BEH C18 Column, (1.7 mm, 75 mm6250 mm) held at

45uC. Peptides were eluted by a gradient of 0–80% ACN in 0.1%

formic acid over 50 min at a flow rate of 250 nl min21. The mass

spectrometer was operated in positive ion mode with a nano-spray

source at a capillary temperature of 200uC. The Orbitrap was run

with a resolution of 60,000 over the mass range m/z 300–2,000

and an MS target of 106 and 1 s maximum scan time. The MS/

MS was triggered by a minimal signal of 2000 with an Automatic

Gain Control target of 30,000 ions and maximum scan time of

150 ms. For MS/MS events selection of 2+ and 3+ charge states

selection were used. Dynamic exclusion was set to 1 count and

30 s exclusion time with an exclusion mass window of 620 ppm.

Proteins were identified by searching the Thermo RAW files

converted to MASCOT generic format by Proteome Discover

(Thermo) and proteins were identified by interrogating the L.

reuteri 100-23 proteome database using the MASCOT v2.2.06

search engine (Matrix Science Ltd) [52]. MASCOT data were

compared using Scaffold 4 v4.0.5 (Proteome Software, Inc.) with

stringent filter settings of a protein threshold of 99.9% (minimum

protein identity probability), a minimum number of peptides of 2

(minimum number of unique peptides per protein for identifica-

tion) and a peptide threshold of 99.9% (minimum certainty of

peptide identification for the minimum number of peptides set).

Statistics
Statistical analyses were carried out using Graph Pad Prism 5

(GraphPad Software, Inc., California). Means and standard error

of the mean are used. Comparisons were performed by ANOVA

with Dunnett’s multiple comparison test for biofilm formation, or

with Tukey’s post-test for gene expression comparisons. Signifi-

cance of p,0.05 is denoted by a single asterisk (*), p,0.01 as two

asterisks (**), and p,0.001 by three asterisks (***).

Supporting Information

Figure S1 Genomic loci containing genes for the LytS/R and

LrgA/B systems in L. reuteri and related bacteria with % amino
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(TIF)

Figure S2 Diagrammatic representation of LysM-domain pro-

teins in L. reuteri and other bacteria.

(TIF)

Table S1 Gene expression as measured by Expression Micro-

arrays and RNA-Seq .

(XLSX)

Table S2 Proteomics of cell wall and secreted proteins from L.

reuteri 100-23C wild type and secA2 mutant in vitro using Scaffold 4

analysis of MASCOT MS data: total spectrum count displayed for

each protein.

(XLS)

Table S3 Microarray and RNASeq expression data for all genes

of L. reuteri 100-23C presented in respective tabs. Genes in bold

were inactivated by mutation for in vivo experiments. Microarrays

were analyzed by LIMMA (see Methods), and the RNASeq data

was analyzed by GFOLD (see Methods). Annotations for all gene

and probe identifiers are also provided.

(XLSX)

Table S4 qRT-PCR primers used in this study.
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Video S1 3D rendered image of biofilm on rodent forestomach

48 hours after colonization.
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